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Abstract—Massive MIMO will be one of the technologies
adopted in 5G cellular networks due to its ability to enhance
transmission performance. However, resource management is-
sues remain unsolved, especially with quality of service (QoS)
requirements from users. This paper focuses on cell association
and antenna allocation problems in such networks. We analyze
the competitive situations where users in different classes with
different QoS (i.e., data rate) requirement can choose to associate
with any cell rationally and independently. Likewise, access points
can allocate their antennas to different users. The users and
access points are self-interested to maximize their own benefits
in terms of data rate and total revenue, respectively. We formulate
a hierarchical evolutionary game framework which is composed
of the games for cell association and antenna allocation. We
apply both deterministic and stochastic approaches to obtain the
equilibrium solutions of the game.

Index Terms—Cell association, antenna allocation, evolution-
ary game

I. INTRODUCTION

Massive MIMO is one of the important candidate technolo-

gies for 5G cellular networks [1], [2]. By deploying a number

of antennas at a base station and access point, with massive

MIMO the network can achieve much higher performance than

that of 4G [3]. Massive MIMO can be deployed in heteroge-

neous networks (HetNets) which are composed of a variety

of cells (e.g., a macrocell and small-cells) [4]. Additionally,

in [4], the authors highlight some major issues of such an in-

tegration, i.e., interference management and energy efficiency.

However, due to complex network design and implementation,

the cell association for users and resource allocation for base

stations (e.g., antenna allocation) in massive MIMO networks

arise. For example, in [5], the authors introduced an energy-

efficient resource allocation scheme for a network with large

number of antennas. An optimization was formulated and

solved to meet per user quality of service (QoS) requirement.

In [6], a power control algorithm was proposed for a network

with massive MIMO and noncooperative beamforming. The

aim of the algorithm is to meet QoS requirement of users

especially at cell edges.

Cell association or traditionally called network selection is

an important issue for 5G heterogeneous networks (HetNets).

Users have to associate with the most suitable cell so that their

performance is maximized. To analyze the network selection,

evolutionary game can be applied [7]. The problem of cell

association was considered in [8]. Specifically, an optimization

problem was formulated for load balancing which assigns a

portion of resource blocks from different cells to different

users to meet some fairness criteria. However, the paper did

not consider independent and competitive cell association

and antenna allocation performed by the users and access

points, respectively. However, the cell association and resource

allocation become more complex when the network lacks

centralized coordination and control (e.g., in a distributed

environment) and the users as well as the base stations are

self-interested to maximize their own benefits.

In this paper, we consider jointly the cell association and

antenna allocation problem of 5G massive MIMO networks.

We formulate a hierarchical evolutionary game framework to

analyze rational users’ decisions to perform cell association to

maximize their own data rate and to meet QoS requirement.

Similarly, the framework can analyze self-interested access

points’ actions to perform antenna allocation to maximize their

own revenue. First, the antenna allocation game is played by

the access points after observing cell association decisions

of users. Then the cell association game is played by the

users based on the data rate achieved as a result of antenna

allocation decisions. We apply deterministic and stochastic

evolutionary game approaches to analyze the solutions. For

the deterministic approach, we use replicator dynamics and

the solution is a fixed point of the difference equation. For the

stochastic approach, we use a Markov chain and the solution

is a stochastically stable state whose steady state probability

is non-zero. These solutions are similar to a Stackelberg

equilibrium, where the access points are leaders and the users

are followers of the hierarchical evolutionary game.

The rest of this paper is organized as follows. Section II

describes the system model and assumptions used in this paper.

Section III presents the hierarchical evolutionary game for-

mulation. The deterministic and stochastic approaches based

on replicator dynamics and Markov chain, respectively, are

presented. Section IV shows the numerical performance eval-

uation results. Section V summarizes the paper.

II. SYSTEM MODEL

We consider a network with N access points offering data

transmission services to users (Fig. 1). The access point n
has totally An antennas communicating with multiple users,

each of which has a single antenna (i.e., multi-user MIMO).
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Fig. 1. A system model.

We consider service differentiation among different classes of

users. There are totally C classes. Class c has Mc users. Each

class has the data rate requirement denoted by Rc. The access

point n can allocate an,c antennas to a group of class-c users.

The users can choose one of the N access points to associate

with. However, if their data rate requirement cannot be met,

the users can disassociate from the network. If a class-c user

associates with access point n, the user has to pay a price pn,c
to the access point. We assume that the users are uniformly

distributed in the network.

To address the double competition of users for cell asso-

ciation and access points for antenna allocation, we propose

a hierarchical evolutionary game framework. The framework

is composed of evolutionary games for cell association in a

lower level and for antenna allocation in a higher level. That

is, the users are the followers and the access points are the

leaders of the hierarchical evolutionary game framework. The

hierarchical equilibrium, similar to a Stackelberg equilibrium,

for the users and access points is considered as a solution of

the framework.

We consider the data rate of a user as a major performance

measure. The transmission rate of a user can be obtained, e.g.,

as in [10]. Ignoring estimation noise with the simple channel

model and matched filter, the SINR can be obtained from [10]

γ(an,c,Mn,c) =
1

L
ρan,c

+
Mn,c

P L
2
+ α(L− 1)

(1)

where L = 1 + α(L − 1), an,c represents the number of

antennas allocated to class-c users by access point n, Mn,c

represents the number of class-c users associated with access

point n, L represents the number of cells, α represents the

intercell interference factor, P represents the number of degree

of freedom (DoF), and ρ represents the transmit SNR. The

associated rate can be obtained from

r(an,c,Mn,c) = log2(1 + γ(an,c,Mn,c)). (2)

Here, we define the SINR and the associated rate as a function

of the number of antennas an,c and the number of users

Mn,c since they depend on the cell association and antenna

allocation strategies.

III. HIERARCHICAL EVOLUTIONARY GAME

FORMULATION

In this section, we present the hierarchical evolutionary

game framework. Firstly, we introduce game definitions for

cell association and antenna allocation. Then the deterministic

and stochastic evolutionary game approaches are presented.

A. Game Definition

1) Cell Association Game: The game formulation of the

cell association for users is composed of the following com-

ponents. The players are users, and the population is a group

of users in the same class, where Mc is the size (i.e., the

number of class-c users) of class-c population. The strategy
is to choose one of the available access points to associate

with or disassociate from the network if the data rate is

lower than the requirement. The strategy is denoted by s ∈
S = {0, 1, . . . , N}, where 0 corresponds to the disassociation

action. The payoff is the data rate. Given a fixed and optimized

transmission parameters, the data rate of class-c users given

the number of allocated antennas from an access point n, i.e.,

an,c can be obtained, for example, as in [10].

Let sc,m denote a strategy used by user m in class c and

sc be its vector, i.e., sc =
(
sc,1 · · · sc,m · · · sc,Mc

)
.

The number of class-c users choosing access point n is

obtained from

Mn,c =

Mc∑
m′=1

1sc,m′=n (3)

where 1condition returns one if the condition is true and zero

otherwise. The payoff of class-c users can be expressed as

follows:

Um(sc,m, sc,−m, an,c) =

{
r(an,c,Mn,c), sc,m = n > 0,
Rc, sc,m = 0

(4)

where sc,−m represents a vector of the strategies of

other class-c users except user m, i.e., sc,−m =(
sc,1 · · · sc,m−1 sc,m+1 · · · sc,Mc

)
. There are two

cases. If a user chooses any access point, the payoff will be the

data rate. However, if a user chooses to disassociate from the

network, its virtual payoff will be the data rate requirement.

This virtual payoff is used as a cutoff point for the user to

take the disassociation action. In particular, if the received

data rate is lower than the requirement, it is better for the user

to disassociate from the network. As a result, the user will

prefer the strategy to associate with any access point only if

it yields the data rate higher than the requirement.

2) Antenna Allocation: The game formulation of antenna

allocation for access points is composed of the following

components. The players are the access points in the net-

work. The strategy is the antenna allocation to all classes

of users, i.e., an,c for access point n and ac is the vector
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of antenna allocation to class-c users by all access points,

i.e., ac =
(
a1,c · · · an,c · · · aN,c

)
. We also call

this ac as an antenna allocation. Again, a−n,c is a vector

of antenna allocation of all access points except access point

n, i.e., a−n,c =
(
a1,c · · · an−1,c an+1,c · · · aN,c

)
.

The payoff is the total revenue earned from serving users in

all classes choosing to associate with this access point. The

revenue earned from class-c users is expressed as follows:

Pn,c(an,c,a−n,c) = pn,cMn,c (5)

= pn,c

(
Mc∑

m′=1

1sc,m′=n

)
(6)

where again pn,c is the price that a class-c user pays to access

point n. We can see that the payoff of the access points

depends on the strategies of the users. Therefore, the cell

association and antenna allocation are interrelated. The total

revenue of access point n is obtained from

Pn(an,a−n) =

C∑
c=1

Pn,c(an,c,a−n,c) (7)

which is defined as a function of the antenna allocations of

access point n, i.e., an and other access points, i.e., a−n.

The typical solution of the games is a Nash equilibrium. For

the antenna allocation game, the Nash equilibrium denoted as

a∗n,c is defined as follows:

Pn(a
∗
n,a

∗
−n) ≥ Pn(an,a

∗
−n) (8)

for all n. The Nash equilibrium can be obtained as a solution

of the best response defined as follows:

a∗n = argmax
an

Pn(an,a
∗
−n) (9)

for all n.

B. Deterministic Model

To reach the solutions of cell association and antenna

allocation, we apply replicator dynamics in the deterministic

model of evolutionary game. Firstly, we consider the cell

association game. Let xs,c denote a proportion of class-c
users choosing strategy s ∈ S , and xc is its vector, i.e.,

xc =
(
x0,c x1,c · · · xs,c · · · xN,c

)
. The discrete

replicator dynamics of the cell association game is based on

difference equation [11]. It models the change of a proportion

of class-c users choosing different strategies as follows:

x(t+1)
s,c (ãc) = x(t)

s,c(ãc)
β + Us,c(x

(t)
c (ãc))

β + U
(t)

c

(10)

where x
(t)
s,c is the proportion at time step t. Us,c(x

(t)
c (ãc)) is

the payoff of a class-c user choosing strategy s, and U c is the

average payoff of a class-c user over all the strategies. Here,

ãc is a vector of strategies (i.e., the number of antennas of

all access points allocated to class-c users), which is defined

as ãc =
(
a1,c · · · an,c · · · aN,c

)
. β is the variable to

control the strategy adaptation. The larger value of β will lead

to faster convergence rate, but higher chance of unstability.

The payoff is obtained as follows:

Us,c(xc(ãc)) =

{
r(an,c,Mcxs,c(ãc)), s > 0
Rc, s = 0

(11)

and the average payoff is obtained from

U c =

∑
s∈S Us,c(xc(ãc))

|S| (12)

where |S| is the Cardinality of a set S (i.e., the total number

of strategies). The fixed point of the discrete replicator dy-

namics for the cell association game x∗
s,c meets the following

condition

x∗
s,c(ãc) = x(t+1)

s,c (ãc) = x(t)
s,c(ãc) (13)

for all s. The fixed point implies that the users stop changing

their strategy. That is, the users cannot switch to a new strategy

to gain higher payoff (i.e., an equilibrium).

Similarly, we apply discrete replicator dynamics to model

the strategy adaptation of access points in the antenna alloca-

tion game. Let yn,an denote the frequency (e.g., percentage of

time) that access point n applies the allocation an to users in

all classes, and y is its vector. The discrete replicator dynamics

of the antenna allocation game is defined as follows:

y(k+1)
n,an

=
δ + Pn(an,y

(k))

δ + Pn(y(k))
(14)

where again δ is the variable to control the strategy adaptation.

Pn(an) is the average payoff of access point n over the

strategies of all other access points, i.e.,

Pn(an,y) =
∑
a−n

Pn(an,a−n)

⎛
⎝ ∏

n′ �=n

yn′,an′

⎞
⎠ (15)

=
∑
a−n

C∑
c=1

pn,cMcx
∗
s=n,c

⎛
⎝ ∏

n′ �=n

yn′,an′

⎞
⎠(16)

where a−n is a vector of antenna allocations of all access

points except access point n (i.e., its element is an′ ). Pn is the

average payoff of access point n over all its possible strategies,

i.e.,

Pn(y) =
∑
an

Pn(an,y)yn,an . (17)

Note that y
(k)
n,an is the frequency at iteration k. Each iteration

of the antenna allocation game contains a number of time

steps of the cell association game (i.e., much larger than that

required by the cell association game to converge).

The fixed point of the discrete replicator dynamics for the

antenna allocation game y∗n,an
meets the following condition

y∗n,an
= y(k+1)

n,an
= y(k)n,an

(18)

for all an. The fixed point implies that the access points stop

changing their strategies as they cannot do so to improve the

payoffs.
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Algorithm 1 shows the major steps to obtain numerically

the equilibrium solutions for both the cell association and

antenna selection games. ε is a tolerable difference between

two consecutive time steps and iterations.

Algorithm 1 Computation of an equilibrium in deterministic

evolutionary game

1: for All access points n do
2: for All strategy an do
3: Initialize t ← 0, x

(t)
s,c(ãc)

4: repeat
5: Use (10) to update x

(t)
s,c(ãc) for the cell association

game.

6: t ← t+ 1
7: until maxs maxc |x(t)

s,c(ãc)− x
(t−1)
s,c (ãc)| < ε

8: end for
9: end for

10: Initialize k ← 0, y
(k)
n,an

11: repeat
12: Use (14) to update y

(k)
n,an for the antenna allocation

game.

13: k ← k + 1
14: until maxn maxan |y(k)n,an − y

(k−1)
n,an | < ε

C. Stochastic Model

In addition to replicator dynamics which is a deterministic

approach to obtain a solution of evolutionary game, the

stochastic approach based on a Markov chain can be applied.

The stochastic approach can incorporate noise of players’

decision in the model. Firstly, the Markov chain for the cell

association game is defined. The state space of the class-c
users is as follows:

Ωc =

{
(ω0, ω1, . . . , ωs, . . . , ωN );

N∑
s=0

ωs = Mc

}
(19)

where ωs is the number of class-c users applying strategy s.

We define the state ω =
( · · · ωs · · · ωs′ · · · )

and

the state ωs→s′ =
( · · · ωs − 1 · · · ωs′ + 1 · · · )

. In

particular, one user switches from strategy s to strategy s′.
The transition rate from state ω to state ωs→s′ is given as

follows:

ρω,ωs→s′ (ãc) =

{
ωsσ, Us,c(ωs→s′ , ãc) > Us,c(ω, ãc)
εC, otherwise

(20)

where Us,c(ω, ãc) is the payoff of class-c users with strategy s
given the antenna allocations of all access points to this class-

c users ãc. σ is the rate of users to change their strategy and

σ � εC. This payoff is obtained from

Us,c(ω, ãc) =

{
r(an,c, ωs(ãc)), s > 0,
Rc, s = 0.

(21)

In (20), a user switches from strategy s to strategy s′ if the

latter yields higher payoff. However, the user can make an

irrational strategy switching (i.e., noise) with a small rate of

εC.

Let the steady state probability of the state ω be denoted

by πω(a). Any state ω∗(a) ∈ Ωc is stochastically stable if the

steady state probability is non-zero when the noise (i.e., εC)

is small. Note that this stochastically stable state ω∗(a) is a

function of antenna allocation strategy a of all access points.

Similarly, we apply stochastic evolutionary game to analyze

the antenna allocation game. The Markov chain for the antenna

allocation game has the state space defined as follows:

Θ =
{
(a1,1, . . . , a1,C , a2,1, . . . , aN,1, . . . , aN,C);

C∑
c=1

an,c = An ; ∀n
}
. (22)

The state is a collection of antenna allocations by all access

points to all classes of users. We define the state a ∈ Θ as a =(
a1,1 · · · an,c · · · aN,C

)
and the state an,c→c′ =( · · · an,c − 1 · · · an,c′ + 1 · · · )

. In particular, access

point n changes the antenna allocation for class-c users to

class-c′ users, making state transition from a to an,c→c′ . The

transition rate from state a to state an,c→c′ is as follows:

φa,an,c→c′ =

{
θ, Pn(an,c→c′) > Pn(a)
εA, otherwise

(23)

where θ is a strategy switching rate of an access point, and

θ � εA. Pn(a) is derived in the same way as in (7), i.e.,

Pn(a) =
C∑

c=1

pn,cω
∗
c (a) (24)

where ω∗
c (a) is a component of stochastically stable state

ω∗(a) given antenna allocation a.

Again, let the steady state probability of the state a be

denoted by ψa. Any state a∗ ∈ Θ is stochastically stable if

the steady state probability is non-zero when the noise (i.e.,

εA) is small. Algorithm 2 shows the algorithm to solve the

stochastic evolutionary game for cell association and antenna

allocation.

Algorithm 2 Computation of an equilibrium in stochastic

evolutionary game

1: for All access points n do
2: for All strategy an do
3: Solve for stochastically stable state ω∗(a).
4: end for
5: end for
6: Solve for stochastically stable state a∗.

IV. PERFORMANCE EVALUATION

A. Parameter Setting

We consider two access points with massive MIMO. The

first and second access points have 50 and 60 antennas, re-

spectively. We adopt the match filter user detection. However,
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the network can also adopt more sophisticated minimum-

mean-square-error (MMSE) detection. Similar to [10], we use

the following parameters: the intercell interference factor is

α = 0.1 and transmit SNR is ρ = 0dB. There are two

classes of users, i..e, class-1 and class-2. Unless otherwise

stated, the data rate requirements are 1 and 2 b/s/Hz for class-

1 and class-2 users, respectively. There are 50 users in each

class. The prices of cell association are 1 and 2 monetary

units (MUs) for class-1 and class-2 users, respectively. For

the deterministic evolutionary game, we set β = δ = 0.1.

For an initial connection, users choose access points 1 and

2 uniformly. For the stochastic evolutionary game, we set

εC = εA = 10−4.

B. Numerical Results
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Fig. 2. Proportions of class-1 and class-2 users choosing access points (APs)
1 and 2.

Figure 2 shows the proportions of class-1 and class-2 users

choosing access points 1 and 2 when the number of antennas

allocated by access point 2 to class-1 users is varied. Here

the number of antennas allocated by access point 1 to class-1

users is fixed at 10. Firstly, we observe that if the number

of users is too many, not all users can achieve the data rate

requirement. Some of them will be disconnected from the

network. As a result, the proportions of class-1 and class-2

users disassociated from the network are not zero. The number

of disassociated users can be high as shown in the figure that

the access points has to improve its performance to reduce the

unsatisfactory users.

When the access point 2 allocates more antennas to class-

1 users (i.e., fewer antennas allocated for class-2 users), the

data rate of class-1 users increases and some disassociated

class-1 users switch to connect to access point 2. Until there

is no disassociated class-1 users, some class-1 users choosing

access point 1 will start switching to choose access point 2. In

this case, access point 1 will gain higher revenue while access

point 2 earns less revenue. By contrast, since there are fewer

antennas allocated for class-2 users, the data rate of class-

2 users decreases, and some class-2 users will switch from

choosing access point 2 to disassociate from the network.
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Fig. 3. Total revenue of access point (AP) 2 under different number of
allocated antennas.

Based on the varied number of antennas allocated to class-1

users by access point 2, its total revenue is shown in Fig. 3. We

observe that when this number of antennas increases, first the

total revenue increases since access point 2 earns more from

class-1 users. However, at a certain point, the total revenue

decreases, this is due to the loss of revenue from class-2 users.

Clearly, there is an optimal point that yields the highest total

revenue for access point 2. This optimal point depends on the

number of antennas allocated to class-1 users by access point

1 also. This behavior can be well analyzed using game theory,

where access points compete by allocating their antennas to

different classes of users.
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Fig. 4. Best responses of access points (APs) 1 and 2 and steady state
probability for data rate requirement of class-2 user is 1 b/s/Hz.

Figure 4 shows the steady state probabilities of equilib-

rium(s) for when the data rate requirement of class-2 user
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is 1.0 and 2.0, respectively. Additionally, these figures show

the best responses in a noncooperative game context of access

points 1 and 2. Based on the best responses, their intersection

are the Nash equilibrium. Clearly, from a stochastic evolu-

tionary game framework, the steady state probability of these

points are non-zero.
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Fig. 5. Proportion of users, total revenue, and strategy under varied data rate
requirement of class-2 users.

With the hierarchical evolutionary game framework, Fig. 5

shows the proportions of users choosing different access

points, total revenue and strategies of the access points when

the data rate requirement of class-2 users is varied. At the

equilibrium solution, when the data rate requirement of class-

2 users increases, the number of class-2 users associated with

any access points decreases, while the number of disassociated

class-2 users increases. This is due to the fact that the

increasing data rate requirement cannot be met by any antenna

allocation strategy. Consequently, the total revenues of both

access points decrease. Note that we observe an interesting

result for the antenna allocation strategies of both access

points. First, the number of allocated antennas to class-1

users decreases (i.e., more antennas are allocated to class-2

users). This is to meet the increasing data rate requirement

of class-2 users. However, at a certain point, the number of

allocated antennas to class-1 users increases. This is from

the fact that the data rate requirement of class-2 users is

too high. Therefore, it is better for the access points to put

more resources (i.e., antennas) to class-1 users to gain higher

revenue.

V. SUMMARY

We have considered the cell association and antenna al-

location jointly in the 5G massive MIMO networks. We

have developed the hierarchical evolutionary game framework,

which is composed of the cell association game played by

users and the antenna allocation game played by access points.

The users in different classes aim to maximize their data

rate, while meeting their data rate requirements. The access

points have the objective to maximize their total revenue. We

have applied the deterministic evolutionary game to obtain an

equilibrium solution defined as a fixed points of the replicator

dynamics. Alternatively, we have adopted the stochastic evo-

lutionary game to obtain the solution defined based on steady

state probability of the Markov chain. The numerical studies

have shown a few important features of the proposed games

including the impact of data rate requirements.

ACKNOWLEDGEMENTS

This work was supported in part by the National Research

Foundation of Korea (NRF) grant funded by the Korean

government (MSIP) (2014R1A5A1011478), and Singapore

MOE Tier 1 (RG18/13 and RG33/12).

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang, “What Will 5G Be?,” IEEE Journal on Selected Areas
in Communications, to appear.

[2] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: Key
Challenges for the Radio-Access Network,” IEEE Vehicular Technology
Magazine, vol. 8, no. 3, pp. 47-53, September 2013.

[3] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 186-195, February 2014.

[4] L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE Journal
of Selected Topics in Signal Processing, to appear.

[5] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-Efficient Resource
Allocation in OFDMA Systems with Large Numbers of Base Station
Antennas,” IEEE Transactions on Wireless Communications, vol. 11,
no. 9, pp. 3292-3304, September 2012.

[6] J. Choi, “Massive MIMO with Joint Power Control,” IEEE Wireless
Communications Letters, to appear.

[7] D. Niyato, E. Hossain, and Z. Han, “Dynamics of multiple-seller
and multiple-buyer spectrum trading in cognitive radio networks: A
game theoretic modeling approach,” IEEE Transactions on Mobile
Computing, vol. 8, no. 8, pp. 1009-1022, August 2009.

[8] D. Bethanabhotla, O. Y. Bursalioglu, H. C. Papadopoulos, and G. Caire,
“User association and load balancing for cellular massive MIMO,” in
Proceedings of Information Theory and Applications Workshop (ITA),
pp. 1-10, February 2014.

[9] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Transactions on Wireless
Communications, vol. 9, no. 11, pp. 3590-3600, November 2010.

[10] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the
UL/DL of Cellular Networks: How Many Antennas Do We Need?,”
IEEE Journal on Selected Areas in Communications, vol. 31, no. 2,
pp. 160-171, February 2013.

[11] J. Weibul, Evolutionary Game Theory, MIT Press, Cambridge, MA,
1995.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3872


