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Abstract—Blind selected mapping (blind SLM) can ef-
fectively reduce the peak-to-average power ratio (PAPR) of
both orthogonal frequency division multiplexing (OFDM)
and single-carrier (SC) signals without side-information
transmission. In typical blind SLM, maximum likelihood
(ML) estimation is applied to find the de-mapping phase
rotation sequence which gives the lowest Euclidean distance
among all possible sequences, resulting in very high com-
putational complexity. In this paper, we introduce a novel
low-complexity 2-step estimation suitable for blind SLM.
In the first step, the phase rotation sequence achieving the
lowest Euclidean distance is searched by using the Viterbi
algorithm. In the second step, verification and correction
are carried out to choose a phase rotation sequence stored
in the codebook, which has the lowest Hamming distance
from the estimated sequence in the first step. It is confirmed
by computer simulation that our proposed 2-step estimation
achieves similar BER performance to the transmission
without SLM and the transmission with blind SLM with the
conventional ML estimation, but the proposed estimation
technique requires much less complexity.

Index Terms—OFDM, DFT-precoded OFDM, PAPR

I. INTRODUCTION

High peak-to-average power ratio (PAPR) signal
causes a problem of low amplification efficiency in
power amplifier (PA), especially when operating at high
carrier frequency e.g. millimeter wave [1]. Orthogonal
frequency division multiplexing (OFDM) waveform gen-
erally has higher PAPR than single-carrier (SC) wave-
form [2]. However, PAPR of SC waveform increases due
to high-level data modulation and when the SC signal is
generated by mean of discrete Fourier transform (DFT)-
precoded OFDM [3]. Among various PAPR reduction
techniques, selected mapping (SLM) [4] is well-known
as a simple PAPR reduction method which requires lower
computational complexity at the transmitter than partial
transmit sequence (PTS) [5]. SLM selects the waveform
with the lowest PAPR from multiple phase-rotated can-
didates. SLM for OFDM [4] and DFT-precoded OFDM
[6] can reduce the PAPR effectively but requires side-
information (e.g. selected phase sequence number) trans-
mission.

SLM without side-information transmission (blind
SLM) techniques based on a modification of phase
rotations [7-8] are attractive since the average transmit
power remains the same as that of original OFDM (or
SC). However, [7] considers continuous set of phase
rotations, which results in large number of candidates
in phase rotation estimation at the receiver. The blind
SLM in [8] introduces a discrete phase rotation set, but
its transmission performance degrades when using high-
level data modulation. Recently, we have shown in [9]
that blind SLM using phase rotation sequences randomly
generated from a discrete set {1, ei2π/3, ei4π/3} achieves
low PAPR similar to the conventional SLM [6] with no
significant bit-error rate (BER) degradation even in high-
level modulation. Although the SC signal transmission is
considered in [9], it will be shown in this paper that the
blind SLM in [9] can also be applied to OFDM signal.

Meanwhile, phase rotation sequence estimation at the
receiver for blind SLM in [7-9] employs maximum like-
lihood (ML) estimation. ML estimation in [9] searches
the mapping sequence used at the transmitter by com-
puting the Euclidean distance between the de-mapped
signal and original data-modulated signal constellation
(before mapping at the transmitter) among all possible
phase sequences. The de-mapping sequence which gives
the lowest Euclidean distance is chosen for succeeding
data demodulation. Since the ML is based on exhaustive
search, it has high computational complexity and is
impractical when the number of sequences is large.

In this paper, we introduce a novel 2-step phase
rotation sequence estimation for blind SLM in order
to realize low-PAPR waveform and low-complexity re-
ceiver. Both OFDM and DFT-precoded OFDM are con-
sidered (hereinafter we denote DFT-precoded OFDM as
SC for simplicity). The proposed estimation technique
can be briefly described as follows. In the first step,
the phase rotation sequence giving the lowest Euclidean
distance is searched by using Viterbi algorithm [10]. In
the second step, verification and correction are carried
out to choose a phase rotation sequence which is stored
in the codebook and has the lowest Hamming distance978-1-5090-6008-5/17/$31.00 c© 2017 IEEE
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Fig. 1. Transceiver model.

from the estimated sequence obtained from the first step.
Simulation results are provided to show that the proposed
2-step estimation achieves similar BER compared to the
ML estimation but with much less complexity.

II. PRINCIPLE OF BLIND SLM

The transmitter equipped with blind SLM is shown
in Fig. 1(a). For simplicity, single-input single-output
(SISO) point-to-point block transmission is assumed.
Nc subcarriers are available to contain data. The trans-
mit signals and processing techniques are represented
by row vectors and matrices, respectively. Let d =
[d(0), d(1), . . . , d(Nc − 1)]T denote Nc-length data-
modulated transmit vector. The transmit block is then
phase rotated by the selected phase rotation matrix
Pm̂ = diag[Pm̂(0), Pm̂(1), . . . , Pm̂(Nc − 1)], yielding
the phase-rotated time-domain signal x = Pm̂d. The
phase rotation sequence Pm̂ is an Nc × Nc diagonal
matrix which is selected to minimize the PAPR of
transmit waveform, where the selection criterion can be
expressed as [6,9]

Pm̂j =


arg min

m=0∼M−1
PAPR(FHNcHTPmd) for OFDM,

arg min
m=0∼M−1

PAPR(FHNcHTFNcPmd)

for SC,

(1)

where FNc and FHNc represent the DFT and in-
verse DFT (IDFT), respectively. A codebook consist-
ing of M different phase rotation sequences Pm =
diag[Pm(0), . . . , Pm(Nc − 1)], m = 0 ∼ M − 1 is de-
fined, where the phase rotation sequences are randomly
generated as Pm(n) ∈ {1, ei2π/3, ei4π/3}, n = 0 ∼
Nc − 1, m = 1 ∼ M − 1 except the first sequence
as P0(n) = 1, n = 0 ∼ Nc − 1. Note that the
above polyphase rotation patterns are not optimal but
sufficient for realizing the blind phase rotation sequence
estimation. PAPR of a particular Nc-length time-domain
transmit block s = [s(0), s(1), . . . , s(Nc − 1)]T is

PAPR(s)=
max{|s(n)|2, n = 0, 1

V ,
2
V , . . . , Nc − 1}

1
Nc

∑Nc−1
n=0 |s(n)|2

, (2)

where V is oversampling factor. Transmit filtering matrix
HT = diag[HT (0), . . . ,HT (Nc − 1)] is assumed to be
an ideal rectangular filter, i.e. HT (k)=1 if k < Nc and
HT (k)=0 elsewhere.

In the case of SC transmission, the phase rotated
transmit block x is transformed into frequency domain

by Nc-point DFT, yielding the frequency components
X = [X(0), X(1), . . . , X(Nc − 1)]T as X = FNcx for
SC transmission and X = x for OFDM transmission,
respectively. FNc is shown by defining i =

√
−1 as

FNc=
1√
Nc

1 1 · · · 1
...

...
. . .

...

1 e
−i2π(Nc−1)(1)

Nc · · · e
−i2π(Nc−1)(Nc−1)

Nc

.(3)

The frequency-domain signal X is then multiplied by
the transmit filtering and subcarrier mapping matrix,
yielding the frequency-domain filtered signal S = HTX
where S = [S(0), S(1), . . . , S(Nc − 1)]T . After that, S
is transformed back into time domain by Nc-point IDFT
matrix FHNc . The selected transmit signal based on SLM
can be summarized as

s =

{
FHNcHTPm̂d for OFDM,

FHNcHTFNcPm̂d for SC.
(4)

IDFT can be changed to inverse fast Fourier transform
(IFFT) if Nc is a power of 2. Finally, the last Ng samples
of transmit block are copied as a cyclic prefix (CP) and
inserted into the guard interval (GI), then a CP-inserted
signal block of Ng +Nc samples is transmitted.

The receiver with phase rotation sequence estimation
is illustrated by Fig. 1(b). The wireless channel is as-
sumed to be a symbol-spaced L-path frequency-selective
block fading channel, where its impulse response is

h(τ) =

L−1∑
l=0

hlδ(τ − τl), (5)

where hl and τl are complex-valued path gain and
time delay of the l-th path, respectively. Time-domain
received signal vector r = [r(0), r(1), . . . , r(Nc − 1)]T

can be expressed by

r =
√

2Es/Tshs + n, (6)

where Es is symbol energy, and n is noise vector whose
each element is zero-mean additive white Gaussian noise
(AWGN) having the variance 2N0/Ts. Ts is symbol
duration and N0 is the one-sided noise power spectrum
density. Channel response matrix h is a circulant matrix
[6]. The received signal vector r is then transformed into
frequency domain by Nc-point DFT (or FFT), obtaining
the frequency-domain signal R = [R(0), . . . , R(Nc −
1)]T as

R =
√

2Es/TsFNchFHNcHTX + FNcn
=

√
2Es/TsHHTX + N

, (7)

where the frequency-domain channel response H is de-
fined by H ≡ diag[H(0), . . . ,H(Nc − 1)] = FNchFHNc .

FDE based on minimum mean-square error criterion
(MMSE-FDE) is employed by multiplying the FDE ma-
trix Wr = diag[Wr(0), . . . ,Wr(Nc − 1)] to R, yielding



{φ(gt)=0}

{φ(gt)=ei2π/3}

{φ(gt)=ei4π/3}

{φ(gt)=0}

{φ(gt)=ei2π/3}

{φ(gt)=ei4π/3}

{φ(gt)=0}

{φ(gt)=ei2π/3}

{φ(gt)=ei4π/3}

t = T−1 t = T t = T+1

gt = 0 

gt = 1 

gt = 2 

S
ta

te Time

ζ(g′t−1→gt) ζ(g′t−1 →gt)

�

�

�

�

�

�

(a) Illustration of 3-state trellis

SC transmission, 16QAM, N
c
=32, M=16, Polyphase {0 , 120 , 240 }, E

b
/N0 = 20 dB

Green path– correct sequence, Red path – output from Viterbi decoding

S
ta
te
s

time

0 8 16 24 32

(b) An example of trellis diagram with reduced branches

� Transmit symbol

� Received symbol 

(before de-mapping)

�� De-mapped symbols

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Incorrect de-

mapping

Correct de-mapping

False 

estimation

Im
a

g
in

a
ry

 p
a

rt

Real part

(c) Estimation error in Viterbi algorithm
Fig. 2. Phase rotation sequence estimation using Viterbi algorithm.

the equalized signal X̂ = WrR. The FDE weight at the
k-th frequency index is expressed by

Wr(k)=
H∗(k)HT (k)

|H∗(k)HT (k)|2 + (Es/N0)−1
, (8)

where H(k) is the k-th element in the diagonal of H,
which corresponds to the frequency-domain channel gain
at the k-th subcarrier.

After that, the received signal before de-mapping
x̂ = [x̂(0), . . . , x̂(Nc − 1)]T is obtained based on dif-
ferent transmission techniques. In SC transmission, x̂ is
obtained by applying Nc-point IDFT to X̂, that is x̂ = X̂
for OFDM and x̂ = FHNcX̂ for SC. Note that the phase
rotation due to SLM still remains in x̂. In general, the
received symbol vector d̂ = [d̂(0), d̂(1), . . . , d̂(Nc−1)]T

is obtained by employing de-mapping, i.e. multiplying
x̂ by PHm̂, but it requires side-information transmission.
We have introduced an ML estimation for estimating the
selected phase rotation sequence Pm̃ [9], which its index
m̃ can be expressed by

m̃ = arg min
m=0∼M−1,

d∈Ψmod

(
ε =

∥∥PHmx̂− d
∥∥) , (9)

where ‖· ‖ represents the Euclidean norm and Ψmod is
the original data-modulated constellation. Note that d
is not considered as an output in this paper. Eq. (9)
needs to compute the Euclidean norm for all possible
de-mapping sequences and all possible data-modulated
symbols, resulting in high complexity when M is large.

III. 2-STEP PHASE ROTATION SEQUENCE ESTIMATION

A. Viterbi algorithm

The objective function ε in (9) can be rewritten by
ignoring the codebook and assuming that ΦSLM is a set
of possible rotation patterns {1, ei2π/3, ei4π/3} as

arg min
φ(t)∈ΦSLM,
d∈Ψmod

(
ε =

Nc−1∑
t=0

1

Nc
|φ∗(t)x̂(t)− d|2

)
. (10)

Then, ε at time index t = T, 0 ≤ T ≤ Nc−1 is expressed
by

ε(T ) =
T∑
t=0

1

Nc
min

φ(t)∈ΦSLM,
d∈Ψmod

|φ∗(t)x̂(t)− d|2

= ε(T − 1) +
1

Nc
min

φ(T )∈ΦSLM,
d∈Ψmod

|φ∗(T )x̂(T )− d|2
(11)

We can search an optimal phase rotation sequence
φopt(t), t = 0 ∼ Nc− 1 by using Viterbi algorithm [10].
The first term and second term in (11) are considered
as path metric at time t and state g, ε(gt), and branch
metric from state g′ at time t to state g at time t + 1,
ζ(g′t → gt+1), respectively, in the Viterbi algorithm. An
example of trellis diagram assuming Gmax=3 states, i.e.
gt = 0 ∼ 2, is shown by Fig. 2(a).

The initial path metric for each state at time t = −1
is set as ε(g−1) = 0 for all g = 0 ∼ Gmax − 1. At
a particular time index t where 0 ≤ t ≤ Nc − 1, the
branch metric from state g′ at time t to state g at time
t+ 1 is expressed by

ζ(g′t → gt+1)=
1

Nc
min
d∈Ψmod

|φ∗(gt+1)x̂(t+ 1)− d|2 , (12)

where φ(gt+1) is the phase rotation at state g and time
t+1. Then the path metric entering state gt+1 is selected
by the following criterion.

ε(gt+1) = min
g′t=0∼Gmax

(ε(g′t) + ζ(g′t → gt+1)) . (13)

Note that (12)-(13) are repeated until t = Nc − 1. Once
the path metric calculation is done until t = Nc − 1,
the surviving path metric which provides an optimal
state number gt,opt and the optimal sequence φopt(t) =
φ(gt,opt), t = 0 ∼ Nc−1 can be determined by backward
computation as follows.

gNc−1,opt = arg min
gNc−1=0∼Gmax−1

ε(gNc−1), (14)

gt′,opt = arg min
gt′=0∼Gmax−1

(ε(gt′)+ζ(gt′→gt′+1,opt)), (15)

where t′ = Nc−2, Nc−3, . . . , 0. We set Gmax=33=27 in
this paper, meaning that the phase rotation patterns in a
particular state gt is determined as a set of phase patterns
at t− 2, t− 1 and t. The above algorithms can be used
without modifications except the initialization should be
done at t=2. An increasing of Gmax leads to an increasing
of branches, where the redundant branches and states
(i.e. the branches and states which do not exist in the
codebook) can be removed prior to estimation. This can
improve the accuracy of estimation but increases the
complexity due to many surviving branches and states.
A study about setting the value of Gmax is left as our
future works. Fig. 2(b) shows an example of 27-state



TABLE I
SIMULATION PARAMETERS.

Transmitter

Modulation 16QAM, 64QAM
FFT/IFFT block size Nc = 256
Cyclic prefix length Ng = 16
Phase sequence type Random polyphase

Channel Fading type
Frequency-selective

16-path block Rayleigh

Receiver Channel estimation Ideal
FDE MMSE-FDE

trellis with Nc=32 and M=16, where the branches and
states are partially removed.

However, the estimated φopt(t), t = 0 ∼ Nc − 1
still contains error due to frequency-selective fading and
noise. This is also shown in Fig. 2(b) and assuming the
average received bit energy-per-noise power spectrum
density (Eb/N0) equals 20 dB that the surviving path
(red dash line) is different from the actual phase rotation
sequence used at the transmitter (green solid line). The
cause of error can be described by referring Fig. 2(c),
which shows the received signal and the de-mapped
signals at t=22. It is seen that the received symbol with
incorrect de-mapping gives lower Euclidean distance
from original 16QAM constellations than that of correct
de-mapping. The Viterbi algorithm is aiming at selecting
the path with the lowest mean-square error (MSE), hence
the incorrect sequence is selected as a surviving path
instead. We introduce verification and correction as the
second step for reducing the above error occurred in
Viterbi decoding.

B. Verification & correction
Fig. 3(b) also shows that the estimated phase sequence

obtained from Viterbi decoding contains errors on few
samples only when the received Eb/N0 is sufficiently
high. These errors can be corrected by checking the sim-
ilarity of output from Viterbi decoding and the available
sequences in the codebook. Here, Hamming distance is
used as an indicator for checking the similarity since
the difference in rotation angle does not affect the data
detection error.

Let Φopt = diag[φopt(0), φopt(1), . . . , φopt(Nc −
1)] denote the phase rotation sequence matrix ob-
tained from the Viterbi decoding. The estimated
phase rotation sequence for de-mapping Pm̃ =
diag[Pm̃(0), Pm̃(1), . . . , Pm̃(Nc − 1)] with the corre-
sponding sequence index m̃ can be determined by

m̃ = arg min
m=0∼M−1

d (Φopt,Pm) , (16)

where Pm = diag[Pm(0), . . . , Pm(Nc − 1)] is the m-
th phase rotation sequence in the codebook and d(A,B)
represents the Hamming distance between matrices A
and B. Finally, the de-mapped symbols vector is obtained
by d̂ = PHm̃x̂.

IV. PERFORMANCE EVALUATION

Numerical and simulation parameters are summarized
in Table I. Channel coding is not considered. The per-

formance of blind SLM with ML estimation [9] is also
done as a conventional scheme for comparison.

A. PAPR vs Computational Complexity

Computational complexity is defined by counting the
number of real-valued multiplication and real-valued
addition operations. Table II shows the computational
complexity of ML estimation and 2-step estimation with
Nmod representing modulation level (4 for 16QAM and
6 for 64QAM). It is seen that the complexity of ML
estimation is a function of M . On the other hand,
computational complexity of 2-step estimation is almost
independent from M and is an order of Ntrellis, where
Ntrellis ≤ (81× (Nc − 2)) + 27 if Gmax=27. In addition,
since we are considering only the complexity of phase
rotation sequence estimation which is the major part of
the blind SLM receiver, the computational complexity
shown in Table II is identical for both OFDM and SC
transmissions.

Fig. 3(a) shows the PAPR0.1% versus total compu-
tational complexity of OFDM and SC, respectively.
PAPR0.1% is defined as the PAPR value at the comple-
mentary cumulative distribution function (CCDF) equals
10−3, while the PAPR0.1% of conventional SC(OFDM)
are 8.8(11.3) dB for 16QAM and 9.1(11.3) dB for
64QAM, respectively (note that the PAPR of OFDM
is irrespective of the modulation level [3,6]). Total
computational complexity is defined by estimating that
the complexity of a real-valued multiplication operation
is 3 times of real-valued addition, then counting the
total number of real-valued additions [11]. Transmission
scheme with the performance trade-off mark in the
bottom-left of Fig. 4(a) means the transmission scheme
which achieves low PAPR with low-complexity phase
rotation sequence estimation.

PAPR can be reduced when M increases, but the com-
putational complexity also increases. The complexity of
ML estimation drastically increases when M increases.
On the other hand, the complexity of 2-step estimation
is much lower than that of the ML when M≤256.
For example, when M=2048 and assuming 16QAM
modulation, SC using blind SLM and 2-step detection
achieves the PAPR of 5.5 dB (i.e., 3.3 dB reduction),
OFDM using blind SLM and 2-step detection achieves
the PAPR of 6.8 dB (i.e., 4.5 dB reduction), while the
complexity of phase rotation estimation is only 5% of
the ML estimation. Therefore, the use of blind SLM and
2-step estimation can achieve very low-PAPR signal by

TABLE II
COMPUTATIONAL COMPLEXITY
No. of real-valued No. of real-valued

multiplications additions
ML M× M×Nc×

(
3+3(2Nmod )

)
estimation

(
Nc×(4+2(2Nmod ))+1

)
2-step Ntrellis×

(
6+2(2Nmod )

) (
Ntrellis×

(
3+3(2Nmod )

))
estimation +(M ×Nc)
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Fig. 3. Simulation results.

using large M without causing high-complexity problem
at the receiver.

B. BER Performance

Figs. 3(b) and 3(c) show the BER of OFDM and SC
using blind SLM, respectively, as a function of average
received Eb/N0 where Eb/N0=(1/Nmod)(Es/N0)(1 +
Ng/Nc). BER of conventional SC and OFDM and those
of blind SLM using ML estimation are available for
comparison. The number of phase rotation sequences is
M=512.

Firstly, it is seen in both 16QAM and 64QAM trans-
missions that the BER of phase rotation sequence esti-
mation using only Viterbi decoding is the worst due to
an estimation error described in Sect. III-B. However,
both ML and 2-step estimations achieve similar BER
performance compared to those of conventional SC and
OFDM. This is because the use of FDE can effectively
mitigate the spectrum distortion occurred in the received
signal and accordingly improving the accuracy of phase
rotation sequence estimation. More importantly, the sec-
ond step (verification and correction) can effectively
mitigate the estimation error occurred when using only
Viterbi decoding. The 2-step estimation achieves slightly
worse BER than ML estimation when Eb/N0 is low.
This is because the noise makes the estimation error
in Viterbi algorithm become more severe, and conse-
quently verification and correction cannot find the correct
phase rotation sequence from the codebook. Meanwhile,
although 2-step estimation is employed, there is no
significant BER degradation compared to no SLM case
when Eb/N0 is sufficiently high. This concludes that the
2-step estimation can be used for blind SLM, while its
complexity is much lower than ML estimation.

V. CONCLUSION

A 2-step phase rotation sequence estimation scheme
for blind SLM was proposed. The proposed 2-step
estimation employs Viterbi algorithm and then, carries
out verification and correction for improving estimation
accuracy. Computer simulation results confirmed that
the 2-step estimation achieves similar BER performance

compared to the conventional ML estimation with much
lower computational complexity at the receiver. As a
consequence, we can increase the number of phase
rotation sequences for further lowering the PAPR.
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