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Abstract—Next generation mobile networks will face the un-
precedented demand for higher data rates. To satisfy this de-
mand, the dense deployment of heterogeneous wireless networks
(HetNets) is a promising solution. One of the major challenges
in dense HetNets is to dynamically allocate the resources such as
power and channel so that the energy efficiency and throughput
of the network improve. One of the important techniques for
improving the energy efficiency of the base station (BS) is BS
ON-OFF switching which allows the BS to turn off some of its
components in lower load situations. On the other side, due to the
proximity of BSs in the dense HetNets, co-channel interference
(CCI) becomes a critical problem and significantly impacts the
performance of the network. In this paper, we propose a dynamic
channel assignment based on a learning algorithm (DCA-LA).
Moreover, we combine DCA-LA with a BS ON-OFF switching
algorithm in order to improve the energy efficiency of the
system. In particular, the proposed DCA-LA/ON-OFF switching
algorithm is self-organizing and performs in a fully distributed
manner. Simulation results indicate that our proposed algorithm
balances load among BSs and yields better performance in terms
of average energy consumption, average load, average utility
per BS and average rate per user, compared to the baseline
algorithms.

Index Terms—Heterogeneous Networks; Energy Efficiency;
Co-Channel Interference; Learning Algorithm.

I. INTRODUCTION

The anticipated explosive growth in traffic demands en-
visaged for next generation wireless networks and driven
by media-hungry devices (e.g. smart phones and tablets)
implies an increasing future energy consumption. In order to
support this rapid evolution, new architectures are required.
The deployment of heterogeneous wireless networks (HetNets)
is a promising approach to address some key challenges in
improving the energy and spectral efficiency [1], [2]. Typically,
these networks consist of macro base stations (MBSs) overlaid
with various classes of low power and low cost nodes such as
micro and pico, also called small cell base stations (SBSs)
and relay base stations (BSs) [3]. In HetNet, a significant
improvement in spectral efficiency can be achieved through an
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improved frequency reuse factor [4]. Moreover, these networks
can inherently improve the energy efficiency of the system due
to the reduced distance between the user and the BS.

On the other hand, BSs’ traffic loads dynamically vary in
time and space domain. The energy efficiency in the HetNets
can be significantly improved by BS ON-OFF switching
method and through adjusting BS’s transmission power. Cell
breathing is another method in which the cell size is adaptively
adjusted according to the traffic load conditions [5]. Therefore,
the network can be well adapted to spatial and temporal traffic
fluctuations.

In [6], an opportunistic ON-OFF switching technique based
on a game-theoretic model for the non-cooperative behavior of
BSs in a HetNet scenario is proposed. This technique utilizes
a distributed learning algorithm for solving the game. For
sleeping cell users, a user association scheme based on BSs
with maximum mean channel access probability is developed
in [7]. This scheme can adapt to the network conditions
such as traffic load and scheduling criteria at the active BSs.
In [8], a quality of service (QoS)-aware user association
scheme based on the cell zooming method is proposed. The
network performance problem is modeled based on the graph
and optimization theory. Later, for solving the optimization
problem, a heuristic iteration algorithm is applied.

However, the dense deployment of HetNets brings some
challenges such as co-channel inference (CCI) because of
proximity of BSs. As a result, it may significantly degrade
the overall performance of the network. Therefore, to enhance
the performance of these networks, it is necessary to manage
and control the interference. Some challenges in HetNets such
as interference management, power control, user association
and resource allocation are reviewed in [9]. Since the number
of channels allocated to the network is limited, efficient
assignment of channels among BSs is an important issue.
Several studies have addressed channel assignment problem
in wireless networks and suggest some algorithms to mitigate
the CCI. Some dynamic channel assignment (DCA) schemes
for cellular networks are investigated in [10]–[12]. In [13], an
interference-aware channel segregation algorithm is proposed.
Several literatures have suggested the channel assignment
approaches based on heuristic algorithms such as tabu search,
genetic and simulated annealing [14]–[16].

In this paper, we propose a dynamic channel assignment
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Fig. 1. A typical example of two-tier HetNet.

based on learning algorithm (DCA-LA). Furthermore, we
investigate jointly the DCA-LA, user association and BSs
with the ability of ON-OFF switching in a two-tier HetNet.
We divide the problem into two stages, i.e., cascaded user
association and BS operation problem. The BS operation prob-
lem comprises of channel assignment and ON-OFF switching
problem. We focus on downlink transmission with several
channels. Each channel can be used simultaneously at different
cells. The channels are sufficiently separated, so that there
is no interference among them. Moreover, BSs periodically
advertise their estimated loads through beacon signals, similar
to [6]. To achieve the distributed implementation, game theory
is a rich tool to study interaction between agents. Therefore,
we use a game-theoretic approach for formulation of our
problems. For solving the problems, we use a regret based
learning algorithm. For BS operation problem, BSs learn their
power levels and channels by minimizing their regrets for not
having selected other power levels and available channels.
The combination of DCA-LA with BSs ON-OFF switching
(DCA-LA/ON-OFF switching) simultaneously improves the
energy efficiency as well as the spectral efficiency. Moreover, it
balances load among BSs through offloading users associated
with highly loaded BSs to lightly loaded BSs. Please note
that the algorithms are executed in a fully distributed manner,
without the need of any signaling exchange between BSs.

The reminder of this paper is structured as follows. In
Section II, we introduce our system model over a two-tier
HetNet and BS’s power consumption model. Section III de-
scribes the problem formulation including user association and
BS operation problem. Furthermore, the proposed joint power
and channel allocation algorithm based on no-regret learning
approach is provided. The simulation results are presented in
Section IV, and finally conclusions are drawn in Section V.

II. SYSTEM MODEL

A. Notations

The regular and boldface symbols represent scalers and ma-
trices, respectively. |A| denotes the number of elements in the
set A. X = {xi,j}M×N represents matrix X with dimension

M -by-N and the set of elements xi,j which i = 1, . . . , M and
j = 1, . . . , N . The function δ(condition) denotes the indicator
function which equals 1 if condition is true and 0 otherwise.

B. Deployment Scenario

We consider a two-tier HetNet with a set of BS B including
a set of MBSs BM overlaid with a set of SBSs BS , i.e.
B = BM ∪BS . For each hexagonal coverage area, the MBS is
located at the center of area and SBSs are uniformly located
within the coverage of MBSs. The set of active mobile users
uniformly distributed is denoted by K. Moreover, we assume
a single antenna for each user and BS. Fig.1 represents an
example of a network realization.

We assume that the total bandwidth W is divided into several
orthogonal channels with bandwidth W/|Q| and a central fre-
quency called the carrier frequency where Q = {1, . . . , |Q|}
is the set of available channels, with |Q| < |B|. Moreover, the
MBSs and SBSs can operate in the same channel. Orthogonal
frequency division multiplexing (OFDM) symbols are grouped
into a collection of physical resource blocks (RBs). We
consider the same finite number of available RBs R for all
BSs which distribute among their associated users. To avoid
interference between uplink and downlink transmission, each
user k ∈ K transmits and receives over orthogonal channels.
For the sake of simplicity, we only consider downlink trans-
mission, i.e. from BSs to users. Moreover, we assume that an
open access scheme for all users in the system, i.e. the users
are allowed to associate with BSs in any tier, but each user is
associated with at most one BS at each time.

Let PMm,r(t) and PSs,r(t) be the transmitted power of MBS
m ∈ BM and SBS s ∈ BS in RB r ∈ R at time t, respectively.
We denote by qm,r and qs,r the channel which MBS m and
SBS s are transmitting over them, respectively. The signal-to-
interference-and-noise-ratio (SINR) at the receiver of macro
cell user equipment (MUE) k ∈ K associated with MBS
m ∈ BM transmitting over channel qm,r ∈ Q and allocated
in RB r ∈ R at time t is defined by (1). In (1), gMm,k(t)

(or gSs,k(t)) denotes the total channel gain including path loss
and lognormal shadow fading between MBS m (or SBS s)
and user k at time t. Since the time scale for measuring the
total channel gain is much larger than the time scale of fast
fading, we do not consider fast fading. Let σ2 be the additive
white Gaussian noise (AWGN) power per RB at the receiver
of users and assumed to be constant for all users. IMBS and
ISBS indicate the interference caused by the MBSs and SBSs.
The SINR at the receiver of small cell user equipment (SUE)
k ∈ K associated with SBS s ∈ BS transmitting over channel
qs,r ∈ Q and allocated in RB r ∈ R at time t is defined by (2).

From Shannon’s capacity formula, the achievable transmis-
sion rate of user k from BS b in RB r at time t in bit/sec/Hz
is given by

Rk,r (t) =
W

|Q|
log2(1 + SINRb,k,r (t)) (3)

We assume that new flows arrive into the system according
to an inhomogeneous Poisson point process (PPP) with the
arrival rate λk(t) and mean packet size 1/µk(t) for user k at



SINRm,k,r (t) =
PMm,r (t) gMm,k(t)∑

ḿ∈BM , ḿ 6=m

PMḿ,r(t)g
M
ḿ,k(t) δ(qm,r=qḿ,r)︸ ︷︷ ︸

IMBS

+
∑
ś∈BS

PSś,r (t) gSś,k (t) δ(qm,r=qś,r)︸ ︷︷ ︸
ISBS

+σ2
(1)

SINRs,k,r (t) =
PSs,r (t) gSs,k(t)∑

ḿ∈BM

PMḿ,r(t)g
M
ḿ,k(t)δ(qs,r=qḿ,r)︸ ︷︷ ︸

IMBS

+
∑

ś∈BS , ś 6=s

PSś,r(t)g
S
ś,k(t) δ(qs,r=qś,r)︸ ︷︷ ︸

ISBS

+σ2
(2)

time t. Therefore, the load density of BS b at time t is defined
as lb(t) =

{
λk(t)

µk(t)Rk,r(t)

∣∣k ∈ At,rb } and the load of BS b at
time t is expressed by

Lb (t) =
∑
k∈At,r

b

lb(t) (4)

where At,rb denotes the set of user associated with BS b in RB
r at time t defined in Section III.

C. Power Consumption Model

In HetNets, the amount of power consumed by various
types of BSs is different. The total power consumed by a
BS consists of the transmission power and power consumed
by the components of the BS. The main power consuming
components of a BS are including power amplifier, radio
frequency module, cooling system, baseband unit, DC-DC
power supply and main supply. Therefore, the total power
consumed by the BSs in the network at time t can be expressed
as

PNetwork (t) =
∑
b∈B

∑
r∈R

PTotalb,r (t) (5)

where

PTotalb,r (t) = POFFb +
P jb,r(t)

ηPAb Λ(1− λFeedb )
, j ∈ {M,S} (6)

with

POFFb =
PRFb + PBBb

Λ
(7)

and
Λ=

(
1− λDCb

) (
1− λMS

b

) (
1− λCoolb

)
(8)

where PTotalb,r (t) and POFFb are the total power consumption
and the power consumption in OFF mode by BS b in RB
r at time t, respectively. PRFb and PBBb denote the power of
the radio frequency module and the total power of baseband
engine consumed by BS b, respectively. ηPAb indicates the
power amplifier efficiency of BS b. λFeedb ,λDCb , λMS

b and
λCoolb represent losses which are incurred by feeder, DC-DC
power supply, main supply and cooling system, respectively.
We assume that all parameters except P jb,r(t) for BSs in any
tier are constant over time.

III. PROBLEM FORMULATION

In this section, we present the problem formulation for
jointly optimizing the power and channel allocation among
BSs. Our goal is to develop a no-regret learning approach to
solve the problem formulation presented in this section. At
each time t, the HetNet can be configured as the transmission
power levels vector, Pr (t), the channels vector, Qr (t), and
the association matrix between the users and BSs, At,r, as
follows

Pr (t) = {P jb,r (t)}
|B|×1

, r ∈ R, b ∈ B, j ∈ {M,S}

Qr (t) = {qb,r (t)}|B|×1, At,r =
{
at,rb,k

}
|B|×|K|

(9)

where qb,r (t) is the channel which BS b transmits over it in
RB r at time t. Let a binary single element at,rb,k in matrix At,r

represents the association relation between user k and BS b
such that at,rb,k = 1 indicates user k is associated with BS b
at time t otherwise at,rb,k = 0. For each BS b ∈ B, we define
a utility function which is a difference between its benefit
and cost. The benefit corresponds with the fraction of users
associated with it. The cost function for each BS is including
its total energy consumption and load. The weighted benefit
function nrb (t) and cost function crb (t) for BS b in RB r at
time t can be expressed as [17]

nrb (t) = ωnb

∣∣At,rb ∣∣
|K|

(10)

crb (t) = ωlbLb(t) + ωpbP
Total
b,r (t) (11)

where

At,rb =
{
k
∣∣∣k ∈ K and at,rb,k = 1

}
(12)

where ωnb , ωlb and ωpb denote the weight parameters which
indicate the impact of subscription benefit, load and energy
on the utility function for each BS b ∈ B, respectively. At,rb
denotes the set of users associated with BS b in RB r at time
t. Hence, we define the utility function of BS b in RB r at
time t as

πrb (t) =nrb (t)− crb (t) =

ωnb

∣∣At,rb ∣∣
|K|

− (ωlbLb (t) + ωpbP
Total
b,r (t))

(13)



The overall goal is to maximize the total system utility.

max
{Pr(t)}, {Qr(t)}, {At,r}

∑
∀b∈B

∑
∀r∈R

πrb (t)

subject to 0 ≤ Lb (t) ≤ 1, ∀b ∈ B∑
r∈R

P jb,r(t) ≤ P
Max
b

qb,r (t) ∈ Q, j ∈ {M,S} ,∀b ∈ B
(14)

where PMax
b denotes the maximum transmit power of BS b.

Since BS operation and user association mechanisms have
a highly complex relation to each other, solving the above
problem is very challenging. In (14), we decompose the
optimization problem into two problems, i.e., user association
problem and BS operation problem.

A. User Association Problem

In this subsection, given the set of BSs, we define the user’s
association rule. At each time, the set of dropped users at
previous time, D, the set of users belonging to BSs switched to
OFF mode, O, and the set of new users joined to the network,
N , should perform new association processes in order to
assign to new BSs. We assume that each BS b ∈ B broadcasts
its estimated load through a beacon signal in the downlink
transmission. Moreover, each user k ∈ K is associated with at
most one BS at each time t, i.e. max

∑
b∈B a

t,r
b,k = 1.

At time t, user k is associated with BS b∗k based on the BSs’
estimated load and received power at its location according
to rule (15). In (15), βb denotes the cell range expansion
bias used by SBS b ∈ BS in order to effectively expand its
coverage area. By convention, MBSs have a bias 1(0 dB) [18].
Let L̂b(t) indicates the estimated load of BS b ∈ B at time t
and is obtained according to:

L̂b (t) =

(
1−

(
1

t

)α)
L̂b (t− 1) +

(
1

t

)α
Lb (t− 1) (16)

where α > 0 is learning rate exponent for the load estimation.

B. BS Operation Problem: Joint Power and Channel Assign-
ment

In this subsection, we focus on BS operation problem
including power and channel assignment. The achievable
throughput of a BS depends on its and other BSs operations
due to the interference. Therefore, we utilize game theory
as a useful tool to study the strategic behavior of BSs. We
apply the following non-cooperative game. The normal form of
game is expressed as G =

〈
B,Sb∈B (s−b) , {πrb}b∈B

〉
, where

B represents the set of BSs as players, Sb∈B (s−b) is the
strategy set of player b composed of transmission power and
channel, s−b is the strategies of all players other than player
b, and πrb is the utility function of player b defined in (13).
Each player b ∈ B aims at maximizing its utility function.
Then, a no-regret learning approach is used to solve the BS
operation problem in order to select power and channel and
consequently obtain ε-coarse correlated equilibrium. We note
that the set of correlated equilibria is nonempty, closed and
convex in every finite game. The algorithm is a probabilistic

learning procedure in which each strategy is played with
non-zero probability and based on a regret measure. This
type of learning algorithms has a good potential to learn
mixed strategy equilibria. In our proposed algorithm, the
BSs learn their environment and optimize their performances
by modifying their transmission power levels and channels.
Moreover, they impact the performance of other neighboring
BSs, by minimizing their regrets for not having selected
other strategies. The proposed algorithm is particularly useful
because it does not need to exchange information in the
network. In the following section, the learning procedure is
described and then we divide the problem into two sub-
problems, ON-OFF switching and channel assignment sub-
problem. Let Irb,sb(t), Îrb,sb (t) and π̂rb,sb(t) denote the average
CCI power, the average CCI power estimation and the utility
estimation for strategy sb ∈ Sb in RB r at time t, respec-
tively. We define W r

b,sb
(t) := δ(ε=0)π

r
b,sb

(t) − δ(ε=1)I
r
b,sb

(t)

and Ŵ r
b,sb

(t) := δ(ε=0) π̂
r
b,sb

(t) − δ(ε=1)Î
r

b,sb
(t), where ε

is the indicator parameter in which ε = 0 the problem
focuses on power assignment sub-problem while ε = 1 the
problem reduces to the channel assignment sub-problem. For
each value ε ∈ {0, 1}, the regret estimation vector r̂εb,r(t +

1) =
{
r̂εb,sb,r(t+ 1)

}
|Sb|×1

and probability distribution vector

Pε
b,r(t + 1) =

{
Pεb,sb,r(t+ 1)

}
|Sb|×1

are updated as follows

[6]:

r̂εb,sb,r(t+ 1) =

(
1−

(
1

t+ 1

)ζ)
r̂εb,sb,r(t)

+

(
1

t+ 1

)ζ (
Ŵ r
b,sb

(t+ 1)−W r
b,sb

(t+ 1)
)

(17)

Pεb,sb,r(t+ 1) =

(
1−

(
1

t+ 1

)ν)
Pεb,sb,r(t)

+

(
1

t+ 1

)ν
Gb,sb(r̂εb,r(t+ 1))

(18)

where ζ > 0 and ν > 0 denote the learning rate expo-
nent for regret and probability, respectively. Here, Gb =
{Gb,sb}|Sb|×1is the Boltzmann-Gibbs distribution vector de-
fined as follow:

Gb,sb
(
r̂εb,r(t+ 1)

)
=

exp
(

1
θb
r̂εb,sb,r(t+ 1)

)
∑
∀śb∈Sb exp

(
1
θb
r̂εb,śb,r(t+ 1)

) (19)

for all śb ∈ Sb, where 1
θb

> 0 denotes the temperature
parameter for player b. Now, we divide the problem into two
sub-problems, ON-OFF switching sub-problem and channel
assignment sub-problem.

C. Sub-Problem 1: ON-OFF Switching

For a given channel vector Qr (t), the
MBSs and SBSs select their transmission power
levels from the set of {0,PMax

b |b ∈ BM} and
{0, 1/3PMax

b , 2/3P
Max
b , PMax

b |b ∈ BS} , respectively.
For solving the sub-problem, we set ε = 0. Therefore, we



b∗k(t) = argmax
b∈B, j∈{M,S}

10log10

{
P jb,r (t) (βbδ(b∈BS) + 1δ(b∈BM ))g

j

b,k
(t)(1− L̂b(t))

}
(15)

have W r
b,sb

(t) := πrb,sb(t) and Ŵ r
b,sb

(t) := π̂rb,sb(t). At each
time t, each BS b ∈ B updates its utility estimation according
to [6]

π̂rb,sb(t+ 1) =

(
1− δ(sb(t+1)=sb(t))

(
1

t+ 1

)κ)
π̂rb,sb(t)

+ δ(sb(t+1)=sb(t))

(
1

t+ 1

)κ
πrb,sb(t+ 1)

(20)

where κ denotes the learning rate exponent for utility estima-
tion. Then, each BS b ∈ B updates the regret estimation and
the probability distribution vector for ε = 0 according to (17)
and (18), respectively.

D. Sub-Problem 2: Channel Assignment

In this subsection, we focus on channel assignment sub-
problem and propose a novel channel assignment algorithm
based on no-regret learning approach, called DCA-LA. In
particular, DCA-LA functions in a distributed manner. Thus,
no central controller is needed. The performance of DCA-
LA is compared with two channel assignment algorithms,
i.e., an interference-aware dynamic channel selection (IADCS)
algorithm and a hybrid IADCS joint with a BS sleep mode
algorithm [13]. In IADCS algorithm, each BS transmits with
its maximum power and evaluates averages CCI power over
each channel and finally selects the channel with minimum
average CCI.
• Proposed Dynamic Channel Assignment Based on

Learning Algorithm
In IADCS algorithm, at each time, the BS selects the

channel with minimum average CCI. In dense HetNets sce-
narios due to proximity of BSs, they experience almost the
same average CCI. Therefore, there is a high possibility
that neighboring BSs select the same channel at the same
time. In this regard, we propose a learning algorithm for
channel assignment problem in which each BS assigns higher
probability to the channel with more regret and a non-zero
probability is assigned to each channel. It will reduce the
chance of two adjacent cells selecting the same channel. Each
player is interested in minimizing its average regret over time.
For solving the sub-problem, we set ε = 1. Therefore, we
have W r

b,sb
(t) := −Irb,sb(t) and Ŵ r

b,sb
(t) := −Îrb,sb(t). With

the power selected discussed in the ON-OFF switching sub-
problem, each BS b ∈ B updates the average CCI vector
Îrb(t + 1) =

{
Îrb,q(t+ 1)

}
|Q|×1

for each channel q ∈ Q
according to [13]

Îrb,q (t+ 1) =

(
1−

(
1

t+ 1

)φ)
Îrb,q (t)

+

(
1

t+ 1

)φ
Irb,q (t+ 1)

(21)

where φ and Irb,q(t+ 1) denote the learning rate exponent for
average interference estimation and average CCI power over
channel q in RB r at time t+1, respectively. Later, each player
b ∈ B randomizes over the set of available channels according
to a mixed strategy P1

b,r(t+ 1) =
{
P1
b,q,r(t+ 1)

}
|Q|×1

. The

elements of the vector P1
b,r(t+ 1) are proportional to regrets

for not having selected other channels. The regret estimation
vector r̂1

b,r(t + 1) =
{
r̂1
b,q,r(t+ 1)

}
|Q|×1

and probability

distribution vector P1
b,r(t + 1) are updated according to (17)

and (18), respectively. The pseudo code for our proposed
algorithm is summarized in Algorithm 1.

Algorithm 1 : Proposed algorithm.

1: Input: D, O, N , Ŵ r
b,sb

(t), r̂εb,r(t), Pε
b,r(t)

2: Output: At, Ŵ r
b,sb

(t+ 1), r̂εb,r(t+ 1), Pε
b,r(t+ 1)

3: Initialization: B = {1, ..., |B|}, K = {1, ..., |K|}, Sb =
{1, ..., |Sb|}, ε ∈ {0, 1}, t = 1

4: while do
5: for ∀r ∈ R do
6: for ∀b ∈ B and j ∈ {M,S} do
7: Find sb(t)
8: Advertise estimated load L̂b (t)
9: end for

10: for ∀k ∈ K do
11: if (k ∈ D) ∨ (k ∈ O) ∨ (k ∈ N ) then
12: Find b∗k(t)
13: end if
14: end for
15: Updating: At,r

16: for ∀b ∈ B do
17: Calculations: Lb(t), πrb,sb(t)
18: end for
19: for ∀b ∈ B do
20: for ∀q ∈ Q do
21: Calculation: Irb,q(t)
22: end for
23: end for
24: for ∀ε ∈ {0, 1} do
25: for ∀b ∈ B do
26: Updating: Ŵ r

b,sb
(t+ 1), r̂εb,r(t+ 1), Pε

b,r(t+1)
27: end for
28: end for
29: end for
30: t ← t+ 1,
31: end while

IV. SIMULATION RESULTS

In this section, we provide the simulation results for three al-
gorithms, i.e., IADCS algorithm, the joint ON-OFF switching
and dynamic channel allocation algorithm proposed in [13]



TABLE I
SYSTEM-LEVEL SIMULATION PARAMETERS

System Parameters
Parameter Value
Physical link type Downlink
Carrier frequency/ Channel bandwidth 2 GHz/ 10 MHz
Noise PSD -174 dBm/Hz
Traffic model Full buffer
Mean packet arrival rate 1800 Kbps
θb 0.1
Weights ωn

b , ωl
b, ωp

b 1, 0.5, 0.5
Learning rate exponent κ, φ, ζ, ν, α 0.6, 0.6 ,0.7, 0.8,

0.9
BSs Parameters

Parameter MBS PBS
Maximum power 46 dBm 30 dBm
Shadowing standard
deviation

8 dB 10 dB

Radius cell 250 m 40 m
Distance-dependent
path loss model

128.1+37.6log10(d)
d in Km

140.7+37.6log10(d)
d in Km

Minimum distance MBS-SBS: 75m
MBS-User: 35m

SBS-SBS: 40m
SBS-User: 10m

and our proposed DCA-LA/ON-OFF switching algorithm,
using performance criteria such as average load per BS,
average utility per BS, average energy consumption per BS
and average rate per user. For our simulation, we consider a
single hexagonal cell served by one MBS and the set of SBSs
with 4 available channels, i.e. |Q| = 4. The communications
are carried out in full buffer in accordance to the system
parameters shown in Table I.

Fig. 2 shows average energy consumption per BS vs dif-
ferent number of SBSs for 30 active users. We can observe
that, as the number of SBSs increases, the average energy
consumption per BS decreases. Moreover, for a given num-
ber of SBSs, our proposed approach consumes less energy
compared to the other approaches. However, the improvement
over IADCS algorithm is more than the proposed algorithm in
[13]. The main reason is that the proposed algorithm in [13]
utilizes a sleep mode mechanism for unnecessary BSs whereas
in IADCS algorithm, each BS transmits with its maximum
power. For instance, at the number of SBSs 20, the proposed
algorithm improves average energy consumption per BS about
4% and 32% over the proposed algorithm in [13] and IADCS
algorithm, respectively.

In Fig. 3, we compare the average utility per BS vs
different number of SBSs for 30 active users. We can see
that, our proposed algorithm has the best utility among the
other approaches. For instance, at the number of SBSs 15,
it improves the average payoff per BS about 34% and 50%
over the algorithm proposed in [13] and IADCS algorithm,
respectively.

Fig. 4 compares the average rate per user vs different num-
ber of users for 10 SBSs. As the number of users increases,
the average rate per user decreases. It is shown that the
proposed DCA-LA/ON-OFF switching algorithm significantly
outperforms the other algorithms. For instance, at the number
of users 40, the average rate per user is improved around 16%
and 41% as compared to the proposed algorithm in [13] and
IADCS algorithm, respectively.
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Fig. 2. Average energy consumption per BS vs the number of SBSs, given
30 users.
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Fig. 3. Average utility per BS vs the number of SBSs, given 30 users.

Fig. 5 plots the average load per BS vs different number
of users, with 10 SBSs. As the number of users increases,
the average load per BS increases. We can observe that, our
proposed DCA-LA/ON-OFF switching algorithm outperforms
the other algorithms in term of average load per BS through
offloading users associated with highly loaded BSs to lightly
loaded BSs. For instance, at the number of users 40, the
proposed algorithm improves the average load per BS about
33% over the proposed algorithm in [13].

Fig. 6 illustrates the average utility per BS vs different
number of users, with 10 SBSs. As the number of users
increases, the average utility per base station decreases. Our
proposed algorithm has better average utility per BS than the
other approaches. For instance, at the number of users 40, our
proposed algorithm improves the average utility per BS about
20% and 37% over the proposed algorithm in [13] and IADCS
algorithm, respectively.

V. CONCLUSION

In this paper, we proposed a dynamic channel assignment
based on learning algorithm (DCA-LA). Later we combined
this algorithm with BSs ON-OFF switching for jointly op-
timizing power and channel allocation. The proposed DCA-
LA/ON-OFF switching algorithm is fully distributed and uses
a game theoretic approach in which each BS selects its
transmission power and channel based on a no-regret learning
algorithm. The proposed algorithm balances the load among
BSs and therefore improves system throughput and conse-
quently yields a better spectral efficiency. As a result, our pro-
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Fig. 4. Average rate per user vs the number of users, given 10 SBSs.
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Fig. 5. Average load per BS vs the number of users, given 10 SBSs.

posed algorithm achieves both energy- and spectral- efficiency.
Simulation results showed that, the proposed DCA-LA/ON-
OFF switching algorithm provides a better performance over
the baseline algorithms and significantly outperforms them in
terms of average energy consumption, average load, average
utility per BS and average rate per user.
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