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Abstract—Least mean square (LMS)-type adaptive sparse 
algorithms have been attracting much attention on sparse 
multipath channel estimation (SMPC) due to their two 
advantages: low computational complexity and reliability. By 
introducing र૚ -norm sparse constraint function into LMS 
algorithm, both zero-attracting least mean square (ZA-LMS) and 
reweighted zero-attracting least mean square (RZA-LMS) have 
been proposed for SMPC. It is well known that the performance 
of the SMPC is decided by regularization parameter which 
balances channel estimation error and sparse penalty strength. 
However, optimal regularization parameter selection has not yet 
considered in the two proposed algorithms. Based on the 
compressive sensing theory, in this paper, we explain the 
mathematical relationship between Lasso and LMS-type adaptive 
sparse algorithms. Later, an approximate optimal regulation 
parameter selection method is proposed for ZA-LMS and RZA-
LMS, respectively. Monte Carlo based computer simulations are 
presented to show the effectiveness of our propose method. 

Keywords—regularization parameter selection, least mean 
square (LMS); adaptive sparse channel estimation; zero-attracting 
least mean square (ZA-LMS); reweighted zero-attracting least 
mean square (RZA-LMS). 

I.  INTRODUCTION 
The demand for high-speed data services is getting more 

insatiable due to the number of wireless subscribers roaring 
increase in the next generation wireless communication 
systems. Various portable wireless devices, e.g., smart phones 
and laptops, have generated rising massive data traffic [1]. It is 
well known that the broadband transmission is an 
indispensable technique for realizing Gigabit wireless 
communication [2][3]. However, the broadband signal is 
susceptible to interference by frequency-selective channel 
fading. In the sequel, the broadband channel is described by a 
sparse channel model in which multipath taps are widely 
separated in time, thereby create a large delay spread [4]. In 
other words, unknown channel impulse response (CIR) in 
broadband wireless communication system is often described 
by sparse channel model, supporting by a few large 
coefficients. In other words, most of channel coefficients are 
zero or close to zero while only a few channel coefficients are 
dominant (large value) to support the channel. A typical 
example of sparse channel is shown in Fig. 1, where the 
number of dominant channel taps is 4 while the length of 
channel is 16. 

 
Traditional least mean square (LMS) algorithm is one of the 

most popular methods for adaptive system identification [5], 
e.g. channel estimation. Indeed, LMS-based adaptive channel 
estimation can be easily implemented by LMS-based filter due 
to its low computational complexity or fast convergence speed. 
However, the standard LMS-based method never takes 
advantage of channel sparse structure as prior information and 
then it may loss some estimation performance. 

Recently, many algorithms have been proposed to take 
advantage of sparse structure of the channel. For example, 
based on the theory of compressive sensing (CS) [6], [7], 
various sparse channel estimation methods have been 
proposed in [8–13]. For one thing, these CS-based sparse 
channel estimation methods require that the training signal 
matrices satisfy the restricted isometry property (RIP) [14]. 
However, design these kinds of training matrices is non-
deterministic polynomial-time (NP) hard problem [21]. For 
another thing, some of these methods achieve robust 
estimation at the cost of high computational complexity, e.g., 
sparse channel estimation using least-absolute shrinkage and 
selection operator (LASSO) [15]. To avoid the high 
computational complexity on sparse channel estimation, a 
variation of the LMS algorithm with ℓ1-norm penalty term in 
the LMS cost function has also been developed in [16], [17]. 
The ℓ1-norm penalty was incorporated into the cost function 

Fig. 1. A typical example of sparse multipath channel. 
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coefficients to zero, which speed up convergence when the 
most of the channel coefficients ܐ are zeros. Here, the sparse 
penalty function in Eq. (8) is defined as 

൯(݊)ܐ௓஺൫ܩ  = sgn൫ܐ(݊)൯,																										(10)  
which is depicted as shown in Fig. 3. 

 
B. RZA-LMS algorithm 

The ZA-LMS cannot distinguish between zero taps and 
non-zero taps since all the taps are forced to zero uniformly; 
therefore, its performance will degrade in less sparse systems. 
Motivated by reweighted ℓଵ -minimization sparse recovery 
algorithm [20], adaptive sparse channel estimation using zero-
attracting least mean square (RZA-LMS) was proposed in . 
The cost function of RZA-LMS is given by ܮோ௓஺(݊) = 12 ݁ଶ(݊) + ோ௓஺෍ߣ log(1 + ோ௓஺|ℎ௜|)ே௜ୀଵߝ ,			(11) 
where	ߣோ௓஺ =  ௡√2ܰ is a regularization parameter whichߪோ௓஺ߩ
trades off the estimation error and channel sparsity. It was 
worth note that the ߩோ௓஺ is a setting parameter which controls 
the ߣோ௓஺ . According to Eq. (11), the corresponding update 
equation was given by ܐ(݊ + 1) = (݊)ܐ − ߤ డ௅ೃೋಲ(௡)డܐ(௡)    = (݊)ܐ + ோ௓஺෍ߝோ௓஺ߣߤ−  (݊)ܠ(݊)݁ߤ sgn(|ℎ௜(݊)|)1 + ோ௓஺|ℎ௜(݊)|ே௜ୀଵߝ  

= (݊)ܐ + (݊)ܠ(݊)݁ߤ − ோ௓஺ߢ sgn൫ܐ(݊)൯1 + |(݊)ܐ|ோ௓஺ߝ , (12) 
where ߢோ௓஺ = ோ௓஺ߝோ௓஺ߣߤ  is a parameter which depends on 
step-size ߤ , regularization parameter ߣோ௓஺  and threshold 
parameter ߝோ௓஺ , respectively. In Eq. (12), if magnitudes of ℎ௜(݊), ݅ = 1,2, … ,ܰ  are smaller than 	1 ⁄ோ௓஺ߝ  , then these 
channel coefficients will be replaced by zeros in high 

probability. Here, the sparse penalty function in Eq. (12) is 
defined as 

൯(݊)ܐோ௓஺൫ܩ  = ୱ୥୬൫ܐ(௡)൯ଵାఌೃೋಲ|ܐ(௡)| .																										(13)  
Take ߝோ௓஺ = 20  as for an example, sparse penalty function ୖܩ୞୅൫ܐ(݊)൯ in Eq. (13) can be depicted as in Fig. 3.  

IV. COMPUTER SIMULATIONS 
In this section, we compare the performance of proposed 

channel estimators using 1000independent Monte-Carlo runs 
for averaging. The length of sparse multipath channel ܐ is set 
as ܰ = 16 and its number of dominant taps is set as ܭ = 2 
and 4  respectively. The values of dominant channel taps 
follow random Gaussian distribution and the positions of 
dominant taps are randomly allocated within the length of ܐ 
which is subjected to ܧሼ‖ܐ‖ଶଶሽ = 1. The signal-to-noise ratio 
(SNR) is defined as 10log	(ܧ଴ ⁄௡ଶߪ ), where ܧ଴  is transmitted 
power. Here, we set the SNR range from 5dB  to 30dB . 
Simulation parameters are listed in Tab. I. 

TABLE I.  SIMULATION PARAMETERS FOR LMS-BASED ADAPTIVE 
SPARSE CHANNEL ESTIMATION.  

Type of parameters Value 

Step-size 5 ߤe-2 

Channel length ܰ = 16 

Number of nonzero taps 2 & 4 

Channel distribution Random Gaussian 

The estimation performance is evaluated by mean square 
deviation (MSD) standard which is defined as MSD(ܐ(݊)) = Eሼ‖ܐ(݊) −  (14)																				ଶଶሽ,‖ܐ
where E[∙]  denotes expectation operator, ܐ  and ܐ(݊)  are the 
actual channel vector and its estimator, respectively.  

The regularization parameter of ZA-LMS is denoted by ߣ௓஺ =  ௡ଶ and channelߪ ௡√2ܰ/100. Since noise varianceߪ௓஺ߩ
length ܰ are given by the system, hence, ߣ௓஺ depends on the 
parameter ߩ௓஺ , that is ߣ௓஺~ࣩ(ߩ௓஺) . We evaluate ZA-LMS 
based adaptive sparse channel estimation method with 
different SNRs as shown in Fig. 4(a-f). Different MSD 
estimation performance curves are depicted as different 
parameters ߩ௓஺ . In Fig. 4(a), ZA-LMS can achieve 
approximate optimal performance using parameter ߩ௓஺ = 3 
than previous method using other parameters at the SNR =5dB. As the SNR increasing, ZA-LMS can also achieve the 
approximate optimal sparse channel estimation. According to 
six sub-figures in Fig. 4, ߩ௓஺ = 3 is chosen as approximate 
optimal regularization parameter for ZA-LMS. 

The regularization parameter of RZA-LMS is denoted as ߣோ௓஺ = ௡√2ܰߪோ௓஺ߩ . Hence, ߣோ௓஺  depends on the parameter ߩோ௓஺ , that is ߣோ௓஺~ࣩ(ߩ௓ோ஺) . Different MSD estimation 
performance curves are depicted as different parameters ߩ௓ோ஺. 
In different SNR regimes, RZA-LMS can achieve the 
approximate optimal sparse channel estimation whose optimal 
regularization parameter is chosen as ߩோ௓஺ = 3. 

 
Fig. 3. ܩ௓஺൫ܐ(݊)൯ for different channel taps is uniform while ܩோ௓஺൫ܐ(݊)൯ 
is strong for small channel taps and weak for big channel taps. 
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(4-a) SNR = 5dB. 

 
(4-b) SNR = 10dB. 

 
(4-c) SNR = 15dB. 

 
(4-d) SNR = 20dB.

 
(4-e) SNR = 25dB. 

 
(4-f) SNR = 30dB. 

Fig. 4. MSD of ZA-LMS versus different regularization parameters. 
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(5-a) SNR = 5dB. 

 
(5-b) SNR = 10dB. 

 
(5-c) SNR = 15dB. 

 

 
(5-d) SNR = 20dB. 

 
(5-e) SNR = 25dB. 

 
(5-f) SNR = 30dB. 

Fig. 5. MSD of RZA-LMS versus different regularization parameters. 
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V. CONCLUSION 
By using ℓଵ-norm sparse constraint function, both ZA-LMS 

and RZA-LMS have been proposed for applying in sparse 
multipath channel estimation. We explained the relationship 
between LASSO and ℓଵ-norm based sparse LMS algorithms, 
i.e., ZA-LMS and RZA-LMS. Since the proposed methods 
neglect optimal regularization parameter selection. In this 
paper, we investigated regularization selection method for 
sparse LMS methods, i.e., ZA-LMS and RZA-LMS. 
Computer simulations were given to show the effectiveness of 
our propose method. 
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