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Abstract—The next-generation cellular networks are expected
to be enabled by heterogeneous networks (HetNets). In HetNets,
macro cell base stations (MBSs) and small cell base stations
(SBSs) coexist to boost the capacity and improve the energy
efficiency. However, the dense deployment of base stations (BSs)
can significantly increase the energy consumption of networks.
In this regard, BS’s ON/OFF switching (alternatively termed as
sleep mode) approaches are considered as a pioneering technique
to save the energy of the networks. In this paper, we formulate
the ON/OFF switching problem as a noncooperative game in
satisfaction form to minimize the energy consumption while
maintaining the quality of service. To solve the game, each BS
utilizes an exploration approach, in which the BS selects its
transmission strategy based on its strategy selection frequency in
a distributed manner. The probability assigned to each strategy
corresponds to the inverse of the times the BS has chosen its
strategy. In this approach, if the BS is satisfied (i.e. its observed
utility no less than a certain threshold), it has no incentive to
change its strategy, otherwise it selects its strategy according to its
probability distribution. Furthermore, the proposed approach is
a low complexity algorithm, in which it needs to update only one
element in the vector of strategy selection frequency according to
the selected strategy. Simulation results show that the proposed
scheme yields significant performance gains up to about 37% and
52% in terms of average energy consumption and average utility,
respectively, compared to the benchmark mechanisms.

Index Terms—Heterogeneous Networks; Energy Efficiency;
Learning Algorithm; Satisfaction Algorithm; Sleep Mode.

I. INTRODUCTION

The explosive growth in demand for higher rate data ser-

vices lead to enormous challenges to meet the ever-increasing

network capacity. Heterogeneous networks (HetNets) com-

posed of macro cell base stations (MBSs) and small cell base

stations (SBSs) are emerging as the key technique to improve

the spectrum efficiency (SE) to boost the capacity. In this

regard, the next-generation wireless networks are expected to

become denser and more heterogeneous in order to target
very high data rates everywhere [1]. However, the densely

deployed HetNets may result in increased total energy con-

sumption. Therefore, significant improvement in the energy

This research is supported by “Towards Energy-Efficient Hyper-Dense
Wireless Networks with Trillions of Devices”, the Commissioned Research of
NICT, JAPAN and KDDI foundation research grant, “Energy-Efficient Radio
Resource Management for Next Generation Wireless Network”.

978-1-5386-4916-9/18/$31.00 c©2018 IEEE

efficiency (EE) is necessary. According to [2], base stations

(BSs) contribute 80% of the network’s energy consumption.

Furthermore, based on the data from Japanese operator NTT

DoCoMo [3], the energy consumption of a user equipment

(UE) versus the networks is about 1:150. Hence, the problem

of reducing the energy consumption of BSs is of utmost

importance, and thus we focus on it in HetNets. To cope

with this problem, there are the useful methods which can

be broadly classified into five categories, including network

planning and deployment, hardware solutions, energy harvest-

ing, sleep mode approaches, and optimizing EE of the radio

transmission process [4], [5]. Among them, the approaches

which are based on the sleep mode strategies, do not require to

replace and/or installing new equipments. Therefore, they are

less costly and more easier to test and implement [5]. In sleep

mode approaches, some hardware components of the BSs can

be switched off in the light load conditions. Several sleeping

strategies for BSs have been proposed in recent studies [6]–

[11].

In [6], [7], the impact of sleeping strategies on the EE

and delay is investigated. A sleep mode scheme based on the

cooperation among the BSs is proposed in [12]. The authors

in [8] propose a distributed cooperative approach for the

BS sleeping problem which is formulated as a constrained

graphical game. In [9], the BS switch-off problem is formu-

lated as a binary linear integer programming problem.To solve

the problem, a genetic algorithm is applied. To improve the

EE of the networks, ternary state transceivers for BSs are

considered in [10]. In this model, the transceiver is able to

switch between sleep, stand-by, and active modes based on

the traffic condition and quality of service (QoS) requirement.

The problem of switching off SBSs under a hyper-cellular

network architecture is investigated in [11], in which two

sleeping schemes, including random and repulsive scheme,

are considered. The authors in [13], [14], introduce a novel

form for noncooperative games, named satisfaction form, in

which players need to achieve a set of constraints instead of

optimizing the individual performance. The solution of a game

in satisfaction form is known as a satisfaction equilibrium,

which is a strategy profile where all players are satisfied.

In this paper, we propose a fully decentralized ON/OFF

switching mechanism for BSs. The problem is modeled as a
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noncooperative game in satisfaction form. To solve the game,

a low complexity exploration algorithm, compared to the algo-

rithm proposed in [15], is applied, in which unsatisfied players

select their transmission strategies based on their probability

distributions. For each player, the probability assigned to each

strategy corresponds to the inverse of the times the player has

chosen its strategy. However, in the realm of wireless com-

munications, a radio device might not provide its satisfaction.

In this case, we redefine the satisfaction threshold to achieve

satisfaction. Furthermore, the performance of the proposed

approach is assessed with the benchmark mechanisms: a ran-

dom ON/OFF switching algorithm and a regret based ON/OFF

switching mechanism [16]. By selecting a proper satisfaction

threshold, the performance of the satisfaction based approach

can significantly outperform the benchmark mechanisms.

The rest of the paper is organized as follows. Section II

presents the system model. In Section III, the BS selection

policy and the ON/OFF switching problem are described.

Section IV solves the game described in satisfaction form

by using a low complexity algorithm. Section V presents the

numerical results. Section VI concludes the paper.

Notations: Scalars and matrices are denoted by regular and

boldface symbols, respectively. The cardinality of a finite setA
is |A|. The indicator function is denoted by �Y where �Y = 1
if event Y is true, and �Y = 0 otherwise.

II. SYSTEM MODEL

Consider a self-organizing network (SON) that consists of

a set of BSs B including MBSs and SBSs. The set of UEs is

denoted by K. We assume that the BSs transmit over the same

channel, i.e. co-channel deployment. We denote by pb(t) and

gb,k(t) the transmit power of BS b ∈ B and the channel gain

between BS b and UE k ∈ K, respectively. From Shannon’s

capacity formula, the achievable transmission rate of UE k
from BS b is given by:

Rb,k(t) = ω log2(1 + γb,k(t)), (1)

where ω is the bandwidth. The signal to interference plus noise

ratio (SINR) experienced by UE k is defined by [17], [18]:

γb,k(t) =
pb(t)gb,k(t)∑

b′∈B\b pb′(t)gb′,k(t)ρb′(t) + σ2
, (2)

where ρb(t) and σ2 represent the load of BS b at time instant

t and the additive white Gaussian noise (AWGN) power,

respectively. The load of BS b can be represented as follows:

ρb(t) =
∑
k∈Kb

ϑk
Rb,k(t)

, (3)

where ϑk and Kb denote the required rate of UE k and

the set of UEs associated with BS b, respectively. From the

perspective of UEs, the BSs’ loads can be considered as a QoS

requirement [19]. In practical scenarios, the load of a BS can

not exceed the value one, due to the limited resources available

in the network [20]. Therefore, we consider the condition

0 ≤ ρb(t) ≤ 1, ∀b ∈ B, similar to [21].

We assume that BSs are enabled with sleep mode capability.

In this regard, the power consumed by BS b at time t can be

expressed as [22]:

PTotal
b (t) =

pb(t)

ηPAb (1−λfeedb )
+ PRF

b + PBB
b

Λb
, (4)

with

Λb = (1− λDC
b )(1− λMS

b )(1− λcoolb ), (5)

where PRF
b and PBB

b are the power consumed by radio fre-

quency module and baseband engine, respectively. Parameter

ηPAb denotes the power amplifier efficiency of BS b. Parameters

λfeedb , λDC
b , λMS

b , and λcoolb represent the losses which are

incurred by feeder, DC-DC power supply, main supply, and

cooling system, respectively.

III. A SATISFACTORY ON/OFF SWITCHING MECHANISM

Our objective is to propose a self-organizing mechanism

to reduce the energy consumption of the network, in which

each BS selects its transmission strategy in a fully distributed

manner. Since our focus is on downlink, we also consider

the UE association problem jointly with the BS ON/OFF

switching problem.

A. BS Selection Policy

UE k ∈ K is associated with BS b(k, t) according to:

b(k, t) = argmax
b∈B

{
pb(t)gb,k(t)

(
1− ρ̂b(t)

)}
, (6)

where ρ̂b(t) denotes the estimated load of BS b at time t,
which is calculated as follows [21]:

ρ̂b (t) = ρ̂b (t− 1) + τ(t)
(
ρb(t− 1)− ρ̂b(t− 1)

)
, (7)

where τ(t) denotes the learning rate for the load estimation.

B. Game Formulation

In this subsection, we aim at proposing a BS ON/OFF

switching algorithm based on the satisfaction game, in which

each BS need to select its transmission power and ON/OFF

state. We assume that each player selects only one strategy

at each time. Furthermore, each player can observe whether

it is satisfied or not. Since there is a tradeoff between load

and energy consumption according to (1)- (3), we consider a

utility function for each BS b ∈ B, as follows:

ub(t) = −
(
ωb · ρb(t) + φb ·

P total
b (t)

PTM
b

)
, (8)

with

PTM
b =

Pmaxb

ηPAb (1−λfeedb )
+ PRF

b + PBB
b

Λb
(9)

where ωb and φb are the weight parameters for BS b that

indicate the impact of load and energy on the utility function,

respectively. Parameter Pmax
b denotes the maximum transmit
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power of BS b. In a satisfaction-form game, each BS b is

exclusively interested in the satisfaction of its constraints.

Thus, we model the problem as the game GSF in satisfaction

form as follows:

GSF = 〈B, {Sb}b∈B, {fb}b∈B〉 , (10)

Here, B represents the set of players, Sb is the strategy set of

player b. The correspondence fb(s−b) ∈ Sb determines the set

of strategies which can satisfy player b given other players’

strategies, and it can be defined as follows:

fb(s−b) = {sb ∈ Sb|ub(t) ≥ Γb}, (11)

where Γb denotes a threshold value for player b. Therefore,

each player b ∈ B updates an individual player satisfaction

ṽb(t) according to the observed utility, as follows:

ṽb(t) =

{
1, if sb(t) ∈ fb(s−b)

0, otherwise.
(12)

If for all b ∈ B, fb(s−b) is not empty, which means all

players are simultaneously satisfied, a satisfaction equilibrium

is obtained.

Definition 1 (Satisfaction Equilibrium): A strategy profile

s′ = (s′1, . . . , s
′
|B|) is an equilibrium for the game GSF if

s′b ∈ fb(s
′
−b), ∀b ∈ B. (13)

In other words, a strategy profile s′ is an equilibrium if

the strategy at all players corresponds to a strategy that

yields satisfaction given all other players’ strategies. However,

for wireless networks, this condition appears restrictive [14].

Thus, for unsatisfied players, we can redefine the satisfaction

thresholds after a time period [15], [23]. For t = 0, each

player b selects an initial satisfaction threshold Γb. After each

N time instants, if the player is not satisfied, it decreases its

threshold by a factor δ ·|Γb|, where 0 < δ < 1 is a decremental

coefficient.

IV. TOWARDS FULLY DISTRIBUTED SATISFACTION

In this section, we implement a distributed algorithm to

converge a satisfaction equilibrium, in which the strategies

which have been less selected could have more probability

to be selected [24]. To achieve this, we propose a satisfaction

algorithm based on the strategy selection frequency (SA-SSF).

Therefore, each BS can assign a probability to each strategy

corresponding to the inverse of the times the strategy has been

selected. This approach is implemented in an iterative manner.

Let πb(t) and sb(t) denote the probability distribution assigned

to the strategies of player b and the strategy of player b at

instant t, respectively. According to the observed utility, each

BS decides whether or not to keep its current strategy. The

proposed SA-SSF is carried out as follows:

1) At time instant t = 0, each player b ∈ B selects its initial

strategy sb(0) following an arbitrary chosen probability

distribution πb(0).

2) At time instant t > 0, each unsatisfied player b selects

its strategy sb(t) according to the probability distribution

πb(t). Let Tb,i(t) denote the number of times that player

b has played strategy sb,i up to time instant t. For each

sb,i ∈ Sb, player b calculates Tb,i(t) as follows:

Tb,i(t) =
t−1∑
τ=0

�{sb(τ)=sb,i}.

The probability distribution πb(t) =
(πb,1(t), . . . , πb,|Sb|(t)) is known as the probability

distribution of exploration. Here, πb,i(t) denotes the

probability assigned to strategy sb,i, ∀i ∈ {1, . . . , |Sb|},
which can be described as follows:

πb,i(t) =

1
Tb,i(t)∑

j∈|Sb|
1

Tb,j(t)

, (14)

where Tb,i(0) = θ, ∀b ∈ B and ∀sb,i ∈ Sb, where

θ is a positive constant. After playing each strategy

sb(t) at time t, player b updates only one element,

corresponding to the played strategy sb(t), in the vector

of strategy selection frequency T b(t + 1) = (Tb,1(t +
1), . . . , Tb,|Sb|(t+ 1)), as follows:

Tb,i(t+ 1) =
{
Tb,i(t) + 1, if sb(t) = sb,i

Tb,i(t), otherwise.
(15)

The proposed satisfaction based BS ON/OFF switching

algorithm is summarized in Algorithm 1, where Tmax is the

maximum number of iterations.

V. SIMULATION RESULTS

For our simulations, we consider a HetNet deployment

scenario with a hexagonal layout, including one MBS located

in the center of area, and a set of SBSs and UEs uniformly

distributed over the area. All the results have been averaged

over a large number of independent simulation runs. The

maximum transmit power of the MBS and the SBSs are set to

46 dBm and 30 dBm, respectively [25]. The path loss from the

MBS and a SBS to a UE are L = 128.1 + 37.6log10(d) and

L = 140.7+36.7log10(d), respectively, where d is the distance

between the UE and the BS in km. The weight parameters

ωb and φb are considered to be 0.5 and 0.5, respectively,

unless we mention other values. The parameters used in the

simulations are summarized in Table I. Moreover, we demon-

strate the performance gain of the proposed satisfaction based

ON/OFF switching mechanism over the following benchmark

references:

• Always ON: all BSs transmit with their maximum power,

and are not able to switch between an ON and OFF

modes.

• Regret based ON/OFF switching: the BS ON/OFF switch-

ing problem is modeled as a noncooperative game GNF =
〈B, {Sb}b∈B, {ub}b∈B〉 in normal form. To solve the

game, each BS utilizes a distributed regret based learning
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Algorithm 1 (SA-SSF) : Learning the satisfaction equilibrium

of the game GSF = 〈B, {Sb}b∈B, {fb}b∈B〉
1: Input: πb,i(t), ṽb(t− 1), ∀b ∈ B and ∀sb,i ∈ Sb
2: Output: πb,i(t+ 1), ṽb(t), ∀b ∈ B and ∀sb,i ∈ Sb
3: Initialization: πb(0), ∀b ∈ B
4: for ∀b ∈ B do
5: Select a strategy sb(0) ∼ πb(0)
6: Calculate ub(0), ṽb(0)
7: end for
8: while 0 ≤ t < Tmax do
9: t← t+ 1

10: for ∀b ∈ B do
11: for ∀sb,i ∈ Sb do
12: Calculate T b,i(t),
13: Update πb,i(t),
14: end for
15: if ṽb(t− 1) = 1 then
16: sb(t) = sb(t− 1)
17: else
18: Select a strategy sb(t) ∼ πb(t)
19: end if
20: Calculate ub(t), ṽb(t)
21: end for
22: end while

TABLE I
SYSTEM-LEVEL SIMULATION PARAMETERS

System Parameters

Parameter Value
Carrier frequency/ Channel bandwidth 2 GHz/ 10 MHz

Noise power spectral density -174 dBm/Hz

ϑk 1800 Kbps

Number of UEs (|K|) 50

Learning rate exponent for τ 0.9

N 100

δ 1/8

BSs Parameters
Parameter MBS SBS
DC-DC loss 7.5% 9%

Mains supply loss 9% 11%

Cooling loss 10% 0%

ηPAb 31.1% 6.7%

PRFb 12.9 W 0.8 W

PBBb 29.6 W 3 W

|Sb| 2 4

Radius cell 250 m 40 m

Minimum distance MBS-SBS: 75 m
MBS-UE: 35 m

SBS-SBS: 40 m
SBS-UE: 10 m

algorithm, in which it updates a estimated utility, esti-

mated regret, and a probability distribution at each time

instant [16].

Here, the solid curves belong to the benchmark algorithms,

and the dashed curves refer to the proposed mechanism.
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Fig. 1 shows the average energy consumption per BS. For

the proposed approach, we consider four initial satisfaction

threshold values Γb ∈ {−0.3,−0.4,−0.5,−0.6}, for all BSs

in the network. We can see that, the average energy consump-

tion per BS is significantly reduced when the number of SBSs

increases. However, Fig. 1 shows the proposed satisfaction

approach with higher initial threshold (i.e. Γb = −0.3) reduces

the average energy consumption. For a network with 22
SBSs, the reduction of average energy consumption per BS

in SA-SSF with Γb = −0.3 compared to always ON and

regret based ON/OFF switching is about 37.1% and 6%,

respectively. Note that for the initial satisfaction threshold

Γb ∈ {−0.4,−0.5,−0.6}, the proposed satisfaction approach

consume more energy than the regret based ON/OFF switching

approach.

In Fig. 2, we depict the average utility per BS for dif-

ferent satisfaction thresholds. The proposed approach with

Γb = −0.3 improves the average utility per BS, compared to
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the other approaches. For instance, the SA-SSF approach with

initial satisfaction threshold Γb = −0.3 improves the average

utility per BS, respectively, 52% and 4.6% when compared

to the always ON and regret based ON/OFF switching ap-

proaches for a network with 10 SBSs.

Fig. 3 and Fig. 4 compare the average energy consumption

and average utility per BS, respectively, for different values

of weight parameters ωb and φb and the satisfaction threshold

Γb = −0.3. In Fig. 3 and Fig. 4, the first and second element

of (.,.) denote the value of φb and ωb, respectively. We can

observe that the case φb = 1 and ωb = 0 yields a better

performance in terms of decreasing energy consumption, while

it decreases the average utility per BS compared to other values

of ωb and φb.

In Fig. 5, we show the convergence time of the proposed

approach to a satisfaction equilibrium for different satisfaction
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Fig. 5. The convergence time of the proposed approach.

threshold values. From Fig. 5, we can observe that reducing

the satisfaction threshold leads to a faster convergence time,

while increasing the satisfaction threshold yields a better

performance.

VI. CONCLUSION

In this paper, we have proposed a satisfaction based BS’s

ON/OFF switching mechanism, in which the problem is for-

mulated as a satisfaction game. In order to obtain a satisfaction

equilibrium, a low complexity approach based on the strategy

selection frequencies, i.e. SA-SSF, is applied. Furthermore, the

SA-SSF can be executed in a distributed manner. Simulation

results have shown that by selecting a proper satisfaction

threshold, the proposed approach reduces the average energy

consumption, and improves the average utility per BS com-

pared to the regret based ON/OFF switching and always ON

mechanisms.
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