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Abstract—The viral and dense deployment of small cell base
stations (SBSs) will lie at the heart of 5G cellular networks.
However, such dense networks can consume a significant amount
of energy. In order to reduce the network’s reliance on un-
sustainable energy sources, one can deploy self-powered SBSs
that rely solely on energy harvesting. Due to the uncertainty of
energy arrival and the finite capacity of energy storage systems,
self-powered SBSs must smartly schedule their ON and OFF
operation. In this paper, the problem of ON/OFF scheduling
of self-powered SBSs is studied in the presence of energy
harvesting uncertainty with the goal of minimizing the tradeoff
between power consumption and flow-level delay. To solve this
problem, a novel approach based on the ski rental framework,
a powerful online optimization tool, is proposed. To find the
desired solution of the ski rental problem, a randomized online
algorithm is developed to enable each SBS to autonomously
decide on its ON/OFF schedule, without knowing any prior
information on future energy arrivals. Simulation results show
that the proposed algorithm can reduce power consumption and
delay over a given time period compared to a baseline that turns
SBSs ON by using an energy threshold. The results show that
this performance gain can reach up to 12.7% reduction of the
total cost. The results also show that the proposed algorithm
can eliminate up to 72.5% of the ON/OFF switching overhead
compared to the baseline approach.

I. INTRODUCTION

To support 24.3 Exabytes of mobile traffic in 2019, new
cellular networking architectures are needed. One promising
solution is by deploying dense, heterogeneous small cell
networks (SCNs), which can increase the capacity up to
100 times [1]. However, dense small cell networks can also
increase the overall power consumption of a cellular system.
The power consumption from the access network and edge
facilities account for up to 83% of mobiles’ operator power
consumption. To this end, enhancing the energy efficiency of
dense SCNs has emerged as a major research challenge [2].
In particular, the grid power consumption can be significantly
reduced by deploying energy harvesting, self-powered small
cell base stations (SBSs) that rely solely on renewable
and clean energy for operation [3]. However, reaping the
benefits of self-powered SBSs mandates effective and self-
organizing ways to optimize the ON and OFF schedules of
such SBSs, depending on uncertain and intermittent energy
arrivals, which are often uncertain and intermittent.
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Recently, numerous research works have focused on the
use of energy harvesting techniques in cellular networks [4]–
[9]. For instance, the authors in [4] provide a model to
measure the performance of heterogeneous networks with
self-powered SBSs. Also, the work in [5] overviews key
design issues for adopting energy harvesting into cellular
networks. Along with energy harvesting, base station (BS)
ON/OFF scheduling has been actively studied to enhance
energy efficiency. In [6], the authors propose algorithms to
minimize grid-power consumption when considering hybrid-
powered BSs. For solving a capital expenditure minimization
problem, the authors in [7] propose an ON/OFF scheduling
method for self-powered BSs. The work in [8] investigates
the problem of minimizing grid power consumption and
blocking probability by using statistical information for traffic
and renewable energy. The authors in [9] study the optimal
BS sleep policy based on dynamic programming with the
statistical energy arrival information.

In the existing body of literature that addresses ON/OFF
scheduling in energy harvesting networks [6]–[9], it is gen-
erally assumed that statistical or complete information about
the amount and arrival time of energy is perfectly known.
However, in practice, energy arrivals are largely intermittent
and uncertain since they can stem from multiple sources.
Moreover, turning SBSs ON and OFF based on every single
energy arrival instance can lead to significant handovers and
network stoppage times. Further, the existing works [5], [6],
and [8] on energy harvesting networks often assume the
presence of both smart grid and energy harvesting sources at
every SBS. In contrast, here, we focus on cellular networks
in which SBSs are completely self-powered and reliant on
energy harvesting. Unlike [4] which focuses on the global
performance analysis of self-powered SBSs, our goal is to
develop self-organizing and online algorithms for optimizing
the ON/OFF schedule of self-powered SBSs.

The main contribution of this paper is to develop a novel
framework that enables self-powered SBSs to autonomously
find their optimal ON and OFF schedule, in the presence of
energy harvesting uncertainty. In particular, we formulate an
optimization problem that seeks to minimize delay and power
consumption by properly turning off SBSs. To solve this
problem, a novel approach based on the ski rental problem,
a powerful online optimization framework [10], is proposed.
We solve the proposed ON/OFF ski rental problem using a
distributed randomized algorithm that enables each SBS to
smartly make a decision on its ON and OFF time without
having any prior information on future energy arrivals. To the
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Fig. 1: System model of a heterogeneous deployment with
self-powered SBSs.

best of our knowledge, this is the first work that exploits the
online ski rental problem for managing energy uncertainty
in cellular systems with self-powered SBSs. Simulation
results show that the proposed algorithm can reduce power
consumption and delay over a given time period compared
with a baseline that turns SBSs ON based on a pre-determined
energy threshold.

The rest of this paper is organized as follows. In Section
II, the system model is presented. In Section III, we present
the problem formulation, and we propose an online algorithm
that is based on the ski rental framework. In Section IV, the
performance of the proposed algorithm is demonstrated with
using extensive simulations. Finally, conclusions are drawn
in Section V.

II. SYSTEM MODEL

Consider a two-tier heterogeneous small cell network in
which a macrocell base station (MBS) is located at the
center of a service area. In this network, a set J of J self-
powered SBSs are deployed randomly. Hereinafter, the MBS
is indexed by m. Consequently, we define the set of all BSs as
B = {m, 1, 2, · · · , J}. In this system, SBSs can offload traffic
from the MBS thus reducing the overall network congestion.

An illustration of our system model is shown in Fig. 1.
While the MBS is connected to the conventional power
grid, SBSs are self-powered and rely exclusively on energy
harvesting sources. For example, SBSs can be equipped
with solar panels to procure energy for their operation,
or alternatively, they can use wireless power transfer from
MBS transmissions. To manage the intermittent and uncertain
nature of energy harvesting, energy storage systems (ESSs)
can be used. An SBS will store energy in its ESS when it
is turned OFF and it consumes this stored energy when it is
turned ON to service users.
A. Flow-level Model

The performance of our system is modeled by using flow-
level dynamics. In the total area A ⊂ R2 served by the BSs in
B, we consider that best effort flows arrive at location x ∈ A
following a Poisson point process. The average arrival rate of
the flows at location x is λ(x), and the average file size of the
flows is 1/µ(x). Then, the traffic load density is defined as
λ(x)/µ(x). We assume that the MBS does not interfere with
the SBSs; however, SBSs experience mutual interference.

We let γm(x) = P tx
mhm(x)/N0 be the signal to noise ratio.

Here, P tx
m is the transmit power of the MBS, hm(x) is the

channel gain from the MBS to any user at location x, and
N0 is the Gaussian noise. Meanwhile, if the flow at location
x is associated with SBS j, γj(x) =

P tx
j hj(x)∑

∀j′∈J P tx
j′hj′ (x)+N0

is
the signal to interference plus noise ratio (SINR) of SBS j
with P tx

j being the transmit power of SBS j, and hj(x) the
channel gain from SBS j to any user at location x. When a
user at location x is associated with any BS i ∈ B, the data
rate is ci(x) = log2(1 + γi(x)). The system load density of
BS i is %i(x) = λ(x)

µ(x)ci(x)
, which represents the fraction of

time needed to serve the traffic in a unit area with ci(x).
We consider a time slotted system in which each operation

slot period is T . Within period T , time is further divided
into N slots indexed by n which is an integer between 0
and T . At the beginning of each operation slot, without loss
of generality, we assume that user association for all users
in A is done by minimizing (4) using known approaches
such as those in [11]. Subsequently, the total area A can be
represented by the sum of each non-overlapping area Ai, as
follows:

A = ∪i∈BAi = (∪Jj=1Aj) ∪ Am, (1)

whereAi is the area covered by BS i ∈ B. Note that the initial
user association can be changed when an SBS is turned OFF.
Suppose that SBS j is turned OFF at time tj ,∀j ∈ J . We
let Li,n be the area served by BS i at time n. When Li,n
is the coverage area of BS i at time n, a user at location
x ∈ Li,n is associated with BS i. Due to the SBSs’ ON/OFF
operations, Li,n can change at different n. For example, if
SBS j is ON (n < tj), Lj,n = Ai. However, if SBS j is
turned OFF (n ≥ tj), Lj,n = ∅, and Lm,n = Ai ∪ Am,
which means that the users served by SBS j are handed over
to the MBS. The ON or OFF state of SBS j is denoted by
σnj that is given by

σnj =

{
1, if SBS j is turned ON at time n,
0, otherwise.

(2)

Then, the utilization of BS i ∈ B needed to serve an area
Li,n at time n is:

ρ
Li,n

i =

∫
x∈Li,n

%i(x)dx. (3)

From (3), the total delay needed to serve the total area A at
time n is captured via the following cost function:

Φn =
∑
i∈B

φ
Li,n

i =
∑
i∈B

ρ
Li,n

i

1− ρLi,n

i

, (4)

where φLi,n

i is a delay cost of BS i to serve Li,n at time n.

B. Power Consumption Model
Next, we define the power consumption models for the

MBS and SBSs. When modeling the power consumption of
the MBS, the hardware system of the MBS includes complex
components such as RF transmission, signal processing,
battery backup, power supply, and cooling. Thus, the power
consumption model for the MBS includes two components:
the utilization-proportional power consumption and the fixed
power consumption. The power consumption of MBS m at
time n is therefore given by:

ψLm,n
m = (1− q)ρLm,n

m P op
m + qP op

m , (5)
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where q is a weighting parameter between the utilization-
proportional power consumption and the fixed power, and
P op
m is the maximum power consumption when the MBS is

fully utilized. Also, P tx
m = aP op

m where the constant a denotes
the fraction of the transmit power P tx

m out of the total the
maximum operational power P op

m . For example, if q = 1, the
MBS consumes constant power regardless of the utilization
level of the MBS. On the other hands, if q = 0, the power
consumption of the MBS is proportional to the utilization,
which is an ideal BS power consumption model. For the
SBSs, a constant power consumption model is used since
SBS hardware has lower complexity than the MBS. If SBS
j is turned ON, it consumes the operational power P op

j that
includes the transmit power P tx

j .1 An SBS consumes power
when it is ON, so the power consumption of SBS j at time
n is ψj,n = P op

j σ
n
j . (6)

Since SBSs use energy harvesting as a primary energy
source, ESS can be used to store excessive energy for future
use. Thus the available amount of energy at time n is given
by
Enj = min(En−1j − ψn−1j + Ωnj , Emax), ∀j ∈ J , (7)

where Enj ≥ 0 is the stored energy of SBS j at n, Ωnj
is the amount of energy arrival of SBS j at n, and Emax
is the maximum capacity of ESS. Then, the total power
consumption needed to serve the total network-wide area A
at time n is:

Ψn =

J∑
j=1

ψnj + ψLm,n
m . (8)

III. ON/OFF SCHEDULING AS AN ONLINE SKI RENTAL
PROBLEM

Given the defined delay cost, power cost, and energy state,
our goal is to analyze the optimal ON and OFF scheduling
problem for the SBSs. In cellular networks consisting of self-
powered SBSs, the amount of available energy is very limited.
To enable energy harvesting as a primary energy source of
SBSs, self-powered SBSs should intelligently manage their
ON and OFF states considering delay, power, and energy
state. Moreover, since future energy arrivals can be highly
unpredictable, optimizing the ON and OFF schedule of SBSs
is a very challenging problem. By properly scheduling its
OFF duration, an SBS can reduce its the power consumption
while also storing more energy for future use. However,
at the same time, the SBS must turn ON for a sufficient
period of time to service users and offload MBS traffic. To
cope with the inherent uncertainty of energy harvesting while
balancing the tradeoff between power consumption and cost,
we introduce a novel, self-organizing online optimization
framework for optimizing the ON and OFF schedule of self-
powered SBSs.
A. Problem Formulation

As a first step, we formulate the global ON and OFF
scheduling problem whose goal is to minimize the sum of the
delay cost function and the power cost function, as follows:

1While it is out of scope of this work, if an SBS has high stored energy,
then it could be possible to increase its transmit and operational powers. For
example, it can be readily applied by increasing power E0

jP
tx
j /Emax and

E0
jP

op
j /Emax where E0

j is initially stored energy of SBS j, and Emax is
the maximum capacity of ESS.

min
ρ

N∑
n=1

(Φn + ηΨn), (9)

s.t. ρ = {ρLi,n

i | 0 < ρ
Li,n

i < 1, (10)
∀i ∈ Bon

n , 0 < n ≤ T, ∀n ∈ {1, 2, · · · , N}}
Lj,t = Aj , if ∀j ∈ Bon

n , (11)
Lm,t = (∪j∈B\Bon

n
Aj) ∪ Am, (12)

A = ∪i∈Bon
n
Li,t, (13)

Li,t ∩ Li′,t = ∅, ∀i, i′ ∈ Bon
n , (14)

Enj =min(En−1j −ψ
n−1
j +Ωnj , Emax),∀j∈J , (15)

where η is a weighting parameter that captures the power-
delay tradeoff between the delay cost function and the power
cost function, and Bon

n is the set of ON BSs at time n.
The problem in (9) is generally difficult to solve. First, the
complexity of solving (9) is high since it is a combinatorial
problem having an exponentially increasing number of cases
along with the number of SBSs. Second, in (9), we want
to minimize the total cost over time period T , however, the
network may not know the uncertain future energy arrival
information. If information about energy arrival is given,
an offline algorithm can be used to find a solution for the
problem. However, to solve this problem in a dynamically
changing environment with uncertain energy arrivals, an
online algorithm is more appropriate.

Therefore, to overcome these challenges, we propose a
self-organizing approach in which the solution to (9) is done
locally at each SBS. In particular, each SBS will solve
an online version of the problem in (9) which will be to
minimize a local cost that is given by (9) when J = 1. We use
the fact that the value of the local cost at n is changed only
when an ON/OFF state transition occurs. Then, the local cost
is modified into an online problem of finding the optimal, per
SBS OFF time. Thus, we derive the power and delay costs in
the ON or OFF state. For each SBS j, we let tj be OFF time
n where each SBS determines its tj . When n < tj , SBS j

is in ON state, and the costs are fixed as Φn = φ
Aj

j + φAm
m ,

and Ψn = P op
j + ψAm

m . Similarly when n ≥ tj ,∀n, SBS
is in OFF state, and the costs are fixed as Φn = φ

Am∪Aj
m ,

and Ψn = ψ
Am∪Aj
m . By doing so, Li,n in Φn and Ψn is

substituted by the coverage of an SBS or the MBS, and the
constraints in (11)-(14) can be relaxed. Thus, the local cost
that is given by (9) when J = 1 becomes

tj(φ
Aj

j + φAm
m ) + (T − tj)φAm∪Aj

m

+η(tj(P
op
j + ψAm

m ) + (T − tj)ψAm∪Aj
m ). (16)

By subtracting a constant value (φAm
m + ηψAm

m )T from (16),
we have

tjφ
Aj

j + (T − tj)∆φAj
m + η(tjP

op
j + (T − tj)∆ψAj

m ), (17)

where ∆φ
Aj
m =φ

Am∪Aj
m −φAm

m , and ∆ψ
Aj
m =ψ

Am∪Aj
m −ψAm

m .
Then, if an SBS j takes it own decision to turn OFF at tj ,
the individual cost per SBS, Fj(tj) is essentially defined as
(17) that can be presented by rjtj + bj where

rj = φ
Aj

j −∆φAj
m + η(P op

j −∆ψAj
m ), (18)

bj = (∆φAj
m + η∆ψAj

m )T . (19)
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rj is the difference between the costs yielded by the ON
or OFF state of SBS j, and bj is the delay and power cost
when the MBS services the area that was associated with
SBS j. Thus, while SBS j is turned ON, the individual cost
increases with the rate rj during the ON period. Also, if the
turn OFF time is tj , a flat cost bj is additionally imposed to
the individual cost. In contrast, if SBS j has to be turned OFF
due to energy depletion at a certain time uj before tj where
uj is the first time that the energy harvesting constraint (15)
is not satisfied, we assume that the SBS can be OFF without
incurring any additional cost. In that case, the individual cost
Fj(tj) will be equal to rjuj . Hence, the per SBS problem
is now to minimize the individual cost function when there
is uncertainty of energy depletion. Due to the uncertainty of
energy harvesting, SBS j does not have any knowledge about
future energy arrivals; however, it has to make a decision
for how long to turn ON. Since SBS j does not know the
whole input sequence (e.g., uncertain energy arrivals), the
SBS cannot know the optimal schedule of ON and OFF
before time elapses. Thus, the per SBS problem becomes an
online optimization problem, for which an online algorithm
is needed to make a decision in real time under an uncertain
future. Remarkably, the per SBS problem is analogous to
the so-called ski rental problem [10], an online optimization
framework that enables such decision making in face of
uncertainty, as discussed next.
B. Randomized Online Algorithm

Here, first, we explicitly define the analogy between ski
rental and self-powered BS scheduling. In the classical online
ski rental problem, an individual is going skiing for an
unknown number of days [12]. The uncertainty on the skiing
period is due to factors such as nature or whether this
individual will enjoy skiing or not. Here, the individual must
decide on whether to rent skis over a short period of time or,
alternatively, buy them for a long period of time, depending
on the costs of renting and buying, the number of days that
he/she will end up skiing, and on whether the skiing activity
will be enjoyable. The online ski rental framework provides
online optimization techniques that allows one to understand
how an individual will make a “rent” or “buy” decision in
such a scenario while facing uncertainty due to nature and
while accounting for the tradeoff between the costs of rental
and purchase and the benefits of skiing.

In this regard, our per SBS problem is similar to the ski
rental decision making process. In our model, each SBS
is an individual that must rent its resources (turn ON) to
the network under the uncertainty of energy harvesting or
alternatively buy more reliable MBS resources (and turn
OFF). From (18) and (19), we can see that rj and bj will
represent the prices for rent and buy, respectively. Thus, the
decision of an SBS on how long to turn ON is essentially
a decision on how long to rent its resources which require
paying rj per unit time. Once the SBS turns OFF, the
network must buy the more expensive but more reliable MBS
resources at a price bj . Given this analogy, we can develop
efficient online algorithms to solve the per SBS problem [10].
An online algorithm can solve the problem for each present
time without having whole information about future energy
harvesting results. In particular, to handle uncertainty, a rent

or buy decision will be made by using a randomized online
algorithm (ROA) by means of a probability distribution for
ON/OFF scheduling designed to solve our cost-minimization
problem.

To develop an ROA, a competitive analysis must be used.
Competitive analysis [12] is a method used to compare
between the performance of online algorithms and an per-
formance of the optimal offline algorithm. For this anal-
ysis, we assume that an arbitrary input sequence, which
corresponds to uncertain energy arrivals, is used to evaluate
the performance of ROA. For an arbitrary input, the ROA
computes an output (i.e., the turn OFF time, tj) based on
a probability distribution. We want to design an ROA that
satisfies E[Fj(tj)] < κβOPT where Fj(tj) is the individual
cost per SBS for a value of tj , and κ is a constant known
as a competitive ratio, E[Fj(tj)] is the expected cost of the
online problem, and βOPT is the optimal cost that can be
achieved by using an offline algorithm that knows all input
information. This is suitable for our problem since the input
sequence is the energy arrivals at a given SBS, which are
unknown and uncertain. Even though an SBS does not know
the input sequence, the use of an ROA will give a solution
that can at least achieve the expected cost of κβOPT.

First, we will compute the expected cost of the ROA.
Suppose that the desired ON time of SBS j is tj where tj
is determined by SBS j. Also, uj is the possible ON time of
SBS j since SBS j can be turned ON up to the moment when
energy is depleted at time uj . At time tj , the state of the SBS
can be either ON or OFF with probability distribution pon

j (tj)
or poff

j (tj) = 1− pon
j (tj). When an SBS decides to turn OFF

at tj , we have

E[Fj(tj)] =

∫ uj

0

(rjtj + bj)p
′off
j (tj)dtj+

∫ T

uj

rjujp
′off
j (tj)dtj ,

where p′off
j (tj) is the derivative of poff

j (tj). Then, from
d
duj

E[Fj(tj)] = Rj(uj), the rate of increase of the cost will
be expressed by Rj(uj) = rjp

on
j (uj)+rjujp

′on
j (uj)+(rjuj+

bj)p
′off
j (uj) where p′on

j = −p′off
j . To find the upper bound on

Fj , we focus on the case in which the expected cost is at its
largest value. Naturally, this is the same as finding the worst
case in the online ski rental problem which corresponds to
the case in which the individual buys the skis on one day,
but is unable to use them in the next day. In our model,
this corresponds to the case in which the SBS pays for the
MBS resources at a price bj at uj due to the uncertainty of
energy. However, at uj = tj , the SBS does not need to turn
OFF by itself, since at that moment, the energy depletion
will turn that SBS OFF automatically. In this worst case, the
cost-increasing rate Rj(uj) becomes
Rj(tj) = rjp

on
j (tj) + rjtjp

′on
j (tj) + (rjtj + bj)p

′off
j (tj)

= rjp
on
j (tj)− bjp′on

j (tj).

By using the relationship E[Fj(tj)] < κβOPT, the cost-
increasing rate of E[Fj(tj)] cannot be larger than the cost-
increasing rate of κβOPT. The cost-increasing rate of βOPT
with respect to uj can be readily derived by choosing the
rent or buy option that yields smaller cost. Now, we divide
the range of uj , tj into two cases.

First, if 0 < uj < bj/rj and 0 < tj < bj/rj , then the
optimal cost-increasing rate is rj which means that an SBS
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Algorithm 1 Proposed Online Randomized Algorithm

1: Initialization: SBS j ∈ J determines rj and bj .
2: Find tj s.t. poff

j (tj) = µj , µj∼U(0, 1),∀j ∈ J .
3: while n ≤ T
4: Update n← n+ 1.
5: If ((15) is unsatisfied) or (n = tj),
6: then SBS j is turned OFF.
7: else SBS j maintains its ON state.
8: end while
9: At n = T ,

update P op
j , P

tx
j ,∀j ∈ J , and user association.

should be turned ON during tj . Thus, the cost-increasing
rate of ROA cannot be lower than κ times the optimal cost-
increasing rate, we have rjκ = rjp

on
j (tj)− bjp′on

j (tj). Since
this is a first-order linear ordinary differential equation, the
solution pon

j (tj) is given by pon
j (tj) = cerjtj/bj + κ where

c is a constant that can be found by using two boundary
conditions. If an SBS starts with the ON state, then pon

j (0) =
κ+ c = 1, and then c = 1− κ.

Second, if bj/rj < x and bj/rj < tj , then using the MBS
is the optimal choice. In this case, an SBS should buy the
MBS resource before bj/rj . Thus, the SBS should remain in
the OFF state at bj/rj . This fact leads us to find pon

j (bj/rj) =
(1− κ)e+ κ = 0, and we find κ = e/(e− 1). Therefore, we
have the ON probability pon

j (tj) = (e− erjtj/bj )(e− 1).
Remark 1. At tj , SBS j will turn OFF according to the
following probability distribution,

poff
j (tj) =

erjtj/bj − 1

e− 1
. (20)

The proposed online ski rental algorithm is summarized
in Algorithm 1. From (20), we observe the tradeoff between
rent and buy. The rent time becomes shorter if rj is high and
bj is low. The short rent time means an SBS turns OFF early
because buying the MBS resource would be more beneficial
than using the SBS resource with the rent price. The proposed
algorithm requires a low computational complexity since
each SBS makes a decision only based on the probability
distribution in (20). To update the distribution in (20) every
period T , each SBS needs to obtain a few bits of information
from the MBS about its utilization and, thus, Algorithm 1
will require a low signaling overhead. Each SBS will now
run Algorithm 1 and can decide at time t = 0 when to turn
off, without knowing any information on energy arrivals, by
using the distribution in (20).

IV. NUMERICAL RESULTS

For our simulations, we assume that the SBSs are randomly
distributed in a 2 km × 2 km area with one MBS located
at the center of the area. We use typical parameters from
[2]. In particular, the transmit power of an SBS is set to
13 dBm, and the operational power of the SBS is 9 W. Also,
the transmit power of the MBS is set to 43 dBm, and the
operational power of the MBS is 100 W. We use the modified
COST231 path loss model with 2.1 GHz carrier frequency.
The total bandwidth is 20 MHz, and the power spectral
density of the thermal noise is -174 dBm/Hz. Without loss of
generality, we assume that energy arrivals follow a Poisson
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Fig. 2: Comparison of total network cost when using the
proposed online ski rental algorithm and a baseline.
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Fig. 3: Total power consumption and delay cost for the
proposed algorithm and a baseline.

process in which energy arrival rate is 20, and each arrived
energy is 0.2 J during T =10 s, and E0

j = 20 J . Also, the
traffic is assumed to be homogeneous. We use η = 0.05 and
q = 0.55. Statistical results are averaged over large number
of independent simulation runs during two time periods 2T .
We compare our online ski rental approach to a baseline
approach that turns an SBS ON if and only if the percentage
of charged energy in storage is greater than a threshold K.
We set K = 80 J or 85 J such that an SBS maintains its
ESS half-charged where the maximum capacity of ESS is
Emax = 200 J .

In Fig. 2, we show the total cost of the network as
the network size varies. From this figure, we can first see
that the overall cost of the network will increase as the
number of SBSs increase. This is mainly due to the fact
that increasing the number of SBSs will increase the overall
power consumption of the network. Fig. 2 shows that the cost
increase for the proposed online ski rental approach is much
slower than that of the baseline approach. This demonstrates
the effectiveness of the proposed approach. In particular,
Fig. 2 shows that, at all network sizes, the proposed online
ski rental approach yields reduction in the overall cost of the
network. This performance advantage reaches up to 12.7%
reduction of the average cost for 25 SBSs compared to the
baseline with K = 80.

Fig. 3 shows, jointly, the power consumption and the
total sum of network delay, for various numbers of SBSs.
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From Fig. 3, we can see that, for both algorithms, as the
network size increases, the overall delay will decrease, but the
energy consumption will increase. This is due to the fact that
having more SBSs will enable the network to service users
more efficiently, however, this comes at an increase in power
consumption. Nonetheless, the proposed online algorithm is
shown to have a much slower increase than the baseline
approach. From Fig. 3, we can clearly see that the proposed
algorithm significantly reduces both the delay and the energy
consumption as compared to the baselines. This performance
advantage, reaches up to 7.6% reduction in the delay relative
to the baseline K = 85 at 5 SBSs and 15.6% reduction in
energy consumption relative to the baseline with K = 80 at
25 SBSs.

In Fig. 4, we show the total number of ON/OFF operations
within period T . The proposed online ski rental approach
shows a lower number of SBS ON/OFF switchings whereas
the baseline turns SBSs ON and OFF more frequently. This
is mainly due to the fact that the baseline (K=80) will turn
ON all SBSs that have more than 40% of energy. Thus, in
the baseline approach, the ON/OFF operation depends on the
on energy arrivals which can be intermittent. However, the
proposed approach turns an SBS ON and OFF only once in
period T . Also, Fig. 4 shows that the number of switchings
for the ski rental approach is less than the number of SBSs.
This stems from the fact that, when the rent and buy prices
are similar for some SBSs, it could be beneficial to choose the
buy option earlier than expected and such SBSs will remain in

an OFF state. Fig. 4 shows that the performance advantage
of the online ski rental approach reaches up to 72.5% of
reduction in the number of ON/OFF operations for 25 SBSs
when compared to the baseline K = 80.

Fig. 5 shows the average ON time per SBS within time
period T . For the proposed online ski rental approach, we
compare three different values for P op

j : 9, 12, and 15 W. If
an SBS uses a high P op

j , then the rent price becomes higher.
As the use of an SBS becomes more expensive, the SBS tends
to buy the MBS resource. This, in turn, results in a shorter
ON time as shown in Fig. 5. For instance, the average ON
time is reduced by 51.6% if P op

j is increased from 9 W to
15 W for a network with 5 SBSs.

V. CONCLUSION
In this paper, we have proposed a novel approach to

optimize the ON/OFF schedule of self-powered small cell
base stations. We have formulated the problem as an online
ski rental problem which enables the network to operate
effectively in the presence of energy harvesting uncertainty.
We have shown that by using a randomized online algorithm,
each SBS can autonomously decide on its ON time without
knowing any prior information on future energy arrivals.
Simulation results have shown that the proposed algorithm
can reduce power consumption and delay over a given time
period compared with a baseline that turns SBSs ON based on
an energy threshold. The results show that this performance
gain can reach up to 12.7% reduction of the total cost.
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