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Abstract—Least mean square (LMS)-type adaptive sparse
algorithms have been attracting much attention on sparse
multipath channel estimation (SMPC) due to their two
advantages: low computational complexity and reliability. By
introducing £, -norm sparse constraint function into LMS
algorithm, both zero-attracting least mean square (ZA-LMS) and
reweighted zero-attracting least mean square (RZA-LMS) have
been proposed for SMPC. It is well known that the performance
of the SMPC is decided by regularization parameter which
balances channel estimation error and sparse penalty strength.
However, optimal regularization parameter selection has not yet
considered in the two proposed algorithms. Based on the
compressive sensing theory, in this paper, we explain the
mathematical relationship between Lasso and LMS-type adaptive
sparse algorithms. Later, an approximate optimal regulation
parameter selection method is proposed for ZA-LMS and RZA-
LMS, respectively. Monte Carlo based computer simulations are
presented to show the effectiveness of our propose method.

Keywords—regularization parameter selection, least mean
square (LMS); adaptive sparse channel estimation; zero-attracting
least mean square (ZA-LMS); reweighted zero-attracting least
mean square (RZA-LMS).

1. INTRODUCTION

The demand for high-speed data services is getting more
insatiable due to the number of wireless subscribers roaring
increase in the next generation wireless communication
systems. Various portable wireless devices, e.g., smart phones
and laptops, have generated rising massive data traffic [1]. It is
well known that the broadband transmission is an
indispensable technique for realizing Gigabit wireless
communication [2][3]. However, the broadband signal is
susceptible to interference by frequency-selective channel
fading. In the sequel, the broadband channel is described by a
sparse channel model in which multipath taps are widely
separated in time, thereby create a large delay spread [4]. In
other words, unknown channel impulse response (CIR) in
broadband wireless communication system is often described
by sparse channel model, supporting by a few large
coefficients. In other words, most of channel coefficients are
zero or close to zero while only a few channel coefficients are
dominant (large value) to support the channel. A typical
example of sparse channel is shown in Fig. 1, where the
number of dominant channel taps is 4 while the length of
channel is 16.
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Fig. 1. A typical example of sparse multipath channel.
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Traditional least mean square (LMS) algorithm is one of the
most popular methods for adaptive system identification [5],
e.g. channel estimation. Indeed, LMS-based adaptive channel
estimation can be easily implemented by LMS-based filter due
to its low computational complexity or fast convergence speed.
However, the standard LMS-based method never takes
advantage of channel sparse structure as prior information and
then it may loss some estimation performance.

Recently, many algorithms have been proposed to take
advantage of sparse structure of the channel. For example,
based on the theory of compressive sensing (CS) [6], [7],
various sparse channel estimation methods have been
proposed in [8—13]. For one thing, these CS-based sparse
channel estimation methods require that the training signal
matrices satisfy the restricted isometry property (RIP) [14].
However, design these kinds of training matrices is non-
deterministic polynomial-time (NP) hard problem [21]. For
another thing, some of these methods achieve robust
estimation at the cost of high computational complexity, e.g.,
sparse channel estimation using least-absolute shrinkage and
selection operator (LASSO) [15]. To avoid the high
computational complexity on sparse channel estimation, a
variation of the LMS algorithm with £;-norm penalty term in
the LMS cost function has also been developed in [16], [17].
The £{-norm penalty was incorporated into the cost function
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of conventional LMS algorithm, which resulted in two sparse
LMS algorithms, namely zero-attracting least mean square
(ZA-LMS) and reweighted zero-attracting least mean square
(RZA-LMS) [16]. Moreover, improved adaptive sparse
channel estimators were proposed in [17-19]. It was well
known that adaptive sparse channel estimation methods
depend on regularization parameter which controls estimation
error and channel sparsity. As the authors best understanding,
however, there is no paper reported that regularization
parameter selection method for ZA-LMS and RZA-LMS.

In this paper, we propose a regularization parameter
selection method for achieving optimal sparse LMS channel
estimation in different signal-to-noise ratio (SNR) regimes.

The remainder of this paper is organized as follows. Section
II introduces sparse system model. Section III reviews LMS-
type adaptive sparse channel estimation methods and presents
problem formulation. In section V, we propose Monte Carlo-
based regularization selection method using different
simulation results. Concluding remarks are presented in
Section V.
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Fig.2. An adaptive sparse channel estimation based sparse multipath
communication system.

II.  SYSTEM MODEL

Consider a sparse multipath adaptive communication
system, as shown in Fig. 2. The input signal x(t) and ideal
output signal d(t) are related by

d(t) = hTx(t) + z(t), )

where h = [hg, hy, ..., hy_1]7 is a N -length sparse channel
vector which is supported only by K dominant channel taps,
x(t) = [x(t),x(t = 1),..,x(t = N+ 1)]T is N-length input
signal vector and z(t) is an additive noise variable at time t.
The objective of LMS adaptive filter is to estimate the
unknown sparse channel coefficients h using the input signal
x(t) and ideal output signal d(t). n-th adaptive estimation
error is termed as e(n). For a better understanding, input
signal x(t) and output signal d(t) are also revised as x(n) and
d(n), respectively, where n denotes adaptive iterative times.
At the time t, please note that both x(n) and d(n) are
invariant. According to Eq. (1), channel estimation error e(n)

978-1-4673-6050-0/13/$31.00 ©2013 |[EEE

1s written as

e(n) = d(n) — h" ()x(n), 2

where h(n) is the LMS adaptive channel estimator. Based on
Eq. (2), LMS cost function can be given by

L(n) = %ez(n). 3)

Hence, the update equation of LMS adaptive channel
estimation is derived by

h(n + 1) = h(n) + pe(n)x(n), 4)

where u € (0,2/ymax) 18 a step size of gradient descend step-
size and ypay 18 the maximum eigenvalue of the covariance
matrix of x(n).

III. LMS-TYPE ADAPTIVE SPARSE CHANNEL ESTIMATION
METHODS

From the above Eq. (4), we can find that the LMS-based
channel estimation method never take advantage of sparse
structure in h. The standard LMS-based channel estimation
can be concluded as

h(n+ 1) = h(n) + adaptive update. (5)

Unlike the standard LMS method in (5), channel sparsity can
be exploited by introducing £;-norm penalty to LMS-type cost
function [16], [17]. Hence, the LMS-based adaptive sparse
channel estimation can be written as

h(n + 1) = h(n) + adaptive update + sparse penalty. (6)

From above update Eq. (6), the objective of adaptive sparse
channel estimation is introducing different sparse penalties to
take the advantage of sparse structure as for prior information.

A. ZA-LMS algorithm

To exploit the channel sparsity in CIR, the cost function of
ZA-LMS [16] is given by

1
Lza(m) =5 eZ(M)+2zallh @y, @

where A4 = pz,0,V2N/100 is a regularization parameter
which balances the adaptive estimation error and sparse
penalty of h(n). Please note that the p;, is a setting parameter
which controls the A,4. The corresponding update equation of
ZA-LMS was written as

dL
h(n+ 1) = h(n) — uﬁg)

=h(n) + pe(m)x(n) — kzasgnth(n), ®)

where k4 = pdy, and sgn{-} is a component-wise function
which is defined as

sgn(h) = {h/th whenh # 0

0, when h = 0’ ®)

where the h is one of channel taps of h. From the update
equation in Eq. (8), the second term attracts the small filter



The 19th Asia-Pacific Conference on Communications (APCC2013), Bali - Indonesia

coefficients to zero, which speed up convergence when the
most of the channel coefficients h are zeros. Here, the sparse
penalty function in Eq. (8) is defined as

Gza(h(m) = sgn(h(m)),

which is depicted as shown in Fig. 3.
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Fig. 3. Gz4(h(n)) for different channel taps is uniform while Ggz,(h(n))

is strong for small channel taps and weak for big channel taps.

B. RZA-LMS algorithm

The ZA-LMS cannot distinguish between zero taps and
non-zero taps since all the taps are forced to zero uniformly;
therefore, its performance will degrade in less sparse systems.
Motivated by reweighted #; -minimization sparse recovery
algorithm [20], adaptive sparse channel estimation using zero-
attracting least mean square (RZA-LMS) was proposed in .
The cost function of RZA-LMS is given by

N
._1108(1 + erzalhil), (11)

i

1
Lrza(n) = > e?(n) + Arza Z

where Agz4 = Prza0n V2N is a regularization parameter which
trades off the estimation error and channel sparsity. It was
worth note that the ppz,4 is a setting parameter which controls
the Agz4. According to Eq. (11), the corresponding update
equation was given by

aL
h(n + 1) = h(n) ‘“%n()")

= h(n) + ue(n)x(n)

—UARzAE ZN M
RZA€RZA i=1 1 + epzalh;(n)|

sgn(h(n))

T+ engaln(o)]” 2

= h(n) + pe(n)x(n) — kpz4
where Kpza = UAprza€rza 1S a parameter which depends on
step-size u , regularization parameter Az;, and threshold
parameter £g,4, respectively. In Eq. (12), if magnitudes of
h;(n), i=1,2,...,N are smaller than 1/eg;, , then these
channel coefficients will be replaced by zeros in high
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probability. Here, the sparse penalty function in Eq. (12) is
defined as

sgn(h(n))
1+epzalh(m)|’

GRZA(h(n)) = (13)

Take €4 = 20 as for an example, sparse penalty function
Grza(h(n)) in Eq. (13) can be depicted as in Fig. 3.

IV. COMPUTER SIMULATIONS

In this section, we compare the performance of proposed
channel estimators using 1000independent Monte-Carlo runs
for averaging. The length of sparse multipath channel h is set
as N = 16 and its number of dominant taps is set as K = 2
and 4 respectively. The values of dominant channel taps
follow random Gaussian distribution and the positions of
dominant taps are randomly allocated within the length of h
which is subjected to E{||h||3} = 1. The signal-to-noise ratio
(SNR) is defined as 10log(E,/02), where E, is transmitted
power. Here, we set the SNR range from 5dB to 30dB.
Simulation parameters are listed in Tab. I.

TABLE L. SIMULATION PARAMETERS FOR LMS-BASED ADAPTIVE

SPARSE CHANNEL ESTIMATION.

Type of parameters Value
Step-size u Se-2
Channel length N =16

Number of nonzero taps 2&4
Channel distribution Random Gaussian

The estimation performance is evaluated by mean square
deviation (MSD) standard which is defined as

MSD(h(n)) = E{llh(n) — hl3}, (14)

where E[-] denotes expectation operator, h and h(n) are the
actual channel vector and its estimator, respectively.

The regularization parameter of ZA-LMS is denoted by
Aza = pza0, 2N /100. Since noise variance o2 and channel
length N are given by the system, hence, 1,4 depends on the
parameter pz,, that is 1,,~0(pz,). We evaluate ZA-LMS
based adaptive sparse channel estimation method with
different SNRs as shown in Fig. 4(a-f). Different MSD
estimation performance curves are depicted as different
parameters py, . In Fig. 4(a), ZA-LMS can achieve
approximate optimal performance using parameter pz4 = 3
than previous method using other parameters at the SNR =
5dB. As the SNR increasing, ZA-LMS can also achieve the
approximate optimal sparse channel estimation. According to
six sub-figures in Fig. 4, p;, = 3 is chosen as approximate
optimal regularization parameter for ZA-LMS.

The regularization parameter of RZA-LMS is denoted as
Arza = Prza0aV2N. Hence, Agz4 depends on the parameter
DPrza » that is Apza~O(pzra) - Different MSD estimation
performance curves are depicted as different parameters pzp,.
In different SNR regimes, RZA-LMS can achieve the
approximate optimal sparse channel estimation whose optimal
regularization parameter is chosen as prz4 = 3.
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V. CONCLUSION

By using #;-norm sparse constraint function, both ZA-LMS
and RZA-LMS have been proposed for applying in sparse
multipath channel estimation. We explained the relationship
between LASSO and #;-norm based sparse LMS algorithms,
ie.,, ZA-LMS and RZA-LMS. Since the proposed methods
neglect optimal regularization parameter selection. In this
paper, we investigated regularization selection method for
sparse LMS methods, ie., ZA-LMS and RZA-LMS.
Computer simulations were given to show the effectiveness of
our propose method.
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