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Abstract—Blind selected mapping (blind SLM) is an effective
peak-to-average power ratio (PAPR) reduction technique which
does not require side information sharing. In the blind SLM,
the receiver employs phase rotation sequence estimation, which
can be carried out using maximum-likelihood (ML) estimation
or 2-step sequence estimation using Viterbi algorithm. ML esti-
mation typically requires much higher computational complexity.
Recently, we showed that the use of codebook generated from a
2-level phase rotation set {0◦, 135◦} and the ML phase rotation
sequence estimation based on the fourth-power QAM constella-
tion requires much less complexity compared to the conventional
blind SLM with 3-level phase rotation set {0◦, 120◦, 240◦} and
ML estimation based on original QAM constellation. However,
for a large number of phase rotation sequences, the compu-
tational complexity still remains high. In this paper, in order
to further reduce the computational complexity, we propose a
combined use of a 2-level phase rotation set {0◦, 135◦} and the
2-step sequence estimation. The use of 2-level phase rotation
set significantly reduces the number of branches and states in
the Viterbi algorithm and hence, leads to complexity reduction.
Simulation results confirm that the blind SLM using the 2-level
phase rotation set and the 2-step sequence estimation has less
computational complexity while achieving similar BER to the
ML sequence estimation.

Index Terms—PAPR, OFDM, single carrier, SLM

I. INTRODUCTION

The design of low peak-to-average power ratio (PAPR)

waveforms remains important even in the fifth-generation (5G)

mobile communication systems, especially for user equip-

ments (UEs) [1]. Single carrier (SC) signals generally have

lower PAPR than orthogonal frequency division multiplexing

(OFDM) signals [2]. However, PAPR of SC signals increases

due to transmit processing such as band-limit filtering and

precoding [3], indicating that PAPR reduction is also necessary

for SC transmission.

We have been studying a PAPR reduction technique called

blind selected mapping (blind SLM) [4]. It can lower the

PAPR effectively by multiplying the original data symbol

sequence with a phase rotation sequence. The phase rotation

sequence is selected from a codebook of random sequences

generated from a set {0◦, 120◦, 240◦} [4]. The receiver needs

to estimate the phase rotation sequence which has been used at

the transmitter side in order to carry out data de-modulation.

The blind SLM in [4] is compatible with both OFDM and

SC signals. Its applications to multiple-input multiple-output

(MIMO) transmissions, such as space-time block coded trans-

mit diversity (STBC-TD) and multiuser MIMO (MU-MIMO),

were discussed in [5] and [6], respectively.

The phase rotation sequence estimation in [4-6] is the

maximum likelihood (ML) estimation based on minimum

Euclidean distance between the de-mapped symbols and the

original signal constellation. It works effectively but requires

high computational complexity. A 2-step phase rotation se-

quence estimation using Viterbi algorithm [7] was proposed to

reduce the complexity, but its capability is obvious only when

the number of phase rotation sequences is high. Recently,

we showed that the use of codebook generated from a 2-

level phase rotation set {0◦, 135◦} and the ML phase rotation

estimation based on the fourth-power QAM constellation [8,9]

requires less computational complexity than those of [4-7].

This is because the number of signal points in the fourth-power

constellation is much less than the original QAM, leading to

reduced number of candidates in minimum Euclidean distance

search. It is shown in [9] that the new ML phase rotation

sequence estimation achieves less computational complexity

while keeping the same bit error rate (BER) as the conven-

tional blind SLM in [4-6]. However, since the complexity of

the ML estimation in [9] exponentially increases as the number

of phase rotation sequences increases, the complexity becomes

higher than the 2-step estimation in [7].

Meanwhile, the 2-step sequence estimation using Viterbi

algorithm in [7] was designed and evaluated using 3-level

phase rotation set. The results of [7] encourage us to use

Viterbi algorithm in the sequence estimation. Hence, in this

paper, to further reduce the computational complexity, we

apply 2-level phase set {0◦, 135◦} to the blind SLM with

2-step sequence estimation using Viterbi algorithm and the

fourth-power QAM constellation. The use of fourth-power

constellation reduces the number of possible paths to be

considered during survival path searching. Furthermore, the

use of 2-level phase set significantly reduces the number of

branches and states in the Viterbi algorithm compared to [7].

These reasons lead to complexity reduction. In this paper, the

new blind SLM is called a modified blind SLM in short.

Performance evaluation of the modified blind SLM is car-

ried out in terms of PAPR, BER and computational complexity

by computer simulation assuming single-user transmission,

both OFDM downlink and SC uplink, using single-antenna

(SISO) and STBC-TD. The simulation results confirm that the

blind SLM using the 2-level phase rotation set and the 2-step

sequence estimation achieves low computational complexity

even when the number of phase rotation sequences is high,

while keeping the BER similar to the ML estimation.

II. OVERVIEW OF CONVENTIONAL BLIND SLM IN [4-7]

Here, we briefly describe the concept of blind SLM in [4-7].

For simplicity, STBC-TD signal representation is described,

where the representation for SISO is obtained by setting the

number of base station (BS) antennas (NBS) and UE antennas

(NUE), STBC coding parameters J and Q [5] to be 1. The
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Fig. 1. Transceiver system model with blind SLM.

number of transmit antennas (Nt) becomes NBS for OFDM

downlink and NUE for SC uplink, respectively. We assume

that STBC-TD with transmit filtering is used in the OFDM

downlink, while the STBC-TD without transmit filtering is

used in SC uplink. The transceiver models with blind SLM

can be depicted by Fig. 1.

A. SLM algorithm

Assuming that a transmit waveform is {s(n);n = 0 ∼ Nc−
1}, PAPR of a V -times oversampled block is given by

PAPR({s(n)})= max{|s(n)|2, n=0, 1
V , 2

V , . . . , Nc − 1}
1
Nc

∑Nc−1
n=0 |s(n)|2

. (1)

In STBC-TD transmission, information sequence to be

transmitted is data-modulated and is divided into J blocks,

obtaining the j-th block of Nc-length data symbol {dj(n);n =
0 ∼ Nc − 1, j = 0 ∼ J − 1}. {dj(n)} is phase-rotated by the

selected phase rotation sequence {Φm̂(j)(n);n = 0 ∼ Nc−1},

obtaining the phase-rotated block {dj,m̂(n);n = 0 ∼ Nc −
1, j = 0 ∼ J − 1}. {dj,m̂(n)} is then transformed into

frequency-domain components block {Dj,m̂(j)(k); k = 0 ∼
Nc−1} by Nc-point DFT. After that, {Dj,m̂(j)(k)} are passed

through transmit processing such as STBC coding, obtaining

the frequency-domain signal at the nt-th transmit antenna

(nt = 0 ∼ Nt − 1) and the q-th timeslot (q = 0 ∼ Q− 1) as

{Snt,q,m̂(j)(k); k = 0 ∼ Nc − 1} and its time-domain signal

after inverse DFT (IDFT) as {snt,q,m̂(j)(n);n = 0 ∼ Nc−1}.

If we assume that NUE=2 while NBS is arbitrary, J=Q=2

and Snt,q,m̂(j)(k) can be described by the following matrix

representations.[
S0,0,m̂(j)(k) S0,1,m̂(j)(k)
S1,0,m̂(j)(k) S1,1,m̂(j)(k)

]

=

√
2Es

Ts

[
D0,m̂(j)(k) −D∗

1,m̂(j)(k)

D1,m̂(j)(k) D∗
0,m̂(j)(k)

]
for uplink, (2)

⎡
⎢⎣

S0,0,m̂(j)(k) S0,1,m̂(j)(k)
...

...

SNBS−1,0,m̂(j)(k) SNBS−1,1,m̂(j)(k)

⎤
⎥⎦ for downlink,

=

√
2Es

Ts
WT (k)

[
D0,m̂(j)(k) −D∗

1,m̂(j)(k)

D1,m̂(j)(k) D∗
0,m̂(j)(k)

] (3)

where WT (k) is the transmit filtering [5]. Es and Ts are

symbol energy and symbol duration, respectively.

In SC uplink STBC-TD without transmit filtering (i.e., em-

ploying band-limiting filter only), the PAPR remains the same

as original transmit block after applying STBC coding since

the coding matrix employs only complex conjugate operation

[6]. Hence, we can select a phase rotation sequence for each of

{dj(n)} prior to applying STBC coding. The selected phase

rotation sequence for the j-th data block, {Φm̂(j)(n)} with the

sequence number m̂(j), is determined by

m̂(j) = arg min
m=0∼M−1

(PAPR({Φm(n)dj(n)})) , (4)

where {Φm(n);n = 0 ∼ Nc−1,m = 0 ∼ M−1} is the m-th

phase sequence in a codebook and is generated randomly as

Φm(n) ∈ {ei0, ei3π/4} (equivalent to {0◦, 135◦}), except the

first sequence is defined as {Φ0(n) = ej0;n = 0 ∼ Nc − 1}.

Meanwhile, Eq. (4) is not available for STBC-TD with

transmit filtering due to matrix multiplication. In this case,

selection of a phase rotation sequence which minimizes the

maximum PAPR value (Mini-max) among all Nt (=NBS for

OFDM downlink) transmit antennas is used. The selected

phase rotation sequence for all J data blocks, {Φm̂(j)(n)}
with the sequence number m̂(j) = m̂, is determined by

m̂=arg min
m=0∼M−1

⎛
⎝ max

nt=0∼Nt−1
q=0∼Q−1

PAPR ({snt,q,m(n)})
⎞
⎠. (5)

The selection in Eq. (5) is sub-optimal and therefore PAPR

increases when Nt increases. However, the phase rotation

estimation at the receiver is kept simple and no major changes

on filtering weights calculation is required. Note that the

criterion in Eq. (5) also can be used for MU-MIMO [6].

B. Phase rotation sequence estimation

After the receive signal processing, phase rotation sequence

estimation is carried out by calculating Euclidean distance be-

tween the de-mapped signal (i.e. multiplied by {Φ∗
m̂(j)(n);n =

0 ∼ Nc − 1}) and original constellation. If the de-mapping

is done correctly, the de-mapped signal should be very close

to the original constellation and hence, its distance from

the nearest QAM symbol is very small. The phase rotation
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sequence associated with the de-mapped signal having the

minimum averaged distance is selected.

Assuming the j-th time-domain received block after em-

ploying receive processing (i.e., MMSE-FDE, STBC decoding

and IDFT for SC uplink, and only STBC decoding for OFDM

downlink) and before de-mapping is {d̂j(n);n = 0 ∼ Nc −
1, j = 0 ∼ J − 1}, the estimated phase rotation sequence can

be found by

m̃(j) = arg min
m=0∼M−1

(
Nc−1∑
n=0

min
C∈Ψmod

∣∣∣Φ∗
m(n)d̂j(n)−C

∣∣∣2
)
, (6)

where Ψmod is the original constellation (e.g. QAM map-

ping). Eq. (6) can be carried out based on either ML [4] or

Viterbi algorithm [7]. Meanwhile, when the phase rotation set

{0◦, 135◦} is used, we can relax Eq. (5) by considering the

distance between the fourth-power of the de-mapped symbols

and the fourth-power of QAM symbols [8,9], which is

m̃(j)=arg min
m=0∼M−1

(
Nc−1∑
n=0

min
C∈Ψ4

mod

∣∣∣�{(Φ∗
m(n)d̂j(n))

4}−�{C}
∣∣∣
)
,

(7)

where Ψ4
mod is a set of fourth-power QAM constellation. The

size of Ψ4
mod is generally much less than that of Ψmod because

of an existence of complex-conjugated pairs in Ψmod. The

above fact contributes to complexity reduction. Although Eq.

(7) achieves low-complexity phase rotation sequence estima-

tion, it still needs to compute the 2D-distance for all phase

rotation sequences, then the computational complexity is high

when M is large.

III. 2-STEP PHASE ROTATION ESTIMATION USING THE

FOURTH-POWER CONSTELLATION

A modification of 2-step sequence estimation by considering

the fourth-power constellation is expected to keep complexity

of blind SLM receiver low in every M . Here, we describe the

modified 2-step sequence estimation by dividing this session

to 2 parts; Viterbi algorithm and sequence verification. Since

the phase rotation sequence estimation is done for one received

block, we ignore the index j in STBC-TD for simplicity. Here

below, the Viterbi algorithm is used to estimate the phase

rotation only, where the data decision is not included.

A. Viterbi algorithm

Firstly, we define an objective function with objective metric

ε based on Eq. (7). By neglecting the codebook and assuming

that ΦSLM is a set of possible phase rotation {ei0, ei3π/4}, ε
is expressed by

ε =

Nc−1∑
n=0

min
φ(n)∈ΦSLM

C∈Ψ4
mod

(∣∣∣�{(φ∗(n)d̂(n))4}−�{C}
∣∣∣) , (8)

{φ(gn)=1}

{φ(gn)=ei3π/4}

{φ(gn)=1}

{φ(gn)=ei3π/4}

{φ(gn)=1}

{φ(gn)=ei3π/4}

n = N−1 n = N n = N+1

gn = 0 

gn = 1 

St
at

e Time

ζ(g′N−1→gN) ζ(g′N→gN+1)

Fig. 2. Illustration of 2-state trellis.

Then, ε at time index n = N , 0 ≤ N ≤ Nc − 1 is written by

ε(N)=
N∑

n=0
min

φ(n)∈ΦSLM

C∈Ψ4
mod

∣∣∣�{(φ∗(n)d̂(n))4} − �{C}
∣∣∣

=ε(N − 1)+ min
φ(N)∈ΦSLM

C∈Ψ4
mod

∣∣∣�{(φ∗(N)d̂(N))4} − �{C}
∣∣∣. (9)

By using Eq. (9), we can search an optimal phase rotation

sequence {Φopt(n);n = 0 ∼ Nc − 1} by using Viterbi

algorithm [7,10]. We assume that gn represents the g-th state

(g = 0 ∼ Gmax − 1) at the time index n. The first term and

the second term in Eq. (9) can be considered as accumulated

path metric entering a state gN and a branch metric from g′N
to gN+1, respectively. Here, we define the path metric and

branch metric as ε(gN ) and ζ(g′N → gN+1). A trellis diagram

when Gmax = 2 can be shown in Fig. 2 as an example.

The initial path metric of all states at sample index n = −1
is set as ε(g−1) = 0. At a time index n = N where 0 ≤ N ≤
Nc − 1, the branch metric is expressed by

ζ(g′N→gN+1)=min
C∈Ψ4

mod

∣∣∣�{(φ∗(gN+1)d̂(N+1))4}−�{C}
∣∣∣. (10)

Here, we change the phase rotation as a function of time index

φ(N+1) to φ(gN+1), which is the phase rotation value stored

in the state g at time N + 1. The path metric entering state

gN+1 is selected by the following criterion.

ε(gN+1) = min
g′
N=0∼Gmax−1

(ε(g′N ) + ζ(g′N → gN+1)) . (11)

Note that the selection of paths and branches in Eqs. (10) and

(11) are repeated until n = Nc−1. Once the selection is done

until n = Nc−1, the surviving path metric which corresponds

to an optimal state number gn,opt and optimal phase sequence

{Φopt(n) = φ(gn,opt);n = 0 ∼ Nc − 1} can be determined by

backward computation as follows.

gNc−1,opt=arg min
gNc−1=0∼Gmax−1

ε(gNc−1), (12a)

gn′,opt=arg min
gn′=0∼Gmax−1

(ε(gn′)+ζ(gn′ →gn′+1,opt)), (12b)

where n′ = Nc−2, Nc−3, . . . , 0. Since the blind SLM uses 2-

value phase rotation, Gmax can be set as 2P where P is the time

memory of a state (i.e., a particular state gn is determined as a

set of phase rotation for time index n−P−1, n−P−2, . . . , n.

The algorithm in Eqs. (10)-(12) can be used without changes

but it needs to start from index n = P − 1.

Besides constructing the trellis diagram based on Eqs.

(8)-(12), we utilize the phase rotation sequence codebook

and remove the redundant branches and states prior to the

estimation [7]. Fig. 3 shows an example of a trellis constructed

by setting Nc = 32 and M = 16, where we can observe that

the trellis diagram is sparse and the use of 2-level phase set

requires less number of branches and states than that of 3-level

phase set, consequently requires lower complexity than the full

trellis diagram. It was discussed in [7] that an increasing of

Gmax can improve the estimation accuracy, but also increases

the complexity due to many surviving branches and states.

B. Verification and correction

The Viterbi algorithm in Sect.III-A is focusing at selecting

the path and the corresponding phase rotation sequence which

provide the lowest distance from the fourth-order constellation.

Therefore, there exists probability that the resultant sequence
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TABLE I
SIMULATION PARAMETERS

Modulation
Data modulation 16QAM

FFT/IFFT block size Nc = 256
Cyclic prefix length Ng = 16
Phase sequence type Random polyphase

Blind SLM
No. of sequences M = 1∼1024

parameter
Phase sequence Maximum-likelihood,

estimation method 2-step estimation
Oversampling factor V = 8

Channel
Fading type

Frequency-selective
block Rayleigh

Power delay profile
symbol-spaced

16-path uniform

User equipment
No. of UE antennas NUE = 2
Channel estimation Ideal

Base station

No. of BS antennas NBS = 4
Rx filter (uplink) MMSE-FDE

Tx filter (downlink) Maximal ratio (MRT)-FDE
Channel estimation Ideal

{Φopt(n);n = 0 ∼ Nc − 1} is not in the predefined code-

book due to frequency-selective fading and noise [7]. Here,

verification and correction are introduced for checking the

similarity between {Φopt(n)} and the existing sequences in the

codebook. We can use the Hamming distance as the indicator

since there is no effect from the difference in rotation angle

to the data detection error.

Let {Φopt(n);n = 0 ∼ Nc − 1} be the resultant phase

rotation sequence obtained from the Viterbi algorithm. The

estimated phase rotation sequence to be used in de-mapping

{Φm̃(n);n = 0 ∼ Nc−1}, with the sequence number m̃, can

be determined by

m̃ = arg min
m=0∼M−1

b ({Φopt(n)}, {Φm(n)})

= arg min
m=0∼M−1

(
Nc−1∑
n=0

(Φopt(n)⊕ Φm(n))

)
, (13)

where b ({A}, {B}) denotes the Hamming distance between

sequence A and B and ⊕ is exclusive or operation [11].

Finally, the soft-decision data symbol after de-mapping and

before de-modulation {d̃(n);n = 0 ∼ Nc − 1} is obtained

by {d̃(n) = Φ∗
m̃(n)d̂(n);n = 0 ∼ Nc − 1}. Note that when

the STBC-TD is used, the estimated phase rotation sequence

should be indexed with j as {Φm̃(j)(n);n = 0 ∼ Nc − 1},

with the corresponding sequence number m̃(j), j = 0 ∼ J−1.

TABLE II
COMPUTATIONAL COMPLEXITY PER ONE TRANSMIT BLOCK (16QAM)

No. of real-valued No. of real-valued
multiplications additions

ML estimation,
M×(36Nc + 1) M×(51Nc + 1)original [5]

ML estimation,
M×(15Nc + 1) M×(12Nc + 1)fourth-order [9]

2-step estimation,
38×Ntb (51×Ntb) +MNcoriginal [7]

2-step estimation,
17×Ntb (12×Ntb) +MNcfourth-order (Proposed)

Remark: Identical for SC and OFDM, Ntb is the number of branches used

in Viterbi algorithm for one received block (maximum is (Gmax)2×Nc).
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Fig. 4. PAPR0.1% versus computational complexity.

IV. PERFORMANCE EVALUATION

Simulation parameters are summarized in Table I. Single-

user SISO or STBC-TD are assumed in this paper, while

channel coding is not considered for simplicity. Path loss and

shadowing loss are not considered. Phase rotation codebook

are generated randomly as Φm(n) ∈ {ei0, ei2π/3, ei4π/3}
for conventional blind SLM using 3-level phase rotation

set and the estimation based on original QAM mapping,

and Φm(n) ∈ {ei0, ei3π/4} for the modified blind SLM.

Performance evaluation is discussed and compared with the

conventional blind SLM in [4-7] using either ML or 2-step

phase rotation sequence estimation, but based on original

QAM constellation.
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A. PAPR vs. computational complexity

We consider the PAPR value at complementary cumulative

distribution function (CCDF) is 10−3 and called PAPR0.1%.

Computational complexity is defined by the number of real-

valued addition operations and assuming that the complexity

of real-valued multiplication is approximately 3 times of real-

valued addition [12]. The total complexity of phase rotation

sequence estimation is summarized in Table II. The com-

plexity of 2-step estimation based on original constellation

is calculated using Viterbi algorithm with Gmax = 27 [7]. In

addition, the complexity of modified blind SLM is evaluated

at Gmax = 8.

Fig. 4 shows the PAPR0.1% versus total computational

complexity of STBC-TD using the modified blind SLM and

the conventional blind SLM in [5], [7] and [9]. Transmission

scheme with the tradeoff mark in the bottom-left of Fig. 4

means it provides low PAPR with low-complexity receiver.

PAPR reduces when M is large in all schemes, but the

total complexity also increases. The use of 2-step estimation

with original constellation can reduce the complexity while

maintaining the same PAPR as that of conventional blind

SLM with ML estimation in [5], but the complexity reduction

capability is obvious when M > 64.

The use of ML estimation with fourth-power constellation

[9] can reduce the complexity even when M ≤ 64 due to

less number of signal points in the minimum Euclidean dis-

tance calculation. However, the complexity of ML estimation

using fourth-order constellation becomes higher than 2-step

estimation using original constellation when M > 64. This is

because the complexity of ML estimation is a function of M ,

while the complexity of 2-step estimation mostly depends on

Ntb, which is almost constant when M is large.

The modified blind SLM can significantly reduce computa-

tional complexity at the receiver compared to the conventional

blind SLM for the given PAPR. The use of 2-level phase

set can set Gmax to be less than that of 3-level phase set at

the same number of time memory (i.e. 33 = 27 for 3-level

phase set but only 23 = 8 for 2-level phase set). Moreover,

the use of fourth-order constellation reduces the number of

signal points considered in branch metric calculation and

consequently contributes to complexity reduction [8,9].

For a given PAPR reduction of 3 dB from the OFDM/SC

transmissions without SLM (equivalent to M = 256), the re-

quired computational complexity of phase rotation estimation

in the modified blind SLM is only 3% of the ML estimation

using original constellation [5], 9% of the ML estimation using

fourth-order constellation [9], and 10% of the 2-step estimation

using Viterbi algorithm based on the original constellation [7].

The above result is identical for both OFDM downlink and SC

uplink transmissions.

B. BER

Fig. 5 shows the average uncoded BER performance of

SISO and STBC-TD with NBS = 4, NUE = 2 and equipped

with blind SLM as a function of average received bit energy-

per-noise power spectrum density (Eb/N0). The BER per-

formances of transmission without blind SLM and the con-

ventional blind SLM in [5], [7] and [9] are also plotted for

comparison. The number of available phase rotation sequences

is set to be M = 256.
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Fig. 5. Uncoded BER performance.

The use of blind SLM with phase rotation sequence esti-

mation achieves worse BER than that of without blind SLM

in every scheme when the Eb/N0 is low, i.e., Eb/N0 < 0 dB

(2 dB) for SC uplink (OFDM downlink) STBC-TD. This is

because the impact from fading and noise leads to the difficulty

in classification between the symbols obtained from correct de-

mapping and that of incorrect de-mapping. However, there is

no significant BER degradation when either the conventional

blind SLM in [5], [7], and [9], or the modified blind SLM is

used. This emphasizes the attractiveness of the modified blind

SLM since it achieves low-complexity estimation without

significant degradation on BER and PAPR.

V. CONCLUSION

In this paper, we aim at achieving a low-complexity phase

rotation sequence estimation even when M is large. We intro-

duced a modified blind SLM using the 2-level phase rotation

set {0◦, 135◦} and the 2-step sequence estimation based on the

fourth-power constellation. Our modified blind SLM with the

2-level phase rotation set and the 2-step sequence estimation

using Viterbi algorithm and the fourth-order constellation

achieves low computational complexity due to the following

reasons; reduction of branches and states in Viterbi algorithm

(contributed by the use of 2-level phase set) and reduction of
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possible paths to be considered during survival path search-

ing (contributed by the use of fourth-order constellation).

Simulation results assuming Nc=256 and Gmax=8 confirmed

that our modified blind SLM can significantly reduce the

computational complexity at the receiver to be only 3% of the

conventional blind SLM for a given PAPR reduction capability

of 3 dB. It was also confirmed that there is no significant BER

degradation compared to the transmission without blind SLM

when the received Eb/N0 > 2 dB for STBC-TD transmission.

In addition, our modified blind SLM can be applied to MU-

MIMO transmission (both SC uplink and OFDM downlink)

without major modification.
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