
A
key
Sta
app
is o
be 
by 
zer
alg
spa
the
coe
me
alg
me
con

K
est
NL

ma
sys
fad
is n
On
est
Fig
(LM
alg
and
alg
on 
and
sta
[3]
ver

  Ad

Weig

Abstract—Accu
y technical is
andard norma
plied to adapti
often describe
exploited and 
adaptive spa

ro-attracting 
gorithm. How
arsity efficient
e reason why 
efficients unifo
ethod using re
gorithm. Simu
ethod achieve
nventional one

Keywords—nor
timation (ASC
LMF). 

Broadband 
ainstream tech
stems. Due t
ding is unavoi
necessary at th
ne of effectiv
timation (ACE
g. 1. It is we
MF) algorithm
gorithm in ach
d steady-stat
gorithm is uns
n the following
d weight initia

able normalize
]. Recently, m
rified that bro

daptive

ghted Z

urate channel 
ssues in broa
alized least me
ive channel est
d by sparse ch
then estimatio

arse channel e
normalized l

wever, this alg
tly. By virtual र -norm spa
ormly. In this 
e-weighted zero
ulation results 
es better est
e.  

rmalized LMF 
CE), re-weighte

I.  IN

signal transm
hniques in the
to the fact th
idable, accurat
he receiver for
ve approaches
E). A typical 
ell known tha
m outperform
hieving a goo
te performan
stable due to t
g three factors
alization [2]. T
ed LMF (NLM
many channel 
oadband chann

e Spar

Zero-A

Guan 
D

{gui, mehbo
 

estimation pr
adband wirele
an fourth (NL
timation (ACE
hannel model, 
on performanc
estimation (AS
least mean f
gorithm cann
of geometrical

arse constrain
paper, we pro
o-attracting N

show that th
imation perfo

F (NLMF), adap
ted zero-attrac

NTRODUCTION 
mission is bec
e next generat
hat frequency
te channel stat
r adaptive coh
s is adopting
framework of

at ACE using
ms the least m
od balance be
nces. Howeve
the fact that i
: input signal p
To improve th
MF) algorithm
measurement

nels often exhi

rse Ch

Attrac

Gui, Abolfazl
Department of

Graduate
Td}@mobile.e

roblem is one 
ess communica
LMF) algorithm
E). Since the ch

such sparsity 
e could be imp

SCE) methods 
fourth (ZA-N
not exploit ch
l figures, we e
t penalizes ch

opose a novel 
NLMF (RZA-N

he proposed
ormance than

aptive sparse ch
cting NLMF 

coming one o
tion communic
y-selective ch
te information
herent detectio
g adaptive ch
f ACE is sho

g least mean f
mean square (

tween conver
er, standard 
ts stability de
power, noise p

he stability of
m was propos
t experiments
ibit sparse stru

hannel 

cting N

Fourth

l Mehbodniya
f Communicat
e School of En

Tohoku Univer
Sendai, Japa

cei.tohoku.ac.

 
of the 
ations. 
m was 
hannel 

could 
proved 

using 
NLMF) 
hannel 
xplain 
hannel 
ASCE 

NLMF) 
ASCE 
n the 

hannel 
(RZA-

of the 
cation 
hannel 
n (CSI) 
on [1]. 
hannel 
wn in 
fourth 
LMS) 

rgence 
LMF 

epends 
power 
LMF, 
sed in 
s have 
ucture 

as s
of a
Unf
the 
the

T
esti
algo
AS
(be
pro
the 
dire
[3],
NL
pre
bas

Fi

Estim

Norma

h

and Fumiyuk
tion Engineeri
ngineering, 
rsity 
an 
.jp, adachi@ec

shown in Fig. 
a very few cha
fortunately, A
inherent spar
estimation pe

To estimate 
imation (ASC
orithm (ASCE
CE-LMF met
low 5dB). Ba

oposed a norm
stability, but

ectly in sparse
, we propose

LMF) algorith
sented a deta

sed sparse c

ig. 1. ASCE for b

mation

alized 

ki Adachi 
ing 

cei.tohoku.ac.j

 

2. In other wo
annel coefficie

ACE using NL
rse structure i
erformance. 

such a chan
CE) methods 
E-LMF) were
thod is not sta

ased on the den
malized LMF 
t stable NLM
e channel estim
ed ASCE usin
m [5]. From 
ailed explanat
channel estim

broadband commu

 Using

Least 

jp

ords, sparse ch
ents and most
LMF algorithm
information an

nnel, adaptiv
using sparse 

e proposed in 
able except in
nse channel m
(NLMF) algo

MF algorithm 
mation. Based
ng zero-attrac

a geometrica
tion of ℓଵ -no

mation. Since

unication systems

g Re-

Mean

hannel is cons
t of them are z
m always neg
nd it may deg

ve sparse cha
least mean f
[4]. However

n low SNR re
model, author i
orithm to imp
cannot be ap

d on the meth
cting NLMF 
al perspective

orm zero-attra
e ℓଵ -norm 

. 

n 

sisted 
zeros. 
glects 
grade 

 
annel 

fourth 
r, the 
egime 
in [3] 
prove 
pplied 
hod in 

(ZA-
e, we 
acting 
zero-



attracting introduces a uniform sparse constraint on different 
magnitudes of channel coefficients, the performance of ZA-
NLMF degrades.  

Inspired by re-weighted  ℓଵ-norm minimization algorithm in 
[6], in this paper, we propose an improved ASCE method 
using re-weighted zero-attracting NLMF (RZA-NLMF) 
algorithm. Unlike the ZA-NLMF algorithm [5], RZA-NLMF 
algorithm can penalize different magnitudes of channel 
coefficients with different sparse constraint strength. The 
effectiveness of our proposed method is confirmed by 
computer simulation. 

The remainder of this paper is organized as follows. A 
system model is described and standard LMF and NLMF 
algorithms are introduced in Section II. In section III, sparse 
ASCE using ZA-NLMF algorithm is introduced and improved 
ACSE using RZA-NLMF algorithm is highlighted. Computer 
simulations are presented in Section IV in order to evaluate 
and compare performances of the proposed ASCE methods. 
Finally, we conclude the paper in Section V. 

 
II. SYSTEM MODEL AND STANDARD LMF ALGORITHM 

Consider a baseband frequency-selective fading wireless 
communication system where FIR sparse channel vector ܐ = [ℎ, ℎଵ, … , ℎேିଵ]் is ܰ-length and it is supported only by ܭ nonzero channel taps. Assume that an input training signal ݔ(݊) is input to probe the unknown sparse channel. At the 
receiver side, observed signal ݕ(݊) is given by ݕ(݊) = (݊)ܠ்ܐ +  (1)                          ,(݊)ݖ

where ܠ(݊) = ,(݊)ݔ] ݊)ݔ − 1), … , ݊)ݔ − ܰ + 1)]்  denotes 
the vector of training signal ݔ(݊) , and ݖ(݊)  is the additive 
white Gaussian noise (AWGN) assumed to be independent 
with ݔ(݊). The objective of ASCE is to adaptively estimate 
the unknown sparse channel estimator ܐመ  using the training 
signal ܠ(݊) and the observed signal ݕ(݊). According to  [2], 
we can apply standard LMF algorithm to adaptive channel 
estimation, with  the cost function  ܩଵ(݊) = 14 ݁ସ(݊),                                 (2) 

where ݁(݊) = (݊)ݕ − (݊)ܠ(݊)்ܐ  is ݊ -th adaptive updated 
error. The update equation of the filter can be written as  ܐ(݊ + 1) = (݊)ܐ + ߤ (n)ܐ∂(݊)ଵܩ∂                                   = (݊)ܐ +  (3)                   ,(݊)ݔ(݊)ଷ݁ߤ

where ߤ  denotes the step-size of gradient descend. 
Unfortunately, channel estimation using standard LMF 
algorithm is not stable in adaptive updating process and hence 
it cannot be employed directly [2]. To improve the reliability 
of LMF, an stable LMF algorithms was proposed by virtual of 
normalization in [3], which was termed as normalized LMF 
(NLMF) algorithm. The  update equation is given by ܐ(݊ + 1) = (݊)ܐ + ߤ ݁ଷ(݊)ܠ‖(݊)ܠ(݊)‖ଶଶ൫‖ܠ(݊)‖ଶଶ+݁ଶ(݊)൯          

= (݊)ܐ + ேߤ ଶଶ‖(݊)ܠ‖(݊)ܠ(݊)݁ ,                           (4) 

where ߤே =  ଶଶ+݁ଶ(݊),                                (5)‖(݊)ܠ‖(݊)ଶ݁ߤ

denotes variable step-size of gradient descent and ‖∙‖ଶ is the 
Euclidean norm operator and ‖ܠ‖ଶଶ = ∑ |ଶேିଵୀݔ| .  

 
Unfortunately, interpretation of the relation between ߤே 

and ݁ଶ(݊) is not correct in [7]. Here, we observe that when ݁ଶ(݊) ≫ ଶଶ‖(݊)ݔ‖ , then ߤே  approaches to ߤ ; when ݁ଶ(݊) ߤ ே approaches toߤ ଶଶ, then‖(݊)ܠ‖≈ 2⁄ ; when ݁ଶ(݊) ≪  ,ଶଶ‖(݊)ܠ‖
then ߤே approaches to 0. Fig. 3 illustrates the intuitive relation 
between ߤே  and ݁ଶ(݊) . For the standard NLMF algorithm, 
consider three step-sizes ߤ : 0.2, 0.6  and 1.2 . As ݁ଶ(݊) 
increases, according to the depicted curves in Fig. 3, it is easy 
to find that the stability of NLMF approaches NLMS which 
stability was proven in [8]. Please also note that when ݁ଶ(݊) 

Fig. 2. A typical example of sparse multipath channel. 

Fig. 3. Relations between ߤே and ݁ଶ(݊). 
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sparse constraint function to the cost function in (4), adopt 
different re-weighted factors, e.g., ߝ = 1,5,10 and 20, then we 
are able to penalize different sparse constraint strength on 
different channel coefficients. In other words, RZA can 
penalize stronger constraint strength than smaller channel 
coefficients, and vice versa. Based on this idea, an improved 
ASCE using RZA-NLMF algorithm is proposed in the 
following. 

C. ASCE using RZA-NLMFalgorithm 
The ZA-NLMF cannot distinguish between zero taps and 

non-zero taps since all the taps are forced to zero uniformly as 
show in Fig. 5. Unfortunately, ZA-NLMF based approach will 
degrade amount of estimation performance. Motivated by 
reweighted ℓଵ-minimization sparse recovery algorithm [6] in 
CS [12,13], we proposed an improved ASCE method using 
RZA-NLMF algorithm. The cost function of RZA-NLMF is 
given by ܩଷ(݊) = 14 ݁ସ(݊) + ଷߣ  log(1 + |ℎ|/ߝ)ேିଵୀ ,       (10) 

where ߣଷ > 0 is a regularization parameter which trades off 
the estimation error and channel sparsity. The corresponding 
update equation is ܐ(݊ + 1) = (݊)ܐ + ேߤ ଶଶ‖(݊)ܠ‖(݊)ܠ(݊)݁ + ߩ sgn൫ܐ(݊)൯1 +  (11)     ,|(݊)ܐ|ߝ

where ߩ =  respectively. In ,ߝ ଷ and thresholdߣ regularization parameter ,ߤ is a parameter which depends on step-size ߝ/ଷߣேߤ
the second term of (11), if magnitudes of ℎ(݊), ݅ =0,1, … , ܰ − 1  are smaller than  1 ⁄ߝ , then these small 
coefficients will be replaced by zeros in high probability. 

D. Equivalence between CS-based sparse channel estimation 
and ASCE 

According to LASSO algorithm, we explained the 
connections between CS-based sparse channel estimation 
method and ASCE. Here, we further interpretation their 
equivalence between them. It will be useful to enrich sparse 
signal processing theory. Let take LASSO and ZA-NLMF for 
an example. If each row of training matrix  in system model 
(6) is  ࣘ, then by virtual of matrix vectorization, then it can 
be written as [்ࣘ, … , ்ࣘ, . . , ࣘெିଵ்  The ݉-th receive signal .ࢀ[
is obtained as ߚ = ்ࣘܟ + ζ . Their corresponding 
functions of different vectors are listed in Tab. I.  

 TAB. I. EQUIVALENCE BETWEEN LASSO AND ZA-LNMF. 

 LASSO ZA-NLMF  

Training signal ࣘ ܠ(݊) 

Received signal ߚ ݕ(݊) 

Channel vector ܟ = ,ݓ] ,ଵݓ … , ܐ ்[ேିଵݓ = [ℎ, ℎଵ, … , ℎேିଵ]்
Sparse constraint ‖ܟ‖ଵ sign(ܐ) 

Iterative times ݉ = mod(݊ − 1, (ܯ + 1 ݊ 

IV. COMPUTER SIMULATIONS 
In this section, the proposed ASCE method using RZA-

NLMF algorithm is evaluated. For achieving average 

performance, 1000 independent Monte-Carlo runs are adopted. 
The length of channel vector ܐ  is set as ܰ = 16  and its 
number of dominant taps is set to ܭ = 1 and 4, respectively. 
Each dominant channel tap follows random Gaussian 
distribution as ࣝࣨ(0, σܐଶ)  and their positions are randomly 
allocated within the length of ܐ which is subject to E{||ܐ||ଶଶ =1} . The received signal-to-noise ratio (SNR) is defined as 10log (ܧ ⁄ଶߪ ), where ܧ = 1 is the unit transmission power. 
Here, we set the SNR as 3dB and 5dB in computer simulation. 
All of the step sizes and regularization parameters are listed in 
Tab. II. The estimation performance is evaluated by average 
mean square error (MSE) which is defined by Avergae MSE{ܐ(݊)} = E{‖ܐ −   ଶଶ},             (12)‖(݊)ܐ

where E{∙}  denotes the expectation operator, ܐ  and ܐ(݊)  are 
the actual channel vector and its ݊ -th iterative adaptive 
channel estimator, respectively.  

TAB. II. SIMULATION PARAMETERS. 

Parameters Values 

Channel length ܰ = 16 

No. of nonzero coefficients ܭ = 1 and 4 

Step-size: 1.0 ߤ and 1.5 

Regularization parameter: ߣଶ and ߣଷ  1e − 5 

Re-weighted factor: 20 ,10 ,5 ߝ 

 
Two experiments are considered in this section. In the first 

experiment, ASCE methods are evaluated in SNR = 5dB . 
Regularization parameters, i.e.,  λଶ  and λଷ , are set as λଶ =λଷ = 1݁ − 6.  Fig. 6-8 shows that proposed method can 
achieve better estimation performance than ZA-NLMF in 
different step-sizes, i.e., ߤ = 0.5 , 1.0  and 1.5 . When the 
number of nonzero coefficients is ܭ = 1, bigger re-weighted 
factor can obtain better estimation and vice versa. Please note 
that both ZA-NLMF and RZA-NLMF algorithms apply ASCE 

Fig. 6. Average MSE performance comparisons at SNR = 5dB and step-size ߤ = 0.5. 



which can achieve better estimation performance for sparser 
channel. As shown in three figures, when ܭ = 1, the depicted 
curves’ gap between NLMF and either ZA-NLMF or RZA-
NLMF larger than the case with  ܭ = 4 . It is worth 
mentioning that bigger reweighted factor obtains better 
estimation performance, e.g., RZA-NLMF using ε = 20 
achieves better estimation performance than ε = 10 . It is 
mainly due to the bigger reweighted factor which can obtain 
variable sparse constraint for different magnitude of channel 
coefficients. 
 

 
To verify the flexibility of the proposed RZA-NLMF 

method at different SNR regimes, ASCE methods are 
evaluated in SNR = 10dB . Also, regularization parameters, 
i.e., λଶ  and λଷ , are set to λଶ = λଷ = 5e − 8  to improve the 

estimation performance. According to Fig. 9, RZA-NLMF 
works well and achieves better estimation performance than 
ZA-NLMF and NLMF.   

 

V. CONCLSION 
In this paper, the disadvantage of conventional ASCE 

method using ZA-NLMF algorithm was discussed from a 
geometrical perspective point of view. We found that ℓଵ-norm 
sparse constraint penalizes uniformly on different channel 
coefficients. Inspired by re-weighted ℓଵ-norm algorithm in CS, 
we proposed an improved ASCE using RZA-NLMF which 
penalizes smaller channel coefficients with stronger sparse 
constraint and vice versa. It was confirmed by computer 
simulation that the proposed ASCE using RZA-NLMF 
algorithm achieves better performance than either ZA-NLMF 
or NLMF approaches.  
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