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Abstract—Traditional stable adaptive filter was used 
normalized least-mean square (NLMS) algorithm. However, 
identification performance of the traditional filter was especially 
vulnerable to degradation in low signal-noise-ratio (SRN) regime. 
Recently, adaptive filter using normalized least-mean fourth 
(NLMF) is attracting attention in adaptive system identifications 
(ASI) due to its high identification performance and stability. In 
the case of sparse system, however, the NLMF filter cannot 
identify effectively due to the fact that its algorithm neglects the 
inherent sparse structure. In this paper, we proposed a sparse 
NLMF filter using zero-attracting ��-norm constraint to exploit 
the sparsity and to improve the identification performance. 
Effectiveness of the proposed filter is confirmed from two 
aspects: 1) stability is derived equivalent to well-known stable 
NLMS filter; 2) identification performance of the proposed is 
verified by mean square deviation (MSD) standard in computer 
simulations. When comparing with conventional adaptive filter, 
the proposed one can achieve much better identification 
performance especially in low SNR regime. 

Keywords—normalized least-mean square (NLMS), normalized 
least-mean fourth (NLMF), zero-attracting �� -norm constraint 
normalized least-mean fourth (ZAC-NLMF), adaptive filter, sparse 
system identification. 

I. INTRODUCTION 

A. Background and motivation 
Adaptive filters are often applied in many adaptive system 

identifications (ASI), as shown in Fig. 1, such as noise 
canceling, channel equalization, radar target localization and 
etc. The typical stable filter uses normalized least-mean fourth 
(NLMF) algorithm since NLMS filter depends solely on the 
input signal power [1] for a given step size of gradient descend. 
It is well known that least mean fourth (LMF) filter [1] 
outperforms the NLMS filter in achieving a better balance 
between convergence and steady-state performances. 
Unfortunately, standard LMF filter is unstable due to the fact 
that its stability depends on three factors: input signal power, 
noise power as well as filter weight initialization  [2]. In other 
words, any variation of the three factors may decrease the 
stability of LMF filter. Hence, it is necessary to develop stable 
LMF filter for ASI. Recently, a stable LMF filter was only 
proposed in low signal-to-noise ratio (SNR)  regime [3].  

To take the advantage of LMF as well as NLMS, stable 
normalized LMF (NLMF) filter has been proposed in [4], [5]. 
Recently, many systems were confirmed exhibiting sparse 

structure as shown in Fig. 2. In other words, most of the filter 
coefficients are modeled as zeros. However, the proposed 
NLMF filter [4], [5] always neglects the inherent sparse 
structure information and therefore it may degrade the 
identification performance.  

To exploit the sparsity, sparse filter using zero-attracting �� -norm constraint LMS (ZAC-LMS) algorithm has been 
proposed in [6]. Motivated by this method, an improved sparse 
filter using zero-attracting �� -norm constraint NLMS (ZAC-
NLMS) was proposed in [7], [8].  

 
B. Main contribution 

Unlike the two proposed filters in [6–8], a stable sparse filter 
using zero-attracting ��-norm constraint NLMF (ZAC-NLMF) 
is proposed in this paper. The proposed filter provides a better 
identification performance than ZAC-NLMS one. It is effective 
for exploiting system sparsity and stable for any conditions of 
input signal, noise, as well as initial setting of the filter. For 
one thing, the updating normalization stabilizes the filter 
against increasing input power and the infinity of the input 
distribution. For another, the estimation error normalization 
term stabilizes the filter against increasing noise power and 

  
Fig. 1. System identification using adaptive filter 
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increasing initial weight deviation. At last, the zero-attracting �� -norm constraint sparse penalty replaces small filter 
coefficients with zero so that the sparsity can be exploited. 
Note that when the values of step-size is within the 
range������, the stability of the ZAC-NLMF filter is similar to 
that of the ZAC-NLMS one [4], [5]. Performance of the 
proposed filter is evaluated by the computer simulations via 
mean square deviation (MSD) standard. 

 

C. Relattions to past research 
In our previous work [3], an stable sparse LMF filter, using 

fourth-order power optimization criterion was proposed to 
improve the system identification performance in low SNR 
regime, e.g., ��� � ���. Different from the previous method, 
the proposed filter in this paper is more flexible and it can 
maintain its stability in different SNR regimes. In [9], we 
proposed an reweighted zero-attracting �� -norm constraint 
NLMF (RZAC-NLMF) algorithm for exploiting sparsity in 
sparse channel. In addition, different reweighted factors were 
evaluated for RZAC-NLMF. Even though ZAC-NLMF 
algorithm was also mentioned in this paper, only sparse 
channel estimation was considered. In this paper, sparse ZAC-
NLMF filter is considered for ASI. In [10], least mean 
square/fourth (LMS/F) algorithm was also proposed for ASI. 
To exploit the system sparsity, sparse LMS/F algorithm was 
also proposed in [11]. One can find that the proposed method 
is based on standard LMS/F algorithm [10]. Unlike the 
proposed method in  [11], sparse ZAC-NLMF filter is based 
on the standard LMF algorithm [1]. 

The remainder of rest paper is organized as follows. A 
standard NLMF filter is described in Section II. In section III, 
sparse NLMF filter using zero-attracting ��-norm constraint is 
proposed. Computer simulation results are given in Section IV 
in order to evaluate and compare performances of the 
proposed NLMF filter. Finally, we conclude the paper in 
Section V. 

II. STANDARD NLMF FILTER 
Assume that signal �� �  is input to the system with 

unknown ! -sparse filter FIR coefficients vector " #$%&�%�� ' � %()�*+ , then its observed output signal ,�-�  is 
given by 

.� � # "/�� � 0 1� ��������������������������������2� 
where �� � # $3� �� 3� 4 2�� ' � 3� 4 � 0 2�*/  denotes 
the vector of input signal 5�-� , and 6�-�  is the observation 
noise which is assumed to be independent from �� � . The 
objective is to adaptively identify the unknown FIR 
coefficients vector "  using the input signal �� �  and the 
observed output  .� �. Conventionally, cost function of LMF 
filter is given by 

7�� � # 28 9:� ��������������������������������������� 
where 9� � # .� � 4 "/� ��� �  denotes filter mismatching 
error. The update equation of the filter can be written as  

"� 0 2� # "� � 0 ;< =7�� �="� ��������������������������������� 
# "� � 0 ;<9>� ��� ����������������������?� 

where ;< @ �����  denotes the step-size of gradient descend. 
Unfortunately, the above filter is not stable [2] and hence it 
cannot be applied in adaptive system identification. Thanks to 
the contribution in [6,7], a stable NLMF filter was proposed 
and its update equation is given as 

"� 0 2� # "� � 0 ;< 9>� ��� �A�� �ABBCA�� �ABB09B� �D��������� 
# "� � 0 ;<� � 9� �3� �A�� �ABB �����������������������������8� 

where ;<� � # ;9B� �ECA3� �ABB09B� �D� denotes a variable 
step-size and AFAB is the Euclidean norm operator and A�ABB #G H3IHB()�IJ& . Here, it is easy to observe that 

KL
M;<� � N ;<� %O9 ��9B� � P A�� �ABB;<� � N ;<� � %O9 ��9B� � P A�� �ABB;<� � N �� %O9 ���9B� � Q A�� �ABB

����������� 
Since the step-size ;<� �  is variant, one can find that, 
instantaneous estimation error 
B� �  much larger than the A�� �ABB , larger ;<� � is utilized for reducing computational 
complexity; Conversely, instantaneous estimation error 
B� �  
decreases, step-size  ;<� � is also reducing for ensuring filter’s 
stability. Therefore, the stability of NLMF approaches to 
NLMS. 

 
Fig. 2 . An example of sparse system where model length is 16 and 
number of nonzero coefficient is 2. 
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III. PROPOSED SPARSE FILTER 
To take the advantage of the sparsity of sparse system, 

sparse LMS filter [6] and improved sparse NLMS filter [6,7] 
have been proposed, respectively. Different from the previous 
methods, cost function of sparse LMF filter is given by  

7B� � # 28 9:� � 0 R<A%� �A���������������������S� 
where R< T � is a regularization parameter which trades off the 
fourth-order mismatching error and sparseness of LMF filter; AFA�  denotes zero-attracting ��-norm constraint function. The 
updating equation of sparse LMF filter can be written as 

"� 0 2� # "� � 0 ;< =7B� �="� � �������������������������������������������� # "� � 0 ;<9>� ��� � 4 UV�W-C"� �D� �X� 
where U # ;<R<  and V�W-�F�  is the sign function which 
operates on every coefficients of filter independently and  

YV�W-�%� # �� %O9 ��% # �V�W-�%� # 2����������%O9 ��% T �V�W-�%� # 42�������%O9 ��% Z �������������������������[� 
However, the stability of (7) still depends on input signal 
power, noise power and weight initialization of sparse NLMF. 
To improve its stability, based on the standard NLMF filter in 
(4), the update equation in Eq. (7) is modified as  

"� 0 2� # "� � 0 ;<� � 9� ��� �A�� �ABB 4 UV�W-C"� �D\���]� 
where ;<� � # ;9B� �ECA3� �ABB09B� �D . According to 
above derivation of sparse NLMF filter, the stable filter 
algorithm can be written as Tab. I. 

 
TAB. 1. ALGORITHM OF SPARSE NLMF FILTER  

 

IV. COMPUTER SIMULATION 
In this section, computer simulation adopts 1000 

independent Monte-Carlo runs for averaging. Four filters, i.e., 
NLMS, NLMF, ZAC-NLMS and ZAC-NLMF will be 
evaluated by MSD standard which is defined as  

^_`a"� �b # caA" 4 "� �ABBb������������������2�� 
where caFb denotes expectation operator,  " and "� � denote 
actual filter coefficient vector and its estimator, respectively. 
The FIR filter length is set as � # 2S  and its number of 
nonzero coefficients is set as d # 2 and 8  respectively. The 
values of the nonzero FIR coefficients follow Gaussian 
distribution and the positions of coefficients are randomly 
allocated within the FIR filter length and A"ABB # 2 . The 
received signal-to-noise ratio (SNR) is defined as _ef #2��gW��h& ijBk �, where h& # 2 is normalized transmitted power 
and the noise power is given by ijB # 2�)l(m �&k . These filters 
use the same step-size each time and two step-sizes. As for a 
typical example, ;n # �\�  and ;< # 2\�  are considered. 
Likewise, the regularization parameter is set as Rn # � o2�)>ijB and R< # � o 2�)pijB respectively.  

In the first experiment, considering two sparse channels, 
i.e., d # 2 and 8, in the case of ��� # ���, we demonstrate 
that the convergence speed and steady-state performance of the 
four filters in Figs. 3 and 4, respectively. It can be observed 
that the proposed sparse NLMF filter is stable and it can obtain 
much better performance than sparse NLMS filter. Please note 
that standard NLMF filter can also achieve better performance 
than NLMS. In addition, as shown in Figs. 3 and 4, there are 
two performance gaps in between NLMS and ZAC-NLMS as 
well as between NLMF and ZAC-NLMF. One can deduce that 
performance curves of two sparse filters (i.e., ZAC-NLMS and 
ZAC-NLMF) have a relationship with the sparseness of filter 
coefficients’ vector, i.e., number of nonzero coefficients, d . 
That is to say, by using either ZAC-NLMS or ZAC-NLMF, 
sparser filter may result in a better performance and vice versa. 
Unlike the two sparse filters, both NLMS and NLMF cannot 
exploit filter sparsity due to the fact that their performance 
curves are almost invariant even if number of nonzero 
coefficients variant. Hence, the proposed filter can exploit 
sparsity as for prior information and then it can improve 
system identification performance. 

In the first experiment, considering two sparse channels, 
i.e., d # 2 and 8, in the case of ��� # ���, we demonstrate 
that the convergence speed and steady-state performance of the 
four filters in Figs. 3 and 4, respectively. It can be observed 
that the proposed sparse NLMF filter is stable and it can obtain 
much better performance than sparse NLMS filter. Please note 
that standard NLMF filter can also achieve better performance 
than NLMS. In addition, as shown in Figs. 3 and 4, there are 
two performance gaps in between NLMS and ZAC-NLMS as 
well as between NLMF and ZAC-NLMF. One can deduce that 
performance curves of two sparse filters (i.e., ZAC-NLMS and 
ZAC-NLMF) have a relationship with the sparseness of filter 
coefficients’ vector, i.e., number of nonzero coefficients, d . 
That is to say, by using either ZAC-NLMS or ZAC-NLMF, 
sparser filter may result in a better performance and vice versa. 
Unlike the two sparse filters, both NLMS and NLMF cannot 

"� 0 2� # "� 4 2� 0 ;<� � 9� ��� �A�� �ABB 4 UV�W-C"� �D 

Input: Reference signal �, output signal ., regularization
parameter: U, step-size ;<, updating error threshold q, the 
maximum updating times  rst. 

Output: modeled filter coefficients: "� � 
Initialization:  # � ; updating error 9��� # . , filter 
coefficients vector:  "� � # �;  

While  �  rst or  A"� 0 2� 4 %ABB u q  

Run 

Error updating: 9� � # .� � 4 "/� ��� � 
Coefficients updating: 

End   



exploit filter sparsity due to the fact that their performance 
curves are almost invariant even if number of nonzero 
coefficients variant. Hence, the proposed filter can exploit 
sparsity as for prior information and then it can improve 
system identification performance. 
 

 

V.  CONCLUSION 
Adaptive system identification requires that filter not only 

works reliably but also exploits sparse structure information 
efficiently. Based on the standard NLMF filter, in this paper, 
we proposed a novel ZAC-NLMF filter to exploit the system 
sparsity. The proposed filter was inspirited from the fact that 
LMF algorithm achieves better MSD performance than LMS in 
ASI. Thereby, LMF suppresses noise ability stronger than 
LMS due to LMF utilizes higher-order mean error statistics 
than LMS. To maintain the sparse LMF filter stable, NLMF 
algorithm was proposed for the proposed filter. Computer 

simulation results have shown the superior performance of the 
proposed �lter compared with the existing �lters. 
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