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Abstract—Densely-deployed heterogeneous networks (HetNets)
with large number of small cell base stations (SBSs) will con-
stitute one of the main pillars of emerging 5G wireless systems.
While such dense deployments of HetNets can help in achieving
capacity requirements of 5G networks, they can also result in a
significant increase in energy consumption. Since there may not
be many associated users in certain SBSs, intelligently turning
them off while not seriously degrading system throughput and
handover performance can improve energy savings in HetNets.
In this paper, we consider a fuzzy logic based game-theoretic
framework for energy efficiency improvements in HetNets. We
develop fuzzy decision rules for handovers and target base station
selection while simultaneously considering the energy/spectral
efficiency and handover performance. Our results show that
energy consumption can be improved considerably especially for
small number of active users and for high user velocities, while
also managing ping-pong handovers and cell loads.

Index Terms—Energy efficiency, fuzzy logic, game theory,
heterogeneous networks, sleep mode, ON/OFF operation, small
cells, spectral efficiency.

I. INTRODUCTION

Heterogeneous networks (HetNets) consisting of dense de-
ployment of small cells within the traditional macro cellular
network is a promising approach to cope with the future
explosive mobile traffic demand. However, such uncoordinated
and massive deployment of small cells can lead to significant
increase in energy consumption due to the energy costs of
cells even when they have no associated user. It is expected
that the carbon foot print of the mobile communication sector
will increase up to twofold by 2020 from 2013, which is 201
Mega-tons of CO2 emissions. Therefore, reducing the energy
consumption has become a major priority in the recent years.

According to China Mobile, the base stations (BSs) con-
sume 72% of the total power consumption in cellular net-
works [1], which will be further increased with the additional
deployment of the small cells. Therefore, network operators
are seeking use of efficient BS power management tech-
niques to reduce their operational expenditures (OPEX). One
approach is to introduce discontinuous transmission (DTX)
on a BS when it is not serving any users as mentioned
in [2]. In DTX, the cells are configured with almost blank
subframes called multicast broadcast single frequency network
(MBSFN) for the efficient energy operation in LTE. Another
approach is to turn off the BSs when there are no users
communicating with them or when they are under-utilized.
For instance, centralized/distributed switching algorithms were
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proposed in [3]–[10] to turn off the BSs, and the associated
users are handed over to the neighboring BSs, which yields the
significant savings in the energy expenditure for the cellular
network operators [11], [12]. The mobility aspects of the
energy efficiency are still challenging because it is difficult to
analyze the problem in theoretical terms. For instance, there
are unnecessary handovers in the ON/OFF switching setting
due to the mobility of the users and also additional user load
bought by the switched off BS on the neighboring BS. As a
result, there is a significant increase in the signaling load on
the network. While balance between the user association with
the BS and its power consumption has been studied in [13]
using a game theoretic framework, the user speed has not been
taken into account in the same study.

Even though dynamically placing small cells into sleep
mode helps in saving energy in HetNets, this may come at
the expense of throughput degradation, handover failures, and
user outages. Therefore, effective techniques that can reduce
the network energy consumption without causing critical per-
formance degradation are required. The concept of fuzzy sets
which maps the set elements to a membership function was
proposed in [14], [15], which helps to express the imprecision
and vagueness in the real-world wireless cellular networks.
Incorporating fuzzy logic in the learning systems showed
improved performance and was reliable in extremely noisy
environments as studied in [14], [15]. Additionally, fuzzy logic
framework allows the usage of human knowledge in the form
of if-then inference rules in [16]–[20]. The handover scheme
in [19] considers only signal strength metric for the handover
decision which can lead to high signaling overhead in the case
of users traveling with high velocity in a densely deployed
HetNet [21]–[23]. Therefore context-aware handover schemes
which consider multiple attributes (velocity, signal strength,
QoS etc.), are necessary to minimize handovers and ensure
seamless service to the UEs [24].

In this paper, we introduce a fuzzy logic based game theo-
retic approach for dynamically placing cells into sleep mode
while also considering throughput and handover performance.
We aim to optimize the fuzzy rules to obtain ideal transmission
BS power levels for serving the UEs. Furthermore, a context-
aware fuzzy handover scheme is proposed to minimize the
unnecessary frequent handovers caused due to the dynamic
power level switching of the BS. The fuzzy handover scheme
consists of two modules: 1) handover decision and 2) target
BS selection. For the handover decision, we use fuzzy infer-
ence system to check for the handover condition considering
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Fig. 1: Two tier HetNet where MBS is located at the origin
and circles represent the coverage of the picocell BSs.

multiple user context parameters such as velocity, signal
to interference plus noise ratio (SINR), throughput and BS
load. Further, the fuzzy technique for order of preference by
similarity to ideal solution (FTOPSIS) ranking method [25],
[26] is used to select best BS during the target BS selection
stage of the handover process.

The rest of the paper is organized as follows. The system
model for the HetNet scenario is given in Section II, while
a game theoretic model for ON/OFF switching is presented
in Section III. A context-aware fuzzy handover mechanism is
introduced in Section IV. The simulation results are explained
in Section V, and the last section concludes the paper.

II. SYSTEM MODEL

We consider two-tier HetNet which consists of macro BS
(MBS) and several overlaid small cell BSs (SBSs) as shown in
Fig.1. The BS set B = {b1, ..., bB} consists of MBS set M =
{m1, ...,mM} and SBS set S = {s1, ..., sP} (B = M ∪ S).
The UEs K = {k1, ..., kN} are uniformly distributed over the
entire area and for the simplicity, we assume that all of them
use the same frequency band. We also consider that the UEs
move in a random walk fashion, where at each time increment
dt, and their velocity is expressed as follows

υt = υt−1ρ+
√
1− ρ2υmeanV , (1)

where ρ = e
−dt.amean

υmean represents the correlation of the velocity
between time increments amean and υmean, which are mean
acceleration and velocity, respectively. The magnitude of the
velocity vector V is Rayleigh distributed.

If the UE k is served by the BS b ∈ B whose downlink
transmit power at time instant t is given as pb(t), then the
signal to interference plus noise ratio (SINR) experienced by
the UE is given by

γk
b (x, t) =

pb(t)g
k
b (x, t)∑

b′ �=b

pb′(t)gkb′(x, t) +N0
, (2)

where gkb (x, t) is the free space pathloss from the UE location
x to the BS and N0 is the noise power. The maximum

throughput attained at the UE with bandwidth B is then given
by the Shannon equation written as

Ck(x, t) = B log2(1 + γk
b (x, t)) . (3)

Further, we consider that UEs are guaranteed to achieve
constant bit rate Rk as a result of load experienced by the
BS, which can be expressed as

τb(t) =
∑
kεKb

Rk

Ck(x, t)
. (4)

This determines the total fractional time required by the BS
to deliver rate Rk for its associated users denoted as Kb.

The power consumption model in [27] evaluates the total
power needed by a BS to generate RF output power at its
antenna elements and this can be expressed as

Ptotal =
PBB + PRF + PPA

(1− σDC)(1− σMS)(1− σcool)
, (5)

where PPA = Pb

η(1−σfeed)
is the power consumed by the power

amplifier of efficiency η to transmit RF output power Pb, while
PBB and PRF are the powers consumed by base band and RF
components of the BS, respectively. Parameters σfeed, σMS

and σDC denote the loss fractions of feeder, main supply and
DC-DC power supply, respectively. The loss fraction of the
cooling equipment σcool will be zero for an SBS due to the
absence of the cooling equipment. The BS can enter into the
micro sleep mode by switching off its power amplifier in the
case of low traffic load scenarios. The power consumption in
the micro sleep mode can be written as

Psleep =
PBB + PRF

(1− σDC)(1− σMS)(1− σcool)
. (6)

The energy efficiency can be improved, if the BS is able
to autonomously adjust their transmission power Pb based on
the associated user traffic load in (4). In the following section,
the BS power level switching problem is analyzed using the
approach of game theory.

III. PROPOSED GAME THEORETIC APPROACH

A non-cooperative game G = (B,Ab, ub), where the set of
BS (B) are the players and each of them b ∈ B selects their
action from the finite set of transmission power levels Ab, is
formulated in this section. The utility function of the BS is
given by ub : Ab → R

−.

The set of BS action Ab = {a(1)b , a
(2)
b , ..., a

(|Ab|)
b } comprises

of the action set of MBS Am∈M = {0, Pmax} and action set of
SBS As∈S = {0, Pmax

3 , 2Pmax

3 , Pmax} where Ab ∈ Am ∪ As.
At each time instant, the BS b ∈ B selects its action ab(t)
with a certain probability which forms the basis of the mixed
strategy concept and it is given by

πb(t) = P
(
ab(t) = fb

)
, (7)

where fb is the outcome of a selected action by randomization
device called roulette wheel. The main objective of the game
is that each BS iteratively selects its best action which results
in the highest utility. In this paper, we consider the following
multi-criteria utility function for handover decisions

ub(t) = −ωP̃b(t)− φτ̃b(t)− ψs̃b(t) , (8)
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where P̃b(t) is the power consumed by the BS in either active
or sleep state given in (5) and (6), respectively, τ̃b(t) is the

BS load given in (4), s̃b =
NPP,b(t)
nb(t)

represents the fraction

of ping-pongs handovers1 NPP,b compared to total handovers
nb(t), while ω, φ, ψ represent their corresponding weights.

The game G admits at least one equilibrium, since the
action set Ab is discrete and finite. The outcome of this
non-cooperative game results in suboptimal mixed strategy of
Nash equilibrium. Therefore, other solution concepts, which
achieve optimal expected payoff for a player, need to be
obtained. Auman et al. showed in [28] that allowing the
players to correlate their actions in non-cooperative games can
achieve the equilibrium better than convex hull of the Nash
equilibrium. For instance, if the signals are generated based on
the common knowledge of the players’ actions in a game, then
the actions of the players, which are drawn from a distribution
based on the generated signals, will result in a correlated
equilibrium (CE). Here, the player is more likely to select
an action which yields the best expected payoff conditioned
on player seeing its own action.

We consider a slight variation of the CE scenario, where
the player has the best expected payoff for an action before
seeing the action itself. Such a distribution is called “coarse
correlated equilibrium” defined as follows.

Definition 1. A coarse CE is a probability distribution πb that
has for every player b ∈ B and his every action a′b ∈ Ab:∑

a′
−b∈A−b

(
ub(a

′
b,a−b)π−b,a−b

)
−

∑
a∈Ab

(
ub(a)πb,a

)
≤ 0

(9)

where ub(a) is the utility of the player when action a is drawn
from the distribution πb and π−b,a−b

is the marginal distribu-
tion of a player b action computed using the joint distribution
of its action a′b with other players’ actions a−b ∈ A−b which
is also expressed as

π−b,a−b
=

∑
a′
b∈Ab

π(a′b, a−b). (10)

The empirical distribution of the play in the regret matching
adaptive procedure converges to the CE distributions as time
t → ∞ [29]. For the finite time interval and any ε > 0, it
converges to a distance lesser than ε from the CE. We follow
this regret matching framework and for the finite time interval,
the empirical distribution converges to ε > 0 coarse correlated
ε-equilibrium which is basically obtained by replacing the
right hand side in (9) by ε. In the following section, we
explain the proposed regret matching learning procedure to
attain coarse correlated ε-equilibrium which yields optimal
expected payoff for every player.

A. Regret Based Game Theoretic Learning Scheme
The basic idea of the regret based learning scheme is that

the player evaluates the regret for not having played the action
and aims at minimizing the regret by changing its actions over
time. Hence, the action played yields best expected utility.
Let us assume the game G is repeatedly played at every time

1We define ping-pong handover as a handover where a user equipment stays
less than one second in a cell before making a new handover.

Fig. 2: The proposed fuzzy logic controller for the handover
decisions, composed of three fuzzy inference systems (FIS).

instant t and the BSs are constantly changing their actions
based on the outcome from their respective distribution πb(t)
and observe the utility ub(t). The goal is to adapt the mixed
strategy πb so that it minimizes the regret rb(t) over time.
Usually the regret evaluation needs to know the utility ub(t)
and this requires the knowledge of the other BS actions due to
load term τ̃b(t) in (8). However, this is not feasible in practice
due to the distributed nature of BSs and estimation needs to
be performed as follows [30]

ũ
(l)
b (t+ 1) = ũ

(l)
b + Λb(t+ 1)

(
u
(l)
b (t)− ũ

(l)
b

)
,

r̃
(l)
b (t+ 1) = r̃

(l)
b +Υb(t+ 1)

(
ũ
(l)
b − u

(l)
b (t)− r̃

(l)
b

)
,

π̃
(l)
b (t+ 1) = π̃

(l)
b +Δb(t+ 1)

(
Gl

b(r̃
(l)
b (t+ 1))− π̃

(l)
b

)
,

where Λb, Υb and Δb are the learning rates for the utility,
regret and mixed strategy probability, respectively. Generally,
the learning rate follows the scheme ( 1t )

e, where e is the
exponent of the learning rate similar to all BSs. The estimation
of the mixed strategy πl

b(t) of actions is performed according
to the Boltzmann-Gibbs (BG) distribution Gl

b which weighs
them relatively based on their regrets. Hence, highest regret
has the maximum probability and the BSs are more likely to
pick these actions through roulette wheel selection in (7). The
BG distribution can be written as [30]

G
(l)
b

(
r̃lb(t+ 1)

)
=

exp
(
κbr̃

(l)
b (t+ 1)

)
∑

l′εAb

exp
(
κbr̃

(l′)
b (t)

) , (11)

where κb > 0 is a temperature parameter which balances the
exploitation of actions with higher regrets by exploring the
actions with lower regrets. In this way, the BS picks the best
action with the evolution of time and its mixed strategy πb(t)
converges to the coarse correlated ε-equilibrium.

The frequent change in power levels of the regret matching
learning scheme results in the increased signaling load when
the handover decisions are made on a single metric such as the
signal strength. Therefore, the multi-criteria handover decision
schemes are necessary. In this paper, we propose the context-
aware multi-criteria handover scheme summarized in Fig. 2 to
minimize the unnecessary handovers, which will be discussed
further in the following section.
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Fig. 3: Proposed fuzzy logic handover scheme: handover
necessity decision (left), and target BS selection (right).

IV. CONTEXT-AWARE FUZZY HANDOVER SCHEME

As summarized in Fig. 3, the proposed fuzzy context-aware
handover scheme contains two stages: i) handover necessity
decision, and ii) target BS selection.

A. Handover Necessity Decision
In the first stage, the user determines the handover decision

condition based on the handover factor determined by the
multi-criteria fuzzy logic controllers (FLCs) as seen in Fig. 2.
We consider SINR, throughput and BS load as given in (2), (3)
and (4), respectively. In addition to the SINR, UE-BS distance
and velocity of the users are taken into account to determine
the handover decision condition. The fuzzy reasoning helps to
deal with the imprecise nature of parameters involved in the
handover decision condition.

Initially, before using them as decision variables, the SINR,
rate, UE-BS distance, load, and velocity parameters are fuzzi-
fied using a membership function, which is designed purely
based on human intuition. To this end, triangular h(x) and
trapezoidal μ(x) membership functions are employed and can
be expressed as follows

h(x) =

{
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

, μ(x) =

⎧⎪⎨
⎪⎩

x−l
m−l , l ≤ x ≤ m

1, m ≤ x ≤ n
u−x
u−n , n ≤ x ≤ u

.

The parameters [a, b, c] and [l,m, n, u] of the h(x) and μ(x),
respectively represent the bounds of the input space. The
fuzzy if-then rules are constructed to map the input to suitable
output space. Then, these parameters are grouped based on the
cost/benefit criteria. The SINR and rate are considered as the
benefit parameters while the distance and load are considered
as the cost parameters.

As a result, the SINR and rate parameters are passed to
FLC-1 to obtain SINR-Rate factor; similarly the Distance-
Load factor is obtained using FLC-2 as shown in Fig. 2.
Further, the handover FIS (FLC-3) is designed using the
SINR-Rate, Distance-Load factors and velocity attributes to
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Fig. 4: Design of the handover FLC for MBS and SBS.

determine the handover factor. It is important to note that the
FLCs are connected in a parallel fashion to reduce the “if-then”
rules. For instance, if all five parameters having three fuzzy
sets as low, medium and high directly feed to the handover
FIS, then the number of “if-then” rules of the handover FIS
will be 35 = 243, which is reduced to 33 = 27 in the case of
parallel connection of the FLCs.

The FLC-3 module in Fig. 2 is designed separately for the
MBS and the SBS, since the velocity impacts the handover
decisions differently for an MBS and an SBS. In Fig. 4(a) and
Fig. 4(b), the handover factor as a function of the velocity are
shown for the MBS and the SBS, respectively, for different
distance-load factors. We observe that while distance-load
factor increases the handover factor (and therefore likelihood
of a handover) for both the MBS and SBS, velocity parameter
affects the handover factor differently for the two BS types.
In particular, higher velocity reduces the likelihood to decide
a handover for a UE residing at an MBS, while it increases
the handover factor for a UE that is at an SBS.

Once the HO factor is obtained, it is compared with the
threshold to determine the handover decision condition. If the
HO factor exceeds the threshold, a handover is initiated. The
threshold should be carefully adjusted to prevent unnecessary
handovers among MBSs and SBSs.
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B. Target BS Selection
The second stage of the proposed handover scheme is the

target BS selection. We follow the multi attribute decision
making (MADM) scheme called fuzzy technique for order of
preference by similarity to ideal solution (FTOPSIS) explained
in [26] for the BS selection. The overall proposed fuzzy
handover scheme is summarized in Fig. 3. In summary, the
BSs are ranked based on their own ranks, and the BS with
highest rank is selected to make a handover.

V. SIMULATION RESULTS

Our proposed context aware fuzzy handover scheme is
evaluated using the rudimentary network emulator (RUNE) in
Matlab. We consider a simulation scenario as in Fig. 1 with
a single macrocell, as well as multiple SBSs/UEs uniformly
distributed over the geographical area. Unless otherwise spec-
ified, key simulations parameters are as in Table I.

TABLE I: Simulation parameters.

Parameter MBS PBS
Cell radius 250 m 20 m
# cells 1 7

Minimum distance
75 m for MBS-SBS
35 m for MBS-UE

40 m for SBS-SBS
10 m for PBS-UE

Minimum load 0.1 0.1
Num. power strategies 2 4
Maximum TX power 16 dBm 0 dBm

System Paramters
Packet arrival rate 1 kbps
Mean packet size 1800 bits
Channel bandwidth 10 MHz
Number of users 15
Time interval between iterations 1 ms
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Fig. 5: Energy consumption versus time (15 UEs).

First, in order to study how the user mobility influences the
energy consumption, we evaluate the SBS energy consumption
for user velocities v = {30, 60, 120} km/hr and is shown in
Fig. 5. We can see that energy consumption is the lowest
for the high velocity users, since the users are served by the
MBS and handovers are not triggered by the FLC as implied
by Fig. 2. As a result, the SBSs go into sleep mode which
decreases the energy consumption, with a downside that it
increases the load on the MBS. In the case of lower velocity
users, handovers are more likely to be triggered to the SBS
due to the velocity attribute considered in the fuzzy reasoning

of the FLC in Fig. 2, which rejects the handover to the MBS.
Therefore, more SBS are active and these also result in the
increased energy consumption.
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Fig. 6: Average SBS energy consumption versus number of
users (7 SBSs).

In Fig. 6, considering that the energy consumption reaches a
steady state after some time (e.g., as shown in Fig. 5), we plot
the average SBS energy consumption as a function of number
of users in the network considering different velocities and
using our proposed handover mechanism in Fig. 2. We can
observe that when the user velocity is highest at 75 km/hr,
the SBS energy consumption is minimized, since more users
are kept at macrocell. On the other hand, for lower velocities,
average SBS energy consumption is gradually increased, since
more users are served by SBSs. Moreover, when the number
of users is increased, the SBSs also move into active mode to
serve those users, hence increasing further the overall energy
consumption. To support the results in Fig. 6, we further
plot the average SBS load as a function of number of users
in Fig. 7, which show a similar behavior with the energy
consumption results in Fig. 6.

0 5 10 15 20
Number of Users (N UE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

SB
S 

Lo
ad

 (
s)

v = 30 km/hr
v = 45 km/hr
v = 60 km/hr
v = 75 km/hr

Fig. 7: Average SBS load as a function of the number of users
(7 SBSs).

Finally, in Fig. 8, we plot the the average ping-pong
handover rate as a function of number of users. We observe
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Fig. 8: Average ping-pong handover rate as a function of the
number of users (7 SBSs).
that when the users have a velocity of 30 km/hr, there are
no ping-pongs observed regardless of the number of users.
For higher velocities, ping-pong handovers are observed. Ping-
pong rate increases with user count, since the number of users
also increase the load in the cells, which impacts the utility
function in (8). We observe that the ping-pong rate is the
highest for user velocity of 75 km/hr, rather than 80 km/hr.
This is due to the fact that for high velocities, based on the
handover decision framework discussed in Section IV, high
velocity users are inclined to remain at the MBS, which tends
to reduce ping-pong handovers.

VI. CONCLUSION

This paper proposed a fuzzy logic based game theoretical
framework for energy efficiency improvement in heteroge-
neous networks. Modified fuzzy decision rules were developed
for the handovers and the target BS selection. Moreover, novel
regret based game theoretical learning scheme was proposed
for the optimal energy efficiency. In this context, it was shown
that the proposed fuzzy-game theoretical technique improved
the energy consumption significantly especially for the small
number of active users considering the high user velocities
with managing ping-pong handovers and cell loads.
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