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Abstract—The requirement of the increasing capacity of the
communication networks promotes the massive multiple input
multiple output (MIMO), which has attracted a lot of atten-
tion among academic and industry communities. Due to the
inherent sparsity features of channel structure in uplink massive
MIMO systems, conventional methods often bring about high
computational complexity and also fail to make full use of
the structural information. In order to solve this problem, this
paper proposes a novel deep learning (DL) based super-resolution
direction of arrivals (DOA) estimation method. Specifically, it is
realized with the aids of the well-designed deep neural network
(DNN). Then we employ the DNN to carry out offline learning
and online deployment procedures. This learning mechanism
can learn the features of the wireless channel and the spacial
structures efficiently. Finally, simulation results are provided to
show that the proposed DL based scheme can achieve better
performance in terms of the DOA estimation compared with
conventional methods.

Index Terms—Massive multiple input multiple output (MI-
MO), deep learning, DOA estimation, learning policy.

I. INTRODUCTION

The anticipated 1000-fold explosive data traffic growth by
2020 will lead to great challenges in the design of fifth
generation communication systems (5G) [1]. In order to meet
this challenging goal, many advanced techniques have been
proposed, such as massive multiple input multiple output
(MIMO) [2], non-orthogonal multiple access (NOMA) [3], [4],
and Millimeter-wave (mmWave) communication [5]. Massive
MIMO, as an emerging technique in the field of array signal
processing has given rise to a great interest among the research
community in the recent years.

The channel state information (CSI) is directly concerned
with the performance of the massive MIMO system, implying
that channel estimation is a key issue in such a large-scale
uplink system. A unified transmission framework for multiuser
time division duplex (TDD)/frequency division duplex (FDD)
massive MIMO systems was explored in [6]. In [7], for lever-
aging sparsity statistics of the mmwave beamspace channel,
the authors proposed a support detection-based channel esti-
mation strategy with low pilot overhead to estimate the sparse
beamspace channel. In addition, hybrid analog and digital
(HAD) structure with two phase alignment (PA) method [8],
angle domain channel tracking approach [9], and priori aided
channel tracking scheme [10] were reported for actualizing
direction of arrivals (DOA) estimation.

Although research efforts in the above direction aim to
address super-resolution DOA estimation issue, tremendous
computational complexity induced by non-linear optimization
exists in previous researches. These works are unable to fully
exploit the structural features in the uplink massive MIMO
system. Also, traditional channel estimation methods have
difficulties in tracking the time-varying channel. Meanwhile,
since previous studies assume the channel sparsity patterns
as unknown, nonlinear reconstruction procedures are unavoid-
able. Hence, it is necessary to develop an alternative technique
to realize DOA estimation instead of simply optimizing tradi-
tional methods. Recently, the novel deep learning (DL) [11]
concept (i.e., a typical algorithm of the machine learning) was
proposed to handle big data problem and overcome nonlinear
operation challenge. Until now, some works that incorporate
DL into communication have been presented, e.g., channel
coding, MIMO, and heterogeneous network traffic control
[12]–[14].

To overcome the fundamental limitations, we investigate the
DOA estimation optimization strategy in the uplink massive
MIMO system by integrating the DL into multi-antennas
system. The main contributions of this paper are summarized
as follows.

1) To the best of our knowledge, we first consider a frame-
work that incorporates the DL technique into the mul-
tiple antennas uplink systems for spacial characteristics
detection. Specifically, deep neural network (DNN) is
introduced to extract the features of the communication
model, in which different layers can process specific
activation functions and realize corresponding mapping
relationship.

2) In our work, we propose a high-resolution DOA es-
timation scheme in sparse channel scenario. In our
framework, after obtaining real-time CSI and spacial
structure information through offline and online training,
these samples are used to train the DNN for DOA
estimation. Extensive simulation results and comparison
have verified the efficiency and robustness of the pro-
posed DOA estimation scheme in the uplink massive
MIMO system.
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II. SYSTEM MODEL

We consider a typical uplink massive MIMO system, where
one base station (BS) with a uniform linear array (ULA) of
Nt antennas and D single-antenna users are designed. Here,
the BS is assumed to have no information on the users.
Furthermore, we introduce the classical narrowband ray-based
channel model [15], [16], and the uplink model of user k can
be given as

hk = gkat(θk), (1)

where gk is denoted as the complex gain of the k-th user,
while θk is noted as the physical DOA at the k-th user of
massive MIMO. Also, the steering vector at(θk) is defined as
the array response at the BS. For a ULA, at(θk) ∈ CNt×1 can
be expressed as

at(θk) =
1√
Nt

[1, e−j2π
d
λ sin θk , · · ·, e−j2π dλ (Nt−1) sin θk ]T ,

(2)

Here, d represents the antenna spacing, while λ is defined as
the wavelength of the carrier frequency. Meanwhile, the uplink
channel matrix is A = [h1,h2, · · ·,hD] ∈ CNt×D.

Then, assuming the transmitted signal vector as x ∈ CNt×1,
the received signals at the BS can be formulated as

y = Ax + n, (3)

where n ∼ CN (0, σ2ID) is additive white Gaussian noise
(AWGN) with zero mean and variance σ2. Concretely, the
transmitted signal vector x is transmitted to the fixed channel
matrix A in all direction, and corresponding received signal
vector y is obtained.

From Eq. (1), it is observed that the DOA information is a
vital feature to model the channel matrix in such a uplink
massive MIMO system. In traditional schemes, the uplink
training leads to unavoidable pilot contamination induced by
the large number of the antennas. In contrast, the proposed DL
based approach leverages the sparsity features of the multiple
antennas system to achieve super-resolution DOA estimation
based on the physical DOA.

III. DEEP LEARNING BASED SUPER-RESOLUTION DOA
ESTIMATION

In this section, for the sake of realizing high-resolution DOA
estimation in the uplink massive MIMO systems, we provide
a DL based method which integrates the state-to-the-art DL
into the uplink systems. In the past few years, many researches
have been devoted to DOA estimation, and a lot of distin-
guished methods have been proposed, such as estimation of
signal parameters via rotational invariance technique (ESPRIT)
[17], [18] and multiple signal classification (MUSIC) [19].
Lately, paper [20] argued that eigen-decomposition method
is one of the core steps in these subspace based strategies.
Unfortunately, these methods are constrained in such a large-
scale antennas system. In the proposed DL based framework,
according to the well-known universal approximation theorem
[21], a feed-forward network with multilayer perception is

Fig. 1. DNN architecture in the proposed scheme.

capable of approximating continuous functions on compact
subsets of Rn, suggesting that the performance of the DOA
estimation can be facilitated with the aids of the strong
recognition and mapping relations of the DL.

A. Deep Neural Network Architecture

The remarkable progress in DL has brought great advance
in many promising areas, and the newly proposed DNN
technique is regarded as a revolutionary technology which has
been universally adopted among natural language processing
(NLP), computer vision (CV), and automatize driving. These
applications have corroborated that the performance of many
information systems can be elevated dedicated by the DL.
However, existing works have not focused on the DL aided
multi-antennas systems, and we are wondering if the powerful
DL can enhance its performance.

In order to spur the performance of artificial neural net-
works (ANN), DNN is developed and its learning capacity
is promoted contributed by many hidden layers designed in
the DNN. Specifically, multiple neurons exist in each hidden
layer, and the output of the network is a weighted sum of these
neurons processed by nonlinear functions. Generally speaking,
we usually use the Sigmoid function and the Rectified linear
unit (ReLU) function in the nonlinear operation, which can
be written as fS(x) = 1

1+e−x and fR(x) = max(0, x),
respectively. We assume the output of the DNN as o, and
v represents the input data, we formulate

o = f(v, w) = f (n−1)(f (n−2)(· · ·f1(v))), (4)

where n and w are denoted as the amount of layers of the
DNN and the weights of the DNN, respectively.

As exhibited in Fig. 1, in our DNN framework, we define
the length of each training sequence of the network as L,
representing dimension of the input layer of the DNN. As
a fully connected layer, it contains 256 neurons and acts
as input of the transmitted signal vectors. Then, it conveys
sparsity features to the first hidden layer with 300 neurons. To
realize encoding, the second hidden layer is equipped with
256 neurons. In order to restrain overfitting, we design a
dropout layer with retaining probability p. Afterwards, the
next layer is designed as a noise layer with 200 neurons to
corrupt the transmitted signals with the AWGN. Furthermore,
the remaining hidden layer with 128 neurons is implemented
as a decoder. In addition, the output layer is a linear layer,



in which the estimated results of the DOA based on the
uplink massive MIMO system can be obtained. Interestingly,
the ReLU function is used as the activation function in the
input layer and all the hidden layers, while we introduce the
Sigmoid function in the output layer.

B. Learning Scheme

In the proposed DL based framework, we regard the uplink
massive MIMO system as a mapping function. In order to
learn the sparsity statistics and the channel characteristics of
the developed uplink system, we derive a two-stages training
policy. In the first stage, we propose an offline training method,
which is adopted to capture the features of this multi-antennas
system. Based on the system model, we can obtain the corre-
sponding received signal y based on the fixed channel matrix
A in different direction, which is collected as the training
examples. Specifically, every time, once we transmit signal
vector vias the channel through the massive MIMO system, the
received signal y is acquired in a special direction. Hence, we
can obtain the received signals in all direction. Synchronously,
the physical DOA θk can be generated randomly to form a
training dataset with the received signal vector y, which is the
training samples of the DNN. In the next stage, online learning
mechanism is conducted based on the given channel model
and the estimated DOA can be obtained without requiring
iterations. To estimate the DOA information θk, a loss function
based on the mean square error (MSE) concept is expressed
as

loss = E{‖θk − θ̂k‖2}

=
1

DM

M∑
m=1

D∑
k=1

‖θk − θ̂k‖2, (5)

Here, M is denoted as the number of examples, while θ̂k is
noted as the prediction. Thereafter, based on the loss function
as Eq. (5), we present a novel DL based algorithm for DOA
estimation, which is illustrated as Algorithm 1.

In order to assess the performance of the proposed DL based
DOA estimation scheme, we introduce the well-known MSE
principle to evaluate the estimation error, which is given by

MSEd =
1

M

M∑
m=1

‖θk − θ̂k‖2, (9)

C. Robustness Analysis of the DL based Scheme

Although the proposed DL based scheme for DOA estima-
tion adapts to various channel conditions, it is still necessary
to investigate the robustness of a DL based algorithm. We now
consider the two typical cases to validate the robustness of the
proposed scheme. For one thing, we test how the regularization
item impacts on the performance of the DL based method.
Also, extending our proposed method to various number of
the hidden layers is important given the widely commercial
use, but totally confused. To answer these questions, TABLE
I and TABLE II present the results when adopting the hidden
layers and regularization item of the DNN.

Algorithm 1 DNN based DOA estimation scheme in the
uplink massive MIMO system.
Input: Environment simulator, DNN, received signal vector

θk.
Output: θ̂k.

1: Initialize small constant τ with error threshold as τ0 =
10−7, and gradient accumulation variable as u = 0. Also,
initialize global learning rate η.

2: Start the environment simulator to generate wireless chan-
nel, and add random noise or distortion into the channel.

3: Process the uplink massive MIMO model, and obtain the
corresponding received signal y.

4: Combined with the received signal vector θk, we collect
the training dataset Ψ.

5: while τ ≥ τ0 :
6: Sample a minibatch of M samples from the training

dataset Ψ.
7: Construct the proposed DNN, and operate the network

based on the selected data.
8: Update the output x̂ of the DNN.
9: Compute gradient g as

g = 1/M 5θk
∑
m

‖θk − θ̂k‖2 (6)

10: Accumulate squared gradient u, which is represented as

u = u+ g � g (7)

11: Calculate the update step of the estimated DOA θ̂k of the
k-th user as

∆θ̂k = − η

τ0 +
√
u
� g (8)

12: Update the output of the estimated DOA θ̂k: θ̂k = θ̂k +
∆θ̂k.

13: end while
14: Obtain the estimated DOA θ̂k after processing the DNN.
15: return: θ̂k.

TABLE I
TEST ACCURACY FOR HIDDEN LAYERS AND REGULARIZATION TERM.

Hidden Layers Method Test Accuracy(%)

2 DNN 98.122
DNN + L2 Regularization 98.763

3 DNN 99.001
DNN + L2 Regularization 99.003

4 DNN 99.569
DNN + L2 Regularization 99.603

5 DNN 99.722
DNN + L2 Regularization 99.751



TABLE II
OPERATION TIME FOR HIDDEN LAYERS AND REGULARIZATION TERM.

Hidden Layers Method Operation time(s)

2 DNN 0.0134
DNN + L2 Regularization 0.0134

3 DNN 0.0152
DNN + L2 Regularization 0.0168

4 DNN 0.0188
DNN + L2 Regularization 0.0189

5 DNN 0.0191
DNN + L2 Regularization 0.0193

As we can see from TABLE I, due to the regularization term
can constrain the overfitting risk and optimize generalization
performance, the proposed DL based scheme attains further
improvement with the aids of the L2 regularization terms
method. We also see that the test accuracy is not been degraded
when decreasing the number of hidden layers, inferring that
the proposed DL based scheme is robust and efficient. Then,
we now turn to evaluate the computational complexity of the
DL based strategy, the operation time in the second stage
(i.e., testing stage) is provided when changing the number
of the hidden layers. We observe from TABLE II that the
computational complexity of the proposed DL based scheme
is low and this index is keeping stable with different hidden
layers. Furthermore, it is clear that adding regularization term
is not required extra operation time. Thus, the proposed DL
based scheme for DOA estimation in the uplink massive
MIMO systems is robust and high-efficiency.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, numerical analysis for the DOA estimation of
the proposed DL based schemes is presented. Here, we adopt
the popular Keras to design this DNN based framework. In our
simulation, we consider a typical massive MIMO system, in
which the BS is equipped with Nt = 128 antennas and D = 32
users. Also, d = λ/2 and the wavelength λ of the carrier
is selected as 5 mm. Moreover, the DOA θk,i is randomly
distributed in the space [−π/2, π/2]. Additionally, the basic
learning rate of the DNN is set as 0.024 and the learning rate
decay is set as 0.96, while the batch size is 1200.

Fig. 2 shows the MSE performance of the DOA estimation
against SNR of the proposed DL based DOA estimation
scheme with different length L of the training sequences, in
which L = 4 bits, L = 8 bits, L = 16 bits, and L = 32 bits
are considered. It can be seen from Fig. 2 that the MSE of the
DOA estimation is reducing with the increasing signal to noise
ratio (SNR), and it becomes stable gradually until the SNR is
large enough. Also, we can see from the simulation results that
the MSE performance can be enhanced when adopting longer
training sequences. This result is dedicated by the fact that
longer length of training sequence can stir the convergence of
the training stage of the DNN.

The performance comparison in terms of the MSE of the
DOA estimation against SNR is shown in Fig. 3, where the
number of θ consisted in a sample is set as 4, 8, 16, and 32,
respectively. Here, the length of the training sequence is initial

Fig. 2. MSE performance of the DOA estimation of the proposed DL based
scheme when the length of training sequence is 4,8,16,and 32 (bits).

Fig. 3. MSE performance of the DOA estimation of the proposed DL based
scheme when the number of θ is 4, 8, 16 and 32.

as 16 bits. It can be seen from Fig. 3 that the MSE performance
in the case of 32 outperforms than that of other cases, which
implies that adding more information of the physical DOA
can elevate the performance of the DOA estimation based on
the proposed scheme in the uplink massive MIMO system. In
addition, it is pointed out that this advantage is based on the
fact that more θ can accelerate the learning and representation
procedures of the wireless channel statistics in the proposed
DL based scheme.

Fig. 4 exhibits the MSE performance of the DOA estimation
against the SNR of the proposed DL based scheme, SBEM
scheme [6], PA channel tracking scheme [10], ADMA user
scheduling scheme [9], and MUSIC scheme [19], respectively.
We can observe that the MSE performance can be improved
with higher SNR among all the methods. Particularly, the
proposed DL scheme has about one order of magnitude



Fig. 4. Comparison of the MSE performance of the DOA estimation of the
proposed DL based scheme, SBEM scheme, PA channel tracking scheme,
ADMA user scheduling scheme, and MUSIC scheme.

reduction in terms of the MSE performance compared with
the PA channel tracking method, which benefits from the DL
based technique can realize end-to-end optimization whereas
enormous channel power leakage and tremendous performance
loss are induced by the selection of the single spatial support
with the maximum amplitude for transmission of the method
in [10]. Also, the MSE performance of the DOA estimation
of the proposed DL based scheme outperforms that of the
SBEM scheme, the ADMA user scheduling approach, and
the MUSIC scheme, for the reason that the DOA can be
obtained directly in angle domain with the aids of the powerful
DL technique and the excellent generalization ability of the
learning mechanism of the DNN. Additionally, the significant
enhancement of the MSE performance of the DOA estimation
is not required for high computational complexity in our
proposed DL based scheme.

V. CONCLUSIONS

In this paper, we have proposed a DL based super-resolution
DOA estimation in the uplink massive MIMO system. At first,
we developed a typical massive MIMO system model. Then,
we designed the DNN structure and mapping transformation
of each layer of the DNN to learn the statistics of the channel
model and capture the spatial features in angle domain.
Particularly, the offline learning policy and online deployment
method were provided and was incorporated into the proposed
DNN to detect the wireless channel. In order to realize super-
resolution DOA estimation, a DL based scheme was proposed
in this paper. Simulation results have demonstrated that the
proposed DL based scheme can achieve better MSE perfor-
mance in terms of DOA estimation compared with previous
methods. Importantly, we explored a new way to accelerate
the development of conventional communication, showing that
incorporating the DL into wireless communication scenarios
is a feasible.
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