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Abstract—Least mean square (LMS) based adaptive 
algorithms have been attracted much attention since their low 
computational complexity and robust recovery capability. To 
exploit the channel sparsity, LMS-based adaptive sparse 
channel estimation methods, e.g., zero-attracting LMS (ZA-
LMS), reweighted zero-attracting LMS (RZA-LMS) and ܮ௣-
norm sparse LMS (LP-LMS), have also been proposed. To take 
full advantage of channel sparsity, in this paper, we propose 
several improved adaptive sparse channel estimation methods 
using ܮ௣ -norm normalized LMS (LP-NLMS) and ܮ଴ -norm 
normalized LMS (L0-NLMS). Comparing with previous 
methods, effectiveness of the proposed methods is confirmed by 
computer simulations. 

Keywords—least mean square (LMS); adaptive sparse channel 
estimation; normalized LMS (NLMS); sparse penalty; 
compressive sensing (CS). 

I.  INTRODUCTION 
The demand for high-speed data services is getting more 

insatiable due to the number of wireless subscribers roaring 
increase. Various portable wireless devices, e.g., smart 
phones and laptops, have generated rising massive data 
traffic [1]. It is well known that the broadband transmission 
is an indispensable technique in the next generation 
communication systems [2-7]. However, the broadband 
signal is susceptible to interference by frequency-selective 
fading. In the sequel, the broadband channel is described by 
a sparse channel model in which multipath taps are widely 
separated in time, thereby create a large delay spread [7-12]. 
In other words, unknown channel impulse response (CIR) in 
broadband wireless communication system is often 
described by sparse channel model, supporting by a few 
large coefficients. That is to say, most of channel 
coefficients are zero or close to zero while only a few 
channel coefficients are dominant (large value) to support 
the channel. A typical example of sparse channel is shown 
in Fig. 1, where the number of dominant channel taps is 4 
while the length of channel is 16. 

Traditional least mean square (LMS) algorithm is one of 
the most popular methods for adaptive system identification 
[13], e.g. channel estimation. Indeed, LMS-based adaptive 
channel estimation can be easily implemented by LMS-

based filter due to its low computational complexity or fast 
convergence speed. However, the LMS-based method never 
takes advantage of channel sparse structure as prior 
information and then it may loss some estimation 
performance. 

 
Recently, many algorithms have been proposed to take 

advantage of sparse nature of the channel. For example, 
based on the theory of compressive sensing (CS) [14], [15], 
various sparse channel estimation methods have been 
proposed in [16-19]. For one thing, these CS-based sparse 
channel estimation methods require that the training signal 
matrices satisfy the restricted isometry property (RIP) [20]. 
However, design these kinds of training matrices is non-
deterministic polynomial-time (NP) hard problem [21]. For 
another thing, some of these methods achieve robust 
estimation at the cost of high computational complexity, e.g., 
sparse channel estimation using least-absolute shrinkage and 
selection operator (LASSO) [22]. To avoid the high 
computational complexity on sparse channel estimation, a 
variation of the LMS algorithm with 1ܮ-norm penalty term 
in the LMS cost function has also been developed in [23]. 
The 1ܮ-norm penalty was incorporated into the cost function 
of conventional LMS algorithm, which resulted in two 

Fig. 1. A typical example of sparse multipath channel. 
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sparse LMS algorithms, namely zero-attracting LMS (ZA-
LMS) and reweighted-zero-attracting LMS (RZALMS) [23]. 
Following this idea, adaptive sparse channel estimation 
method using ݌ܮ-norm sparse penalty LMS (LP-LMS) was 
also proposed in order to further improve estimation 
performance [24].  
 

 
In this paper, we propose an improved sparse channel 

estimation method by introducing ܮ૙-norm LMS algorithm 
(L0-LMS) which was proposed in [25]. In the following, 
based on above mentioned sparse LMS algorithms in [24-
25], we propose two kinds of improved adaptive sparse 
channel estimation methods using ݌ܮ-norm normalized LMS 
(LP-NLMS) and 0ܮ -norm normalized LMS (L0-NLMS), 
respectively. Effectiveness of propose approaches will be 
evaluated by computer simulations. 

Section II introduces sparse system model and problem 
formulation. Section III discusses adaptive sparse channel 
estimation methods using different LMS-based algorithms. 
In section V, computer simulation results are given and their 
performance comparisons are also discussed. Concluding 
remarks are resented in Section V. 

II. SYSTEM MODEL 
Consider a sparse multipath communication system, as 

shown in Fig. 2, the input signal ܠ(݊)  and output signal ݀(݊) are related by ݀(݊) = (݊)ܠ்ܐ +  (1)                        ,(݊)ݖ

where ܐ = [ℎ଴, ℎଵ, … , ℎேିଵ]் is a ܰ-length unknown sparse 
channel vector which is supported only by K dominant 
channel taps, ܠ(݊) = ,(݊)ݔ] ݊)ݔ − 1), … , ݊)ݔ − ܰ + 1)]்  
is ܰ-length input signal vector and ݖ(݊) is an additive noise 
variable at time ݊. The object of LMS adaptive filter is to 
estimate the unknown sparse channel coefficients ܐ using 
the input signal ܠ(݊) and output signal ݀(݊). According to 
Eq. (1), channel estimation error ݁(݊) is written as  ݁(݊) = ݀(݊) −  (2)                    ,(݊)ܠ(݊)்ܐ 

where ܐ(݊) is the LMS adaptive channel estimator. Based 
on Eq. (2), LMS cost function can be given by 

(݊)ܮ = ଵଶ ݁ଶ(݊).                                (3) 

Hence, the update equation of LMS adaptive channel 
estimation is derived by  ܐ(݊ + 1) = (݊)ܐ +  (4)              , (݊)ܠ(݊)݁ߤ

where ߤ ∈ (0, 2 ⁄୫ୟ୶ߛ )  is a step size of gradient descend 
step-size and ߛ୫ୟ୶  is the maximum eigenvalue of the 
covariance matrix of ܠ(݊).  

III. LMS-BASED ADAPTIVE SPARSE CHANNEL 
ESTIMATION 

From the above Eq. (4), we can find that the LMS-based 
channel estimation method never take advantage of sparse 
structure in ܐ. To a better understood, the standard LMS-
based channel estimation can be concluded as ܐ(݊ + 1) = (݊)ܐ + adaptive update.              (5) 

Unlike the standard LMS method, we exploit the channel 
sparsity by introducing several ܮ௣ -norm ( 0 ≤ ݌ ≤ 1 ) 
penalties to LMS-based cost function. Hence, the LMS-
based adaptive sparse channel estimation can be written as ܐ(݊ + 1) = (݊)ܐ + adaptive update + sparse penalty.  (6) 

From above update Eq. (6), the objective of this paper is 
introducing different sparse penalties to take the advantage 
of sparse structure as for prior information.  

A. ZA-LMS algorithm 
To exploit the channel sparsity in CIR, the cost function 

of ZA-LMS [23] is given by ܮ௓஺(݊) = ଵଶ ݁ଶ(݊)+ߣ௓஺‖ܐ(݊)‖ଵ,                  (7) 

where ߣ௓஺  is a regularization parameter which balances the 
adaptive estimation error and sparse penalty of ܐ(݊). The 
corresponding update equation of ZA-LMS is ܐ(݊ + 1) = (݊)ܐ − ߤ డ௅ೋಲ(௡)డܐ(௡)   

      = (݊)ܐ + (݊)ܠ(݊)݁ߤ −  (8)    , {(݊)ܐ}௓஺sgnߩ

where ߩ௓஺ =  ௓஺ and sgn{∙} is a component-wise functionߣߤ
which is defined as sgn(ℎ) = ൜ℎ |ℎ|,⁄ when ℎ ≠ 00, when ℎ = 0,                   (9) 

where the ℎ  is one of taps of ܐ . From the update equation 
in Eq. (8), the second term attracts the small filter 
coefficients to zero, which speed up convergence when the 
most of the channel coefficients ܐ  are zeros. 

B. RZA-LMS algorithm 
The ZA-LMS cannot distinguish between zero taps and 

non-zero taps since all the taps are forced to zero uniformly; 
therefore, its performance will degrade in less sparse 
systems. Motivated by reweighted ܮଵ -minimization sparse 
recovery algorithm [26], Chen et. al. proposed a heuristic 
approach to zero-attracting LMS (RZA-LMS) [23]. The cost 

              

Fig.2. A sparse multipath communication system. 
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function of RZA-LMS is given by ܮோ௓஺(݊) = ଵଶ ݁ଶ(݊) + ோ௓஺ߣ ∑ log (1 + ோ௓஺|ℎ௜|)ே௜ୀଵߝ ,   (10) 

where ߣோ௓஺ > 0 is a regularization parameter which trades 
off the estimation error and channel sparsity. The 
corresponding update equation is ܐ(݊ + 1) = (݊)ܐ − ߤ డ௅ೃೋಲ(௡)డܐ(௡)    = (݊)ܐ + ோ௓஺ߝோ௓஺ߣߤ−  (݊)ܠ(݊)݁ߤ ෍ sgn(|ℎ௜(݊)|)1 + ோ௓஺|ℎ௜(݊)|ே௜ୀଵߝ  = (݊)ܐ + (݊)ܠ(݊)݁ߤ − ோ௓஺ߩ ୱ୥୬(ܐ(௡))ଵାఌೃೋಲ|ܐ(௡)| ,       (11) 

where ߩோ௓஺ =  ோ௓஺ is a parameter which depends onߝோ௓஺ߣߤ
step-size ߤ , regularization parameter ߣோ௓஺  and threshold ߝோ௓஺ , respectively. In the second term of Eq. (11), if 
magnitudes of ℎ௜(݊), ݅ = 1,2, … , ܰ  are smaller 
than  1 ⁄ோ௓஺ߝ  , then these channel coefficients will be 
replaced by zeros.  

C. LP-LMS and LP-NLMS algorithms 
Following the idea in Eq. (11), LP-LMS based adaptive 

sparse channel estimation method has been proposed in 
[24].The cost function of LP-LMS is given by ܮ௅௉(݊) = ଵଶ ݁ଶ(݊) +  ௣,                     (12)‖(݊)ܐ‖௅௉ߣ

where ߣ௅௉ > 0  is a regularization parameter which balances 
the estimation error and channel sparsity. The corresponding 
update equation of LP-LMS is ܐ(݊ + 1) = (݊)ܐ − ߤ డ௅ಽು(௡)డܐ(௡)    = (݊)ܐ + (݊)ܠ(݊)݁ߤ − ௅௉ߩ భష೛|(௡)ܐ|ఌಽುା((௡)ܐ)೛భష೛ୱ୥୬‖(௡)ܐ‖  , (13) 

where ߩ௅௉ = ௅௉ߣߤ  which is decided by step-size ߤ  and 
regularization parameter ߣ௅௉, and ߝ௅௉ > 0. According to the 
updating equation of LP-LMS in Eq. (13), the update 
equation of LP-NLMS can be derived as ܐ(݊ + 1) = (݊)ܐ + ேߤ ௘(௡)ܠ(௡)ܠಹ(௡)ܠ(௡)  −ߩ௅௉ே భష೛|(௡)ܐ|ఌಽುಿା((௡)ܐ)೛భష೛ୱ୥୬‖(௡)ܐ‖  ,         (14) 

where ߝ௅௉ே > 0  and ߤே  is a step size which controls the 
gradient descend speed and ߩ௅௉ே =  ௅௉ே  is a parameterߣேߤ
which depends on step-size and regularization parameter.  

D. L0-LMS and L0-NLMS algorithms 
Consider the ܮ଴ -norm penalty on the cost function of 

LMS so that it can produce sparse channel estimator since 
this penalty term forces the channel taps values of ܐ(݊) to 
approach zero. Then, the cost function of L0-LMS is given 
by ܮ௅଴(݊) = ଵଶ ݁ଶ(݊) +  ଴,                   (15)‖(݊)ܐ‖௅଴ߣ

where ߣ௅଴ > 0 is a regularization parameter. Since solving 
the ܮ଴-norm minimization is a Non-Polynomial (NP) hard 
problem, we replace it with approximate continuous 
function  ‖ܐ‖଴ ≈ ∑ (1 − ݁ିఉ|௛೔|)ே௜ୀଵ ,                     (16) 

According to the approximate function in Eq. (16), L0-LMS 
cost function can be changed as ܮ௅଴(݊) = ଵଶ ݁ଶ(݊) + ௅଴ߣ ∑ (1 − ݁ିఉ|௛೔|)ே௜ୀଵ .       (17) 

Then, the update equation of L0-LMS based adaptive sparse 
channel estimation can be derived as ܐ(݊ + 1) = (݊)ܐ − ߤ డ௅ಽబ(௡)డܐ(௡)    = (݊)ܐ + |(௡)ܐ|ఉି݁((݊)ܐ)sgnߚ௅଴ߩ− (݊)ܠ(݊)݁ߤ  , (18) 

where ߩ௅଴ =  ௅଴. It is worth mention that the exponentialߣߤ
function in Eq. (18) causes high computational complexity. 
To reduce the computational complexity, the first-order 
Taylor series expansion of exponential functions is taken 
into consideration ݁ିఉ|௛| ≈ ൜1 − ,|ℎ|ߚ when |ℎ| ≤ 1 ,0⁄ߚ others .            (19) 

Then, the update equation of L0-LMS based adaptive sparse 
channel estimation can be derived as ܐ(݊ + 1) = (݊)ܐ + (݊)ܠ(݊)݁ߤ −  (20)      ,((݊)ܐ)ܬ௅଴ߩ

where ܬ(ℎ) is defined as ܬ(ℎ) ≈ ൜2ߚଶℎ − ,sgn(ℎ)ߚ2 when |ℎ| ≤ 1 ,0⁄ߚ others .   (21) 

Based on this algorithm in Eq. (20), we further propose an 
improved adaptive sparse channel estimation method by 
using L0-NLMS algorithm ܐ(݊ + 1) = (݊)ܐ + ேߤ ௘(௡)ܠ(௡)ܠಹ(௡)ܠ(௡) −  (22)   ,((݊)ܐ)ܬ௅଴ߩ

where ߤே is the step size of gradient descend which is same 
as in Eq. (14). 
 

IV. NUMERICAL SIMULATIONS 
In this section, we compare the performance of proposed 

channel estimators using 10000 independent Monte-Carlo 
runs for averaging. The length of sparse multipath channel ܐ 
is set as ܰ = 16 and its number of dominant taps is set as ܭ = 1 and 4 respectively. The values of dominant channel 
taps follow random Gaussian distribution and the positions 
of dominant taps are randomly allocated within the length of ܐ which is subjected to ܧ{‖ܐ‖ଶଶ} = 1. The signal-to-noise 
ratio (SNR) is defined as 10log (ܧ଴ ⁄௡ଶߪ ) , where ܧ଴  is 
transmitted power. Here, we set the SNR as 10dB, 20dB 
and 30dB , respectively. All of the step sizes of gradient 
descend and regularization parameters are listed in Tab. I. 
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TABLE I.  SIMULATION PARAMETERS FOR LMS-BASED ADAPTIVE 
SPARSE CHANNEL ESTIMATION.  

Type of parameters Value 5 ߤe-2 ߤே 5e-1 ߣ௓஺ 4e-2 ߣோ௓஺ 8e-2 ߣ௅௉ 1e-2 ߣ௅௉ே 7e-2 ߣ௅଴ 8e-2 ߣ௅଴ே 4e-3 

The estimation performance is evaluated by mean square 
error (MSE) standard which is defined as ((݊)ܐ)ܧܵܯ = (݊)ܐ‖}ܧ −  ଶଶ},                  (23)‖ܐ

where ܧ[∙] denotes expectation operator, ܐ and ܐ(݊) are the 
actual channel vector and its estimator, respectively.  
 

 

 
At first, we compare all the LMS-based adaptive sparse 

channel estimation methods with different SNRs. When ܴܵܰ = 10dB , the proposed methods can achieve better 
estimation performance than previous methods as shown in 
Fig. 3. Note that the performance of LP-NLMS and L0-
NLMS based adaptive sparse channel estimation methods 
are better than LP-LMS and L0-LMS based ones. In 
addition, we can also find that the convergence speed of 
LMS-based estimation methods (LMS, ZA-LMS, RZA-
LMS, LP-LMS and L0-LMS) is faster than the NLMS-
based ones (LP-NLMS and L0- NLMS). However, as the 
iteration times increase, NLMS based adaptive sparse 
channel estimation can achieve better estimation 
performance than LMS-based method by using same sparse 
penalty. To further confirm the advantage of our proposed 
methods in different SNR region, e.g., SNR = 20dB  and 30dB, they are evaluated and simulation results are shown 
in Fig. 4 and Fig. 5, respectively. According to the above 
computer simulations, we can find our proposed methods 
can work well in different SNRs. Also, effectiveness of 

Fig. 3. MSE of different methods versus the number of iterations SNR = 10dB. 
 

Fig. 4. MSE of different methods versus the number of iterations (SNR = 20dB). 

Fig. 5. MSE of different methods versus the number of iterations 
(SNR = 30dB). 
 

Fig. 6. MSE of LP-LMS versus the number of iterations ( SNR =20dB), where ݌ = 0.2, 0.5 and 0.8. 
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proposed adaptive sparse channel estimation methods has 
been verified.  

Secondly, we evaluate the estimation performance of LP-
LMS as a function of ݌ as shown in Fig. 6. From the figure, 
estimation performance of LP-LMS increases as the value of  ݌ decrease. In other words, smaller ܮ௣-norm sparse penalty 
on cost function of LMS can achieve better estimation 
performance. For example, when  ݌ = 0.2, the performance 
curve of LP-LMS is closes to L0-LMS  and vice versa.  

V. CONCLUSION 
In this paper, we have investigated LMS-based adaptive 
sparse channel estimation methods by enforcing different 
sparse penalties. According to the CS theory, we have 
proposed an improved adaptive sparse channel estimation 
method by using ℓp-norm zero attracting LMS algorithm, 
where 0 ≤ p ≤ 1. In addition, to further improve the 
estimation performance, L0-NLMS based adaptive sparse 
channel estimation methods have been proposed. Compared 
to the existing methods, the proposed methods exhibit better 
convergence and their performance advantages are 
demonstrated by several representative numerical 
simulations. 
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