
Beamspace Channel Estimation for 3D Lens-Based
Millimeter-Wave Massive MIMO Systems

Xinyu Gao∗, Linglong Dai∗, Shuangfeng Han†, Chih-Lin I†, and Fumiyuki Adachi‡
∗Department of Electronic Engineering, Tsinghua University, China

†Green Communication Research Center, China Mobile Research Institute, China
‡Department of Communications Engineering, Tohoku University, Japan

Email: daill@tsinghua.edu.cn

Abstract—Lens-based mmWave massive MIMO can signif-
icantly reduce the number of required RF chains without
obvious performance loss, where the accurate information of
beamspace channel is required. However, existing beamspace
channel estimation schemes are based on the 2D beamspace
channel model. In this paper, we consider the more general
3D beamspace channel model, and propose an adaptive support
detection (ASD)-based channel estimation scheme. The basic idea
is to decompose the 3D beamspace channel estimation problem
into several sub-problems, and each one only deals with a
sparse channel component. For each channel component, we first
adaptively detect its support with high accuracy by exploiting
the horizontal and vertical sparsity of 3D beamspace channel.
Then, we remove the influence of this channel component to
detect the support of the next channel component. After the
support detections of all channel components, we can estimate
the nonzero elements of the beamspace channel with low pilot
overhead. Simulation results verify that the proposed scheme
enjoys satisfying accuracy, even with low SNR.

I. INTRODUCTION

Millimeter-wave (mmWave) massive multiple-input

multiple-output (MIMO) has been regarded as a promising

technique for 5G wireless communications [1], since it

can considerably increase the data rate thanks to its higher

spectrum efficiency and wider bandwidth. However, in

traditional MIMO systems, each antenna usually requires

one dedicated radio-frequency (RF) chain. Due to the large

number of antennas [1] and the high energy consumption of

RF chain [2], mmWave massive MIMO systems will involve

unaffordable hardware complexity and energy consumption.

To solve this problem, lens-based mmWave massive MIMO

has been recently proposed [3]. By employing the lens antenna

array, the signals from different directions (beams) can be

concentrated on different antennas, which means that the

traditional spatial channel is transformed into beamspace [4].

As the number of effective prorogation paths in mmWave

communications is limited [2], the beamspace channel is

sparse [3]. Therefore, it is possible to select few dominant

beams to significantly reduce the MIMO dimension as well

as the number of required RF chains [5].

However, lens-based mmWave massive MIMO systems re-

quire to obtain the information of high-dimension beamspace

channel by using a limited number of RF chains, which

is challenging in practice [3]. To this end, two categories

of schemes have been proposed very recently [6]–[8]. The

first category is to reduce the effective dimension of the

beamspace channel to simplify the estimation problem [6], [7].

Specifically, the selected beams are first determined by beam

training to reduce the beamspace channel dimension. Then, the

dimension-reduced beamspace channel can be estimated by the

classical least squares (LS) algorithm with low pilot overhead.

The second category is to exploit the sparsity of beamspace

channel to further reduce the pilot overhead [8]. The key

idea is to estimate the support (i.e., the index set of nonzero

elements in a sparse vector) of the sparse beamspace channel

with high accuracy by using the structural channel properties.

However, all existing schemes are designed based on the 2D

beamspace channel model, where only the horizontal degrees

of freedom (DoFs) can be exploited. For the more general 3D

beamspace channel model that can exploit both horizontal and

vertical DoFs to achieve better performance [5], the beamspace

channel estimation problem has not been addressed in the

literature to the best of our knowledge.

In this paper, we consider the 3D beamspace channel mod-

el, and propose an adaptive support detection (ASD)-based

channel estimation scheme for 3D lens-based millimeter-wave

massive MIMO systems1. Specially, we first decompose the

total 3D beamspace channel estimation problem into several

sub-problems, and each sub-problem only considers one sparse

channel component. Then, for each sparse channel component,

we propose an ASD algorithm to detect its support, which

consists of two stages. In the first stage, we utilize the special

structural sparsity of 3D beamspace channel to obtain an initial

support. In the second stage, according to the different power

diffusions of 3D beamspace channel in the horizontal and

vertical directions, we adaptively adjust the initial support to

improve the support accuracy. After the support detections

of all channel components, the nonzero elements of the 3D

beamspace channel can be estimated with low pilot overhead.

Simulation results show that our scheme enjoys satisfying

accuracy, even with low signal-to-noise ratio (SNR). This

makes our scheme attractive for mmWave communications,

where low SNR is the typical case before beamforming [2].

Notation: Lower-case and upper-case boldface letters a and

A denote a vector and a matrix, respectively; AH , A−1, and

1The simulation codes are provided to reproduce the results in this paper
at: http://oa.ee.tsinghua.edu.cn/dailinglong/.
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Fig. 1. Comparison of system architectures: (a) traditional 3D spatial MIMO;
(b) 3D lens-based MIMO.

tr(A) denote the conjugate transpose, inversion, and trace of

A, respectively; ‖A‖F denotes the Frobenius norm of A;

|a| denotes the amplitude of scalar a; Card (A) denotes the

cardinality of set A; ⊗ denotes the kronecker product; �·� is

the ceil operator; Finally, IK is the K ×K identity matrix.

II. SYSTEM MODEL

We consider a typical time division duplexing (TDD)

mmWave massive MIMO system, where the base station (BS)

employs N antennas and NRF RF chains to simultaneously

serve K single-antenna users [3]–[5].

A. Traditional 3D spatial MIMO

As shown in Fig. 1 (a), for the traditional 3D spatial MIMO,

the K × 1 received signal vector yDL for all K users in the

downlink can be presented by

yDL = HTPs+ n, (1)

where HT ∈ C
K×N is the downlink channel matrix,

H = [h1,h2, · · · ,hK ] is the uplink channel matrix according

to the channel reciprocity [9], hk of size N × 1 is the channel

vector between the BS and the kth user as will be discussed

later, s of size K × 1 is the signal vector for all K users

satisfying E
(
ssH

)
= IK , P of size N ×K is the precoding

matrix satisfying the total transmit power constraint ρ as

tr
(
PPH

) ≤ ρ, n ∼ CN (
0, σ2

DLIK
)

is the K × 1 additive

white Gaussian noise vector, where σ2
DL is the downlink noise

power. Obviously, from Fig. 1 (a) we have NRF = N , which

is usually large for mmWave massive MIMO systems.

Next, we will introduce the channel vector hk of the kth

user. Unlike the traditional 2D channel model [6]–[8], in this

paper we adopt the widely used 3D Saleh-Valenzuela channel

model for mmWave communications as [3]–[5]

hk =

√
N

L+ 1

L∑
l=0

β
(l)
k a

(
ϕ
(l)
k , θ

(l)
k

)
=

√
N

L+ 1

L∑
l=0

cl, (2)

where c0 = β
(0)
k a

(
ϕ
(0)
k , θ

(0)
k

)
is the line-of-sight (LoS)

component of hk with β
(0)
k presenting the complex gain

and ϕ
(0)
k (θ

(0)
k ) denoting the spatial azimuth (elevation),

cl = β
(l)
k a

(
ϕ
(l)
k , θ

(l)
k

)
for 1 ≤ l ≤ L is the lth non-line-of-

sight (NLoS) component of hk, and L is the total number of

NLoS components which can be usually obtained by channel

measurement [10], a (ϕ, θ) is the 2D array steering vector. For

the typical uniform planar array (UPA) with N1 elements in

horizon and N2 elements in vertical (N = N1N2), we have

a (ϕ, θ) = aaz (ϕ)⊗ ael (θ) , (3)

where aaz (ϕ) =
1√
N1

[
e−j2πϕi

]
for i ∈ I (N1),

ael (θ) =
1√
N2

[
e−j2πθj

]
for j ∈ I (N2), and we

define I (n)={p−(n−1) /2, p=0, 1, · · · , n−1}. The

spatial azimuth (elevation) is defined as ϕ
Δ
= d1

λ sin ϕ̃

(θ
Δ
= d2

λ sin θ̃) [5], where ϕ̃ (θ̃) is the physical azimuth

(elevation), λ is the wavelength of carrier, and d1 (d2)

is the horizontal (vertical) antenna spacing. At mmWave

frequencies, we usually have d1 = d2 = λ/2 [1].

B. 3D lens-based MIMO

The 3D spatial channel (2) can be transformed into the

beamspace by employing a lens antenna array [3] as shown

in Fig. 1 (b). Mathematically, this lens antenna array plays

the role of an N ×N spatial discrete fourier transform matrix

U, which contains the array steering vectors of N orthogonal

directions (beams) covering the entire 3D angular space as [3]

U = [a (i/N1, j/N2)]
H
i∈I(N1),j∈I(N2)

, (4)

where i/N1 for i ∈ I (N1) and j/N2 for j ∈ I (N2) are the

spatial azimuths and elevations predefined by lens antenna

array, respectively. Then, the system model of 3D lens-based

MIMO can be represented by

ỹDL = HTUTPs+ n = H̃TPs+ n, (5)

where ỹDL is the received downlink signal vector in the

beamspace, H̃T = (UH)
T

is the downlink beamspace chan-

nel matrix whose N columns correspond to N orthogonal

beams predefined by lens antenna array. Note that H̃T has a

sparse structure [3]–[5] due to the limited number of effective

prorogation paths in mmWave communications. Therefore,

it is possible to select few dominant beams by using the

adaptive selecting network2 as shown in Fig. 1 (b). Then,

the dimension of lens-based MIMO system can be reduced

as ỹDL ≈ H̃T
r Prs+ n, where H̃r = H̃(b, :)b∈B, B denotes the

index set of selected beams, and Pr is the dimension-reduced

digital precoding matrix. As the dimension of Pr is much

smaller than that of P in (1), the number of required RF

2The adaptive selecting network proposed in [8] is realized by the low-cost
1-bit phase shifter network. During the data transmission, it can realize beam
selection by turning off some phase shifters. During the channel estimation,
it can be adaptively used as a combiner to obtain the efficient measurements
of the beamspace channel as will be discussed later.



chains can be significantly reduced as shown in Fig. 1 (b)3.

However, to achieve the near-optimal performance, the BS

needs to acquire the 3D high-dimension beamspace channel

with limited number of RF chains, which is challenging.

III. 3D BEAMSPACE CHANNEL ESTIMATION

In this section, we first formulate the 3D beamspace channel

estimation problem as a typical sparse recovery problem. After

that, we prove the special structural sparsity of 3D beamspace

channel. Finally, based on this property, an ASD-based channel

estimation scheme is proposed.

A. Problem formulation

In TDD systems, the channel estimation is executed in

the uplink, where each user needs to transmit the known

pilot sequences to the BS over Q instants, during which the

beamspace channel remains unchanged [9]. In this paper, we

assume that the Q instants are divided into M blocks and each

block consists of K instants (Q = MK). We define Ψm of

size K ×K as the pilot matrix for the mth block, which con-

tains K mutually orthogonal pilot sequences transmitted by K
users over K instants [9]. Obviously, we have ΨmΨH

m = IK .

Then, according to the channel reciprocity [9] in TDD systems,

the received uplink signal matrix ỸUL
m of size N ×K at the

BS in the mth block can be presented as

ỸUL
m =UHΨm+Nm=H̃Ψm+Nm, m=1, 2, · · · ,M, (6)

where Nm is the N ×K noise matrix in the mth block with

the uplink noise power σ2
UL. After that, by using the adaptive

selecting network as shown in Fig. 1 (b), the BS can employ

an analog combiner Wm of size K ×N to combine ỸUL
m (6),

and obtain Rm of size K ×K in the baseband sampled by

NRF = K RF chains as

Rm = WmỸUL
m = WmH̃Ψm +WmNm. (7)

Finally, by multiplying the known pilot matrix ΨH
m on the

right side of (7), the K ×K measurement matrix Zm of the

beamspace channel H̃ can be obtained by

Zm = RmΨH
m = WmH̃+Neff

m , (8)

where Neff
m = WmNmΨH

m is the effective noise matrix.

We consider the beamspace channel estimation problem

of the kth user without loss of generality. After the pilot

transmission, an Q× 1 measurement vector z̄k is obtained as

z̄k =

⎡
⎢⎣

z1,k
...

zM,k

⎤
⎥⎦ =

⎡
⎢⎣

W1

...

WM

⎤
⎥⎦ h̃k+

⎡
⎢⎣

neff
1,k
...

neff
M,k

⎤
⎥⎦ Δ
= W̄h̃k+n̄k,

(9)

where h̃k is the kth column of H̃ defined as the beamspace

channel of the kth user, zm,k and neff
m,k are the kth column of

Zm and Neff
m in (8), respectively. z̄k, W̄, and n̄k are of size

Q× 1, Q×N , and Q× 1, respectively. Since h̃k is a sparse

3In this paper, we assume NRF = K to guarantee the spatial multiplexing
gains of K users without loss of generality.
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Fig. 2. The amplitude distribution of Υ
(
N1, iΔϕ− ϕ

(l)
k

)
for i ∈ I (N1).

vector, (9) can be regarded as a typical sparse signal recovery

problem [11], which can be solved by classical CS algorithms,

such as orthogonal matching pursuit (OMP) [12]. However,

when the uplink SNR is low, which is the typical case in

mmWave communications due to the lack of beamforming

gain and the low transmit power of users [2], h̃k will be over-

whelmed by noise. As a result, the performance of classical

CS algorithms is usually poor. To this end, we propose an

ASD-based channel estimation scheme in this paper, which

can achieve better performance than classical CS algorithms.

B. Special structural sparsity of 3D beamspace channel

In this section, we prove the special structural sparsity of 3D

beamspace channel, which is the basis of our scheme. To do

this, we first define c̃l = Ucl as the l th channel component of

h̃k in the beamspace. Then, we reshape the N × 1 vector c̃l as

an N1 ×N2 matrix C̃l, where C̃l (i, j) = c̃l (N2 (i− 1) + j).
Based on C̃l, we have the following Lemma 1.

Lemma 1. Define S as the sub-matrix of C̃l, which extracts the
V1 strongest rows and V2 strongest columns from C̃l. Assume
V1 and V2 are two even integers without loss of generality.
Then, the ratio between the power of S and the power of C̃l

can be lower-bounded by

‖S‖2F∥∥∥C̃l

∥∥∥2
F

≥ 4

N2

V1/2∑
i=1

1

sin2
(

(2i−1)π
2N1

)
V2/2∑
j=1

1

sin2
(

(2j−1)π
2N2

) .
(10)

Proof: According to the definitions of c̃l and C̃l, we have

C̃l (i, j) /β
(l)
k = aH (iΔϕ, jΔθ)a

(
ϕ
(l)
k , θ

(l)
k

)
(11)

=
[
aHaz (iΔϕ)⊗aHel (jΔθ)

] [
aaz

(
ϕ
(l)
k

)
⊗ael

(
θ
(l)
k

)]

=
[
aHaz (iΔϕ) aaz

(
ϕ
(l)
k

)]
⊗
[
aHel (jΔθ) ael

(
θ
(l)
k

)]

= Υ
(
N1, iΔϕ− ϕ

(l)
k

)
Υ
(
N2, jΔθ − θ

(l)
k

)
,

where Υ(n, x) = sinnπx
n sinπx . Fig. 2 shows the amplitude distribu-

tion of Υ
(
N1, iΔϕ− ϕ

(l)
k

)
for i ∈ I (N1), where the set of

red dash lines (or blue dot dash lines) presents the set of spatial

azimuths pre-defined by lens antenna array. From Fig. 2, we

can observe that when ϕ
(l)
k exactly equals one pre-defined

spatial azimuth, all the power of C̃l is concentrated on one

row, which is the best case. In contrast, the worst power diffu-

sion will happen when the distance between ϕ
(l)
k and one pre-



Input:
Measurement vector: z̄k in (9);

Analog combiner: W̄ in (9);

Total number of channel components: L+ 1;

Extracted numbers of rows and columns: V1 = V2.

Initialization: c̃el = 0N×1 for 0 ≤ l ≤ L, z̄
(0)
k = z̄k.

for 0 ≤ l ≤ L
1. Detect the index p∗ of the strongest element of c̃l ;

2. Adaptively detect the support supp (c̃l) of c̃l based on

p∗, V1, and V2; Estimate c̃l as c̃el based on supp (c̃l);
3. Remove the influence of c̃l;
4. l = l + 1;

end for
5. Obtain the total support ST of h̃k;

6. Estimate h̃k as h̃e
k based on ST;

Output: Estimated beamspace channel for user k: h̃e
k.

Algorithm 1: Proposed SD-based channel estimation.

defined spatial azimuth equals 1/2N1. In this case, the power

of V1 strongest rows of C̃l/β
(l)
k is 2

N2
1

∑V1/2
i=1 sin−2

(
(2i−1)π

2N1

)
.

Similarly, when the distance between θ
(l)
k and one pre-

defined spatial elevation equals 1/2N2, the power of V2

strongest columns of C̃l/β
(l)
k is 2

N2
2

∑V2/2
j=1 sin−2

(
(2j−1)π

2N2

)
.

Based on the analysis above and the fact
∥∥∥C̃l

∥∥∥2
F
=

(
β
(l)
k

)2

,

we can derive the conclusion in (10).

From Lemma 1, we can derive two important conclusion-

s. The first one is that C̃l can be considered as a block

sparse matrix, since the most power of C̃l is concentrated

on a sub-matrix S with much smaller size. For example,

when N1 = N2 = 32, V1 = V2 = 8, the lower-bound (10) is

about 91%. This means that we can retain only a smal-

l number (e.g., V1V2 = 64) of dominant elements of C̃l

and regard other elements as zero without obvious per-

formance loss. The second one is that the indices of V1

strongest rows and V2 strongest columns of C̃l can be u-

niquely determined by the position of the strongest elemen-

t of C̃l, denoted as C̃l (i
∗, j∗). Specifically, according to

Fig. 2, the index sets of the extracted rows and columns

of C̃l can be presented by R =
{
i∗ − V1

2 , · · · , i∗ + V1−2
2

}
and C =

{
j∗ − V2

2 , · · · , j∗ + V2−2
2

}
, respectively. After the

indices of extracted rows and columns have been determined,

the support of the sparse vector c̃l can be directly obtained

according to the relationship C̃l (i, j) = c̃l (N2 (i− 1) + j).

C. Proposed ASD-based channel estimation scheme

Based on Lemma 1, in this section, we propose an ASD-

based channel estimation scheme. The pseudo-code of our

scheme is summarized in Algorithm 1, which can be ex-

plained in details as below.

Firstly, we decompose the 3D beamspace channel estimation

problem into a series of sub-problems, each of which only

considers one sparse channel component c̃l. We estimate each

channel component c̃l for 0 ≤ l ≤ L in an iterative procedure.

During the lth iteration, we first detect the index p∗ of the
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Fig. 3. Illustration of the adaptive support detection.

strongest element of c̃l in step 1 as p∗ = argmax
1≤n≤N

∣∣∣w̄H
n z̄

(l)
k

∣∣∣,
where w̄n is the nth column of W̄. Then, the indices of

the strongest row and column of the equivalently C̃l can be

computed as i∗ = �p∗/N2� and j∗ = p∗ −N2 (i
∗ − 1).

Next, in step 2, we adaptively detect the support of c̃l, which

is equivalent to detect the index sets R and C of the extracted

rows and columns of C̃l. This procedure consists of two stages

as illustrated in Fig. 3. In the first stage, since we have no priori

information for the power diffusions of 3D beamspace channel

in the horizontal and vertical directions, we set V1 = V2. Then,

based on i∗ and j∗, we can obtain R and C as discussed

in Section III-B. After that, the support supp (c̃l) of c̃l can

be directly obtained, and the nonzero elements of c̃l can be

estimated by the classical LS algorithm as

c̃el (supp (c̃l)) =
(
AHA

)−1
AH z̄

(l)
k , A = W̄(:, b)b∈supp(c̃l)

.
(12)

In the second stage, we form C̃e
l based on c̃el . Then, as shown

in Fig. 3, we define four marginal nonzero elements of C̃e
l as

M1 =
∣∣∣C̃e

l (i
∗, j∗ − V2/2)

∣∣∣, M2 =
∣∣∣C̃e

l (i
∗, j∗ + V2/2− 1)

∣∣∣,
M3 =

∣∣∣C̃e
l (i

∗ − V1/2, j
∗)
∣∣∣, M4 =

∣∣∣C̃e
l (i

∗ + V1/2− 1, j∗)
∣∣∣.

If min (M1,M2) < min (M3,M4), we can conclude that the

power diffusion of the 3D beamspace channel in the vertical

direction is more serious than that of the horizontal direction.

In this case, we set V1 = 2V1, V2 = V2/2, and re-estimate

c̃el using the method described above. This procedure will

be repeated until min (M1,M2) > min (M3,M4). Converse-

ly, if min (M1,M2) > min (M3,M4), the power diffusion

in the horizontal direction is more serious. Accordingly,

we will set V1 = V1/2, V2 = 2V2, and re-estimate c̃el until

min (M1,M2) < min (M3,M4).

After c̃el has been estimated, in step 3, the influence of

this channel component is removed by z̄
(l+1)
k = z̄

(l)
k − W̄H c̃el .

Such procedure will be repeated (l = l + 1 in step 4) until the

last channel component is considered.

Finally, after the support detections of all channel com-

ponents, we can obtain the total support ST of h̃k as
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ST =
⋃

0≤l≤L supp (c̃l) in step 5. Then, by using LS algo-

rithm, the nonzero elements of h̃k can be estimated in step 6

as h̃e
k (ST) =

(
AH

TAT

)−1
AH

T z̄k, where AT = W̄(:, b)b∈ST
.

The key difference between Algorithm 1 and classical CS

algorithms [12] lies in the support detection. For classical CS

algorithms, the positions of all nonzero elements are estimated

by an iterative way, which will be more and more inaccurate as

the magnitude of nonzero element decreases. In Algorithm 1,

we only estimate the position of the strongest element. Then,

based on the structural sparsity of 3D beamspace channel,

the accurate support can be directly obtained with higher

probability. Additionally, we can observe from Algorithm 1
that the most complicated part of our scheme is running the LS

algorithm in step 2 and step 6, and the number of running times

is determined by L, V1, and V2. Since L, V1, and V2 are usually

small as discussed above, the computational complexity of

ASD-based channel estimation scheme is considerably low.

IV. SIMULATION RESULTS

In this section, we consider a typical mmWave massive

MIMO system, where the BS equips NRF = 16 RF chains

and a lens antenna array with N1 = 32 elements in hori-

zon and N2 = 32 elements in vertical (totally N = 1024
antennas) to simultaneously serve K = 16 users. For the kth

user, the spatial 3D channel is generated as follows [3]–

[5]: 1) one LoS component and L = 2 NLoS components;

2) β
(0)
k ∼ CN (0, 1), and β

(l)
k ∼ CN (

0, 10−2
)

for l = 1, 2; 3)

ϕ
(l)
k and θ

(l)
k for l = 0, 1, 2 follow the i.i.d. uniform distribution

within [−0.5, 0.5]. W̄ in (9) is designed as the Bernoulli

random matrix which can be realized by the adaptive selecting

network with 1-bit phase shifters, i.e., each element of W̄ is

randomly selected from 1√
Q
{−1,+1} with equal probability.

Fig. 4 shows the normalized mean square error (NMSE)

performance comparison between the proposed ASD-based

channel estimation scheme and the conventional OMP-based

channel estimation scheme (i.e., using OMP [12] to solve (9)),

where the number of instants Q for pilot transmission is

Q = 256. For ASD-based channel estimation scheme, we

set V1 = V2 = 8, while for OMP-based channel estimation

scheme, we assume that the sparsity level of the 3D beamspace

channel equals V1V2 (L+1) = 192. We can observe from Fig.

4 that ASD-based channel estimation scheme can achieve

obvious improvement in accuracy compared with OMP-based

channel estimation scheme, especially when the uplink SNR

is low (e.g., less than 15 dB). As the uplink SNR in channel

estimation is usually low for mmWave communications due

to the lack of beamforming gain and the low transmit power

of users [2], we can claim that our scheme is more attractive

for lens-based mmWave massive MIMO systems. Moreover,

as the number of instants Q = 256 for pilot transmission is

much smaller than the dimension of the 3D beamspace channel

N = 1024, we can further conclude that our scheme enjoys

low pilot overhead.

V. CONCLUSIONS

In this paper, we propose an ASD-based channel estimation

scheme for 3D lens-based mmWave massive MIMO systems

with low pilot overhead. Its key idea is to decompose the

total 3D beamspace channel estimation problem into a series

of sub-problems, each of which only considers one sparse

channel component. For each sparse channel component, we

adaptively detect its support with high accuracy based on

the different power diffusions of 3D beamspace channel in

the horizontal and vertical directions. Analysis shows that

the complexity of our scheme is similar to that of the LS

algorithm. Simulation results verify that our scheme enjoys

higher accuracy than the conventional OMP-based channel

estimation scheme, especially in the low SNR region.
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