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Abstract—Accurate channel estimation problem is one of the
key technical issues in broadband wireless communications.
Standard normalized least mean fourth (NLMF) algorithm was
applied to adaptive channel estimation (ACE). Since the channel
is often described by sparse channel model, such sparsity could
be exploited and then estimation performance could be improved
by adaptive sparse channel estimation (ASCE) methods using
zero-attracting normalized least mean fourth (ZA-NLMF)
algorithm. However, this algorithm cannot exploit channel
sparsity efficiently. By virtual of geometrical figures, we explain
the reason why £;-norm sparse constraint penalizes channel
coefficients uniformly. In this paper, we propose a novel ASCE
method using re-weighted zero-attracting NLMF (RZA-NLMF)
algorithm. Simulation results show that the proposed ASCE
method achieves better estimation performance than the
conventional one.

Keywords—normalized LMF (NLMF), adaptive sparse channel
estimation (ASCE), re-weighted zero-attracting NLMF (RZA-
NLMF).

1. INTRODUCTION

Broadband signal transmission is becoming one of the
mainstream techniques in the next generation communication
systems. Due to the fact that frequency-selective channel
fading is unavoidable, accurate channel state information (CSI)
is necessary at the receiver for adaptive coherent detection [1].
One of effective approaches is adopting adaptive channel
estimation (ACE). A typical framework of ACE is shown in
Fig. 1. It is well known that ACE using least mean fourth
(LMF) algorithm outperforms the least mean square (LMS)
algorithm in achieving a good balance between convergence
and steady-state performances. However, standard LMF
algorithm is unstable due to the fact that its stability depends
on the following three factors: input signal power, noise power
and weight initialization [2]. To improve the stability of LMF,
stable normalized LMF (NLMF) algorithm was proposed in
[3]. Recently, many channel measurement experiments have
verified that broadband channels often exhibit sparse structure

as shown in Fig. 2. In other words, sparse channel is consisted
of a very few channel coefficients and most of them are zeros.
Unfortunately, ACE using NLMF algorithm always neglects
the inherent sparse structure information and it may degrade
the estimation performance.
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Fig. 1. ASCE for broadband communication systems.

To estimate such a channel, adaptive sparse channel
estimation (ASCE) methods using sparse least mean fourth
algorithm (ASCE-LMF) were proposed in [4]. However, the
ASCE-LMF method is not stable except in low SNR regime
(below 5dB). Based on the dense channel model, author in [3]
proposed a normalized LMF (NLMF) algorithm to improve
the stability, but stable NLMF algorithm cannot be applied
directly in sparse channel estimation. Based on the method in
[3], we proposed ASCE using zero-attracting NLMF (ZA-
NLMF) algorithm [5]. From a geometrical perspective, we
presented a detailed explanation of £, -norm zero-attracting
based sparse channel estimation. Since #; -norm zero-



attracting introduces a uniform sparse constraint on different
magnitudes of channel coefficients, the performance of ZA-
NLMF degrades.

Inspired by re-weighted #;-norm minimization algorithm in
[6], in this paper, we propose an improved ASCE method
using re-weighted zero-attracting NLMF (RZA-NLMF)
algorithm. Unlike the ZA-NLMF algorithm [5], RZA-NLMF
algorithm can penalize different magnitudes of channel
coefficients with different sparse constraint strength. The
effectiveness of our proposed method is confirmed by
computer simulation.

The remainder of this paper is organized as follows. A
system model is described and standard LMF and NLMF
algorithms are introduced in Section II. In section III, sparse
ASCE using ZA-NLMF algorithm is introduced and improved
ACSE using RZA-NLMF algorithm is highlighted. Computer
simulations are presented in Section IV in order to evaluate
and compare performances of the proposed ASCE methods.
Finally, we conclude the paper in Section V.
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Fig. 2. A typical example of sparse multipath channel.

II.  SYSTEM MODEL AND STANDARD LMF ALGORITHM

Consider a baseband frequency-selective fading wireless
communication system where FIR sparse channel vector
h = [hg, Ay, ..., hy_1]7 is N-length and it is supported only by
K nonzero channel taps. Assume that an input training signal
x(n) is input to probe the unknown sparse channel. At the
receiver side, observed signal y(n) is given by

y(m) =h"x(m) + z(n), (1

where x(n) = [x(n),x(n — 1), ...,x(n — N + 1)]7 denotes
the vector of training signal x(n), and z(n) is the additive
white Gaussian noise (AWGN) assumed to be independent
with x(n). The objective of ASCE is to adaptively estimate
the unknown sparse channel estimator h using the training
signal x(n) and the observed signal y(n). According to [2],
we can apply standard LMF algorithm to adaptive channel
estimation, with the cost function

1
Gi(n) =7 e*(m), @

where e(n) = y(n) — hT (n)x(n) is n-th adaptive updated
error. The update equation of the filter can be written as

oG
h(n+ 1) =h(n) + u%

= h(n) + ue(n)x(n), 3

where p denotes the step-size of gradient descend.
Unfortunately, channel estimation using standard LMF
algorithm is not stable in adaptive updating process and hence
it cannot be employed directly [2]. To improve the reliability
of LMF, an stable LMF algorithms was proposed by virtual of
normalization in [3], which was termed as normalized LMF
(NLMF) algorithm. The update equation is given by

e3(m)x(n)
h(n+1)=h
() = ) R (Tx () IE+e2()
=hm) + py Ix()|2" )
where
pe?(n) (5)

IV = k@I e ()’

denotes variable step-size of gradient descent and ||-||, is the
Euclidean norm operator and [[x]|3 = XN x;|2.
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Fig. 3. Relations between iy and e?(n).

Unfortunately, interpretation of the relation between uy
and e?(n) is not correct in [7]. Here, we observe that when
e?(n) » |[x(m)||3, then uy approaches to u; when e?(n) =
[Ix(1)||3, then uy approaches to p/2; when e?(n) < ||x(n)]|3,
then u, approaches to 0. Fig. 3 illustrates the intuitive relation
between py and e?(n). For the standard NLMF algorithm,
consider three step-sizes u: 0.2,0.6 and 1.2 . As e?(n)
increases, according to the depicted curves in Fig. 3, it is easy
to find that the stability of NLMF approaches NLMS which
stability was proven in [8]. Please also note that when e?(n)



decreases, the step size uy also reduces to ensure stability.

III.  ADAPTIVE SPARSE CHANNEL ESTIMATION

A. Geometrical interpretation of CS-based sparse channenl
estimation

Consider a baseband system model for CS-based sparse
channel estimation. Assume a N-length training sequence as
¢ = [¢o, 1, ... dy_1]7, and then the received signal model
can be written as

B =[Bo ) B s Bu-11"
=odw+(, (6)

where @ € CM*V is a Toeplitz training signal matrix with first
row @; T =1[lo, ) Gps s Qu—1] € C**1 is an AWGN with
distribution CNV'(0,021y) and I, denotes an M X M identity
matrix; W = [wg, Wy, ..., Wy_1]7is an N X 1 unknown channel
vector which is same as h in Eq. (1). From the perspective of
CS, the training signal matrix @ satisfies the restricted
isometry property (RIP) [9] of order K with positive parameter
Sk € (0,1),1.e., ® € RIP(K, 8) if

(1= 8lIwli3 < llewll3 < (1 + 5)lIwli3, ()

holds for all w having no more than K nonzero taps. Then,
LASSO algorithm [10] based sparse channel estimator W is
given by

1
@ =arglim{z 18- @WlE +4lwl},  ®

where 4; denotes a regularization parameter which balances
the mean-square error (MSE) term and sparsity of w. In Fig. 4,
geometrical interpretation of CS-based sparse channel
estimation is depicted. When 4; > 0, as the figure shows,
sparse channel estimator can be obtained from convex point
between £;-norm sparse constraint and solution plane; When
A1 = 0, however, there is no convex point between £,-norm
constraint and solution plane. One can also extend the
geometrical figure to explain adaptive sparse channel
estimation using ZA-NLMF algorithm in [5].

B. ASCE using ZA-NLMF algorithm

Recall that the adaptive channel estimation method uses
standard NLMF algorithm in Eq. (4), however, the proposed
method does not take advantage of the channel sparsity. It was
caused by its original cost function in (2) which does not
utilize the sparse constraint or penalty function. According to
LASSO algorithm in (7), we introduce #; -norm sparse
constraint to the cost function in (4) and obtain a new cost
function as

Gn) = 2e* () + Aol ()L, ©

where A, denotes a regularization parameter which balances
the mean-fourth error (MFE) term and sparsity of h. The
update equation of ZA-NLMF algorithm [5] is given by

e(n)x(n)

lIx(n) 12

where y = uyAd, and sgn(:) denotes sign function which is
generated from

h(n + 1) = h(n) + uy +ysgn(h(n)), (10)

1, h(n)>0
dllh(n)ll, '
sgn(h(n)) =————=1:0, hn)=0, (11)
oh(n) -1, () <0
where  h(n) = [hg(n), L (n) ..., hy_,(M)]" and i€

{0,1,...,N}. It is well known that ZA-NLMF uses £; -norm
constraint to approximate the optimal sparse channel
estimation [11].

sparse

T‘ solution plane
constraint

\
\
P
N
~
non-sparse “.
constraint

Sma=”

Fig. 4. Sparse channel estimation with £;-norm sparse constraint.
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Fig. 5. Sparse constraint strength comparison between different channel
coefficients by virtual of re-weighted £;-norm zero-attracting.

As shown in Fig. 5, however, £;-norm sparse constraint
(€=0) on solution plane is uniform for each channel
coefficient. In other words, ZA-NLMF cannot exploit the
sparsity efficiently. If we introduce a re-weighted ¢ -norm



sparse constraint function to the cost function in (4), adopt
different re-weighted factors, e.g., € = 1,5,10 and 20, then we
are able to penalize different sparse constraint strength on
different channel coefficients. In other words, RZA can
penalize stronger constraint strength than smaller channel
coefficients, and vice versa. Based on this idea, an improved
ASCE using RZA-NLMF algorithm is proposed in the
following.

C. ASCE using RZA-NLMFalgorithm

The ZA-NLMF cannot distinguish between zero taps and
non-zero taps since all the taps are forced to zero uniformly as
show in Fig. 5. Unfortunately, ZA-NLMF based approach will
degrade amount of estimation performance. Motivated by
reweighted £, -minimization sparse recovery algorithm [6] in
CS [12,13], we proposed an improved ASCE method using
RZA-NLMF algorithm. The cost function of RZA-NLMF is

given by
N-1

1
G(m) =o' +43 ) log(1+Ikil/e),  (10)

where A3 > 0 is a regularization parameter which trades off
the estimation error and channel sparsity. The corresponding
update equation is

e(m)x(n) N sgn(h(n))
Xz PT+eh@ml

where p = uyAz/€ is a parameter which depends on step-size
U, regularization parameter A; and threshold ¢, respectively. In
the second term of (11), if magnitudes of h;(n),i =
0,1,..,N—1 are smaller than 1/e, then these small
coefficients will be replaced by zeros in high probability.

h(n+ 1) =hn) + uy 1y

D. Equivalence between CS-based sparse channel estimation
and ASCE

According to LASSO algorithm, we explained the
connections between CS-based sparse channel estimation
method and ASCE. Here, we further interpretation their
equivalence between them. It will be useful to enrich sparse
signal processing theory. Let take LASSO and ZA-NLMF for
an example. If each row of training matrix ® in system model
(6) is @, then by virtual of matrix vectorization, then it can
be written as [@7, ..., %, .., pL_;]T. The m-th receive signal
is obtained as B, = ¢Lw+7, . Their corresponding
functions of different vectors are listed in Tab. I.

TAB. I. EQUIVALENCE BETWEEN LASSO AND ZA-LNMF.

LASSO ZA-NLMF
Training signal [ 3. x(n)
Received signal Bm y(n)
Channel vector w = [wo, Wy, o, wy_q]T h = [hy, hy, oo, hy_1]T
Sparse constraint llwll4 sign(h)
Iterative times m=mod(n—1,M) +1 n

IV. COMPUTER SIMULATIONS

In this section, the proposed ASCE method using RZA-
NLMF algorithm is evaluated. For achieving average

performance, 1000 independent Monte-Carlo runs are adopted.
The length of channel vector h is set as N = 16 and its
number of dominant taps is set to K = 1 and 4, respectively.
Each dominant channel tap follows random Gaussian
distribution as CNV'(0,0%) and their positions are randomly
allocated within the length of h which is subject to E{||h||3 =
1}. The received signal-to-noise ratio (SNR) is defined as
10log(Ey/02), where E, = 1 is the unit transmission power.
Here, we set the SNR as 3dB and 5dB in computer simulation.
All of the step sizes and regularization parameters are listed in
Tab. II. The estimation performance is evaluated by average
mean square error (MSE) which is defined by

Avergae MSE{h(n)} = E{|lh — h(n)||3}, (12)
where E{-} denotes the expectation operator, h and h(n) are
the actual channel vector and its n -th iterative adaptive
channel estimator, respectively.

TAB. II. SIMULATION PARAMETERS.

Parameters Values
Channel length N =16
No. of nonzero coefficients K =1and 4
Step-size: u 1.0and 1.5
Regularization parameter: 1, and A, le—5
Re-weighted factor: € 5, 10, 20
4 T T : ;
SNR=5dB ~¢NLMF
p=0.5 ZA-NLMF

-=-RZA-NLMF (g=5)
-6~ RZA-NLMF (¢=10)
~0-RZA-NLMF (¢=20)

Average MSE
)
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Fig. 6. Average MSE performance comparisons at SNR = 5dB and step-size
u=0.5.

Two experiments are considered in this section. In the first
experiment, ASCE methods are evaluated in SNR = 5dB.
Regularization parameters, i.e., A, and Az, are set as A, =
A3 = le — 6. Fig. 6-8 shows that proposed method can
achieve better estimation performance than ZA-NLMF in
different step-sizes, i.e., 4 = 0.5, 1.0 and 1.5. When the
number of nonzero coefficients is K = 1, bigger re-weighted
factor can obtain better estimation and vice versa. Please note
that both ZA-NLMF and RZA-NLMF algorithms apply ASCE



which can achieve better estimation performance for sparser
channel. As shown in three figures, when K = 1, the depicted
curves’ gap between NLMF and either ZA-NLMF or RZA-
NLMF larger than the case with K =4 . It is worth
mentioning that bigger reweighted factor obtains better
estimation performance, e.g., RZA-NLMF using & = 20
achieves better estimation performance than € = 10. It is
mainly due to the bigger reweighted factor which can obtain
variable sparse constraint for different magnitude of channel
coefficients.
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Fig. 7. Average MSE performance comparisons at SNR = 5dB and step-
size u = 1.0.
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Fig. 8. Average MSE performance comparisons at SNR = 5dB and step-
size p = 1.5.

To verify the flexibility of the proposed RZA-NLMF
method at different SNR regimes, ASCE methods are
evaluated in SNR = 10dB. Also, regularization parameters,
i.e., A, and A3, are set to A, = A; = 5e — 8 to improve the

estimation performance. According to Fig. 9, RZA-NLMF
works well and achieves better estimation performance than
ZA-NLMF and NLMF.
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Fig. 9. Average MSE performance comparisons at SNR = 10dB and step-
size u = 1.5.

V. CONCLSION

In this paper, the disadvantage of conventional ASCE
method using ZA-NLMF algorithm was discussed from a
geometrical perspective point of view. We found that £;-norm
sparse constraint penalizes uniformly on different channel
coefficients. Inspired by re-weighted #;-norm algorithm in CS,
we proposed an improved ASCE using RZA-NLMF which
penalizes smaller channel coefficients with stronger sparse
constraint and vice versa. It was confirmed by computer
simulation that the proposed ASCE using RZA-NLMF
algorithm achieves better performance than either ZA-NLMF
or NLMF approaches.
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