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Adaptive Prediction Iterative Channel Estimation for

Combined Antenna Diversity and Coherent Rake

Reception of Multipath-Faded DSSS Signals

Shinsuke TAKAOKA†, Student Member and Fumiyuki ADACHI†, Regular Member

SUMMARY Adaptive prediction iterative channel estima-
tion is presented for combined antenna diversity and coherent
rake reception of direct sequence spread spectrum (DSSS) signals.
Its first stage uses pilot-aided adaptive prediction channel estima-
tion, while the succeeding iteration stages use decision feedback
and moving average filtering for channel re-estimation. The bit
error rate (BER) performance of DSSS signal computer simu-
lations evaluate transmission in a frequency selective Rayleigh
fading channel. It is found that the adaptive prediction itera-
tive channel estimation is superior to the non adaptive iterative
channel estimation using the conventional weighted multi-slot av-
eraging (WMSA) filtering at the first iteration stage, particularly
in a fast fading channel.
key words: iterative channel estimation, pilot symbol, DSSS,

fading channel

1. Introduction

In mobile radio communications, the received signal ex-
periences multipath fading, which is produced by inter-
ference of many waves having different Doppler shifts
created by reflections and reflections by nearby build-
ings surrounding a mobile station [1]. The maximum
Doppler shift of the faded signal becomes as high as
185 Hz for a carrier frequency of 2 GHz and a mobile
user’s traveling speed of 100 km/h. For coherent detec-
tion of received signals, channel estimation is necessary.
To perform coherent detection in such a fast fading
channel, pilot-aided channel estimation was proposed
[2], [3], which uses periodically transmitted pilot sym-
bols to estimate the instantaneous complex-valued gain
of the fading channel. In the fast fading channel, the
channel gain varies rapidly. To cope with fast fading,
first and second order Gaussian interpolation methods
can be used [3], [4]. Recently, a pilot-aided channel es-
timation called weighted multi-slot averaging (WMSA)
channel estimation was proposed for coherent rake re-
ception of direct sequence code division multiple access
(DS-CDMA) cellular communications system [5].

The WMSA channel estimation consists of the
following two steps. Pilot symbol block is time-
multiplexed onto the data symbol sequence to be trans-
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mitted. In the first step, the instantaneous channel
gain at the center time position of each pilot block is
estimated by coherent addition of pilot symbols in the
block. Then, at the second step, the 2K instantaneous
channel gains are input to a 2K-tap FIR filter to es-
timate the channel gain at each data symbol position
in the data slot of interest. In [5], the 2K tap weights
are optimized based on computer simulations. K = 1
WMSA is equivalent to a channel estimation using sim-
ple average of two pilot blocks belonging to the begin-
ning and end of the data slot of interest [6]. Using the
time invariant tap-weights cannot always minimize the
bit error rate performance (BER) in changing fading
environment due to user’s movement. An adaptive up-
dating method of the tap weights was proposed in [7],
[8].

To further improve channel estimation, the num-
ber of pilot symbols needs to be increased; but the
transmit power efficiency degrades. Decision feedback
channel estimation can be used to increase the equiva-
lent number of pilot symbols [9], [10]. Since combined
data (by feedback) and pilot-aided channel estimation
well matches a signal detection with iterative structure,
this is employed for multistage interference cancellation
[11], [12]. Of course, channel estimation itself can incor-
porate iterative structure. Recently, iterative channel
estimation was applied to each stage of multistage in-
terference cancellation [13]. Another example is a 2-
stage receiver, in which predictive or non predictive
channel estimation is first applied to make tentative
decision and then, re-channel estimation based on the
decision feedback of tentative decisions and removing
data-modulation from the received signal samples is ap-
plied for better channel estimation [14]. Incorporating
an iterative structure can extend this 2-stage receiver
to a receiver with iterative channel estimation.

In this paper, adaptive prediction iterative chan-
nel estimation is presented for combined antenna di-
versity and coherent rake reception of direct sequence
spread spectrum (DSSS) signals. The first iteration
stage uses a pilot-aided adaptive prediction [8] and the
second and later iteration stages use decision feedback
and moving average filtering. The remainder of this pa-
per is organized as follows. A transmission system with
the adaptive prediction iterative channel estimation is
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Fig. 1 Transmission system in equivalent baseband representation.

described in Sect. 2. Section 3 presents the computer
simulation results on combined antenna diversity and
coherent rake reception of faded DSSS signals in a fre-
quency selective Rayleigh fading channel and compares
to a non-adaptive iterative channel estimation using the
conventional WMSA filtering at the 1st iteration stage.
Also considered is the channel estimation in the pres-
ence of frequency offset ∆f between the transmitter
and receiver. Section 4 concludes the paper.

2. Transmission System Model and Adaptive
Prediction Iterative Channel Estimation

A transmission system model is illustrated in Fig. 1.
In what follows, the transmitter, propagation channel
model, receiver and iterative channel estimation are de-
scribed.

2.1 Transmitter

A binary transmission data is transformed into qua-
ternary phase shift keying (QPSK)-modulated symbol
sequence. Then, the known Np pilot symbols are time-
multiplexed every Nd data symbols as shown in Fig. 2.
Np pilot symbols and succeeding Nd data symbols make
a slot with a length of Tslot = (Np + Nd)T , where T
denotes QPSK symbol length. Finally, a spreading se-
quence is multiplied to the pilot-inserted QPSK symbol
sequence to produce DSSS signal.

The DSSS signal s(t) can expressed in a baseband
equivalent representation as

s(t) =
√

2Sd(t)p(t) (1)

Fig. 2 Slot structure.

with


d(t) =
∞∑

k=−∞
exp[jφ(k)]u(t/T − k)

p(t) =
∞∑

q=−∞
c(q)u(t/Tc − q)

, (2)

where S denotes the average signal power, d(t) repre-
sents the QPSK symbol sequence waveform, and p(t)
the spreading sequence waveform. In Eq. (2), {c(q)}
represents the long random binary spreading sequence
with chip length of Tc, φ(k) = {(2m + 1)π/4; m =
0 ∼ 3} is the QPSK-modulation phase, and u(t) is the
rectangular pulse with u(t) = 1 (0 ≤ t < 1) and 0
(otherwise), i.e., a rectangular chip pulse shaping is as-
sumed without loss of generality. The spreading factor
(SF) is given by SF = T/Tc.

2.2 Propagation Channel Model

The DSSS signal is transmitted via a propagation chan-
nel. It is assumed that the propagation channel is fre-
quency selective and has L discrete paths having differ-
ent time delays of multiple Tc and experiencing inde-
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pendent Rayleigh fading. The receiver has a total of M
spatially separated antennas. The channel impulse re-
sponse hm(t, τ ), seen on the mth antenna, m = 0, 1, . . . ,
M − 1, can be expressed as [16]

hm(t, τ ) =
L−1∑
l=0

ξm,l(t)δ(τ − τl), (3)

where ξm,l(t) and τl denote the complex fading chan-
nel gain and time delay of the lth path, respectively,
with E[

∑L−1
l=0 |ξm,l(t)|2] = 1, with E[.] being ensem-

ble average operation. It is assumed that {ξm,l(t)} are
independent identically distributed (iid) complex Gaus-
sian processes. The complex channel gain ξm,l(t) time-
varies, the received signal suffers from random phase
variations (known as random FM noise [1]) and the
random phase due to fading is uniformly distributed
over (−π,+π).

2.3 Receiver

The received signal rm(t) on the mth antenna can be
expressed as

rm(t) =
L−1∑
l=0

rm,l(t) + nm(t)

=
L−1∑
l=0

ξm,l(t)s(t− τl) + nm(t), (4)

where nm(t) denotes the additive white Gaussian noise
(AWGN) with power spectrum density of N0. The re-
ceived faded DSSS signal is resolved into L copies of
transmitted QPSK symbol sequence by a matched filter
(MF). The MF consists of L correlators; each correlator
multiplies rm(t) with the locally generated spreading
sequence waveform p(t), which is time-synchronized to
the time delay of each propagation path, and integrates
over one symbol period. In this paper, it is assumed
that the receiver has the perfect knowledge of time de-
lays of all propagation paths and that the receiver sam-
pling timing is ideal. The MF output is sampled at the
symbol rate. The MF output rm,l(g, n) at the nth sym-
bol time epoch of the gth slot, associated with the lth
path, is represented as

rm,l(g, n) =
1
T

∫ gTslot+(n+1)T+τl

gTslot+nT+τl

rm(t)p(t− τl)dt

=
√

2Sξm,l(g, n) exp[jφ(g, n)]
+ wm,l(g, n), (5)

where, ξm,l(g, n) = ξ(gTslot + nT ), φ(g, n) = φ(g(Np +
Nd) + n), and wm,l(g, n) represents the noise compo-
nent.

A total of M × L MF outputs are coherently
summed up based on maximal ratio combining (MRC)
[1]. Denoting the channel estimate at the ith iteration

stage as ξ̃
(i)
m,l(g, n), the rake combiner output η(i)(g, n)

can be represented as

η(i)(g, n) =
M−1∑
m=0

L−1∑
l=0

rm,l(g, n)ξ̃(i)
∗

m,l (g, n), (6)

which is the decision variable at the ith iteration stage,
where * denotes the complex conjugate.

2.4 Iterative Channel Estimation

The first iteration stage uses the pilot-aided adaptive
prediction channel estimation to obtain ξ̃

(1)
m,l(g, n). For

the operation principle of the adaptive prediction chan-
nel estimation used in the first stage, see Appendix.
The succeeding iteration stages use decision feedback
and moving average filtering to obtain ξ̃

(i)
m,l(g, n), i > 1.

In the i(> 1)th iteration stage, the tentative decisions
{φ̂(i−1)(g, n)} obtained at the previous iteration stage,
i.e., the (i − 1)th iteration stage, are fed back as pilot
symbols to remove data modulation from the received
MF output samples {rm,l(g, n)}. The data-modulation
removed received signal sample ξ̂

(i)
m,l(g, n) is given by

ξ̂
(i)
m,l(g, n) = rm,l(g, n) exp[−jφ̂(i−1)(g, n)], (7)

Moving average filtering is applied to {ξ̂(i)m,l(g, n)} for
channel re-estimation. The channel estimate at the nth
symbol of the gth slot is obtained as

ξ̃
(i)
m,l(g, n) =

1
2Q + 1

Q∑
j=−Q

ξ̂
(i)
m,l(g, n + j), (8)

where the moving average interval is 2Q + 1 symbols,
which is much longer than that of the first iteration
stage; therefore, accuracy of channel estimation im-
proves as the number of iterations increases.

3. Performance Evaluation

3.1 Computer Simulation Condition

The simulation condition is summarized in Table 1.
The spreading sequence is a long PN sequence of 212−1
chip period and the spreading factor is 64 chips per
QPSK symbol. We use Np = 4 and Nd = 60 and
assume a frequency-selective Rayleigh fading channel
with L = 2 paths. The first iteration stage uses the
K = 4 pilot-aided adaptive prediction channel estima-
tion [8]. For comparison, non-adaptive WMSA channel
estimation filters using K = 1, 2, and 3 were also as-
sumed in the first iteration stage; the tap weight vectors
for K = 1, 2 and 3 are [1.0, 1.0], [0.6, 1.0, 1.0, 0.6] and
[0.3, 0.8, 1.0, 1.0, 0.8, 0.3], respectively [5].

First, we consider the case without the frequency
offset ∆f between the transmitter and receiver. The
impact of the frequency offset is discussed in Sect. 3.6.
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3.2 Optimization of Moving Average Filtering

Figure 3 plots the BER after the 2nd iteration (i = 2),
with fDTslot as a parameter, as a function of the moving
average interval (2Q + 1 symbols) in the second itera-
tion stage. The 3rd step of the 1st iteration stage uses
simple averaging (SA) and linear interpolation (LI). In
the figure, the BER curves labeled AP+SA(LI) are for
adaptive prediction iterative channel estimation using
SA (LI). In a slow fading channel, i.e., fDTslot = 0.0064,
the BER monotonically reduces as the moving aver-
age interval for channel re-estimation used in the later
stages increases. However, in a fast fading channel, i.e.,
fDTslot = 0.32, the BER first decreases and then, in-
creases as the moving average interval increases. This
is because the channel gain tends to vary within the
moving average interval and the channel estimation er-

Table 1 Simulation condition.

(a) Without diversity (M = 1) (b) With diversity (M = 2)

Fig. 3 Effect of moving average interval (2Q + 1 symbols) for channel re-estimation in
second and later iteration stages.

ror becomes larger. It is also seen from Fig. 3 that SA
provides smaller BER in a slow fading channel; but,
in a fast fading channel, it is LI that provides smaller
BER. Since a moving average interval of 2Q + 1 = 101
symbols overall achieves minimum BER, we use Q = 50
symbols in the following simulations.

3.3 Channel Estimation Error

The channel estimation accuracy can be improved by
incorporating an iterative channel estimation scheme.
How the mean squared estimation error (MSE) is re-
duced by the use of iterative channel estimation was
evaluated by computer simulations. MSE is defined as

MSE = E[|ξm,l(g, n) − ξ̃
(i)
m,l(g, n)|2]. (9)

Figure 4 plots the MSE performance as a function of
the average Eb/N0 with the number of iterations as a
parameter for a fast fading channel (fDTslot = 0.32).
The first iteration stage uses adaptive prediction using
SA or LI and the 2nd and later iteration stages use
a Q = 50 moving average filtering. Figure 4 clearly
shows the effectiveness of the use of iterative channel
estimation. As the number of iterations increases, the
value of MSE reduces; however, only slight additional
reduction is obtained at the 4th iteration stage. In iter-
ative channel estimation, tentative decision results are
fedback as pilot symbols. In Fig. 4, the MSE curves la-
beled “perfect feedback” are for without feedback error.
(The impact of feedback error is discussed in detail in
Sect. 3.5.) It can be seen that the MSE at 3rd iteration
approaches that of “perfect feedback”. The above re-
sults imply that the BER performance may improves as
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(a) Without diversity (M = 1) (b) With diversity (M = 2)

Fig. 4 Effect of number of iterations on MSE for fDTslot = 0.32. SA and LI are used
at the 1st stage.

(a) Without diversity (M = 1) (b) With diversity (M = 2)

Fig. 5 Effect of number of iterations on achievable BER performance for fDTslot = 0.32.
SA is used at the 1st stage.

the number of iterations increases; however, the use of
three iterations (including the first) may be sufficient.

3.4 Effect of Number of Iterations

Figure 5 plots the BER performance with the number
of iterations as a parameter when fDTslot = 0.32. The
first iteration stage uses adaptive prediction using SA
and the 2nd and later iteration stages use a Q = 50
moving average filtering. It can be clearly seen that

iterative channel estimation has a significant impact on
reducing the BER performance and as the number of
iterations increases, the BER performance approaches
that of ideal channel estimation (the set of channel
gains {ξm,l} is perfectly known). With diversity re-
ception, an Eb/N0 degradation of as small as 0.8 dB is
achieved at the 4th iteration stage for BER = 10−3 (of
which 0.28 dB Eb/N0 degradation is due to pilot inser-
tion loss). In low Eb/N0 regions where the AWGN is
the major cause of errors, the BER performance sig-
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(a) Number of iterations=1 (b) Number of iterations=2

(c) Number of iterations=3 (d) Number of iterations=4

Fig. 6 Average BER performance for various number of iterations as a function of the
average received Eb/N0 for M = 2 and fDTslot = 0.32.

nificantly improves at the 3rd iteration stage; however,
almost no additional improvement is obtained at the
4th iteration stage as shown in Ref. [13]. Therefore, the
use of three iterations is considered to be sufficient.

In high Eb/N0 regions, the BER floor is observed.
The use of iterative channel estimation is significant
in reducing the BER floor. It is seen in Fig. 5 that,
with antenna diversity, the BER floor is 8 × 10−3 at
the 1st iteration stage. This can reduce to 2 × 10−4

and 1 × 10−5 at the 2nd and the 3rd iteration stages,
respectively. Only slight additional reduction in the
BER floor is observed at the 4th iteration stage, as
implied from Fig. 4.

3.5 Performance Comparison

The BER performances achievable by the adaptive pre-
diction iterative channel estimation are compared with
non-adaptive iterative channel estimation using con-
ventional WMSA filter at the first iteration. Figure 6
plots the BER performances in a fast fading channel
(fDTslot = 0.32) with the number of iterations as a pa-
rameter for diversity reception case (M = 2). Since
non-adaptive iterative channel estimation using K = 3
WMSA (at the 2nd step of the 1st stage) cannot achieve
BER floor of less than 10−3, its BER performance is
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not plotted in Fig. 6. WMSA channel estimation is
designed to emphasize on reducing the noise effect at
the cost of slightly losing the tracking ability against
fading. Hence, non-adaptive iterative channel estima-
tion using WMSA (in particular K = 2) do not per-
form well in a fast fading environment. It can be seen
in Fig. 6 that the adaptive prediction iterative channel
estimation can achieve better BER performance than
non-adaptive iterative channel estimation using WMSA
(K = 1, 2); however, the performance difference be-
comes smaller when the number of iterations becomes
more than three.

In iterative channel estimation, tentative decision
results are fedback as pilot symbols. Feeding back of
decision errors limits the channel estimation accuracy.
To see how the feedback errors affect the BER per-
formance achievable by iterative channel estimation,
the BER performance without feedback errors labeled
“perfect feedback” is also plotted in Fig. 6. It can be
seen that the BER performance at the 3rd iteration al-
most approaches that without feedback error and using
AP+LI is found to provide the best performance among
four schemes of AP+SA, AP+LI, WMSA (K = 1), and
WMSA (K = 2). This is implied from Fig. 4.

In Fig. 6, the BER performance with ideal channel
estimation case is also plotted for comparison. The
BER performance with adaptive prediction iterative
channel estimation approaches that with ideal channel
estimation as the number of iterations increases, but
there is still a performance gap. This is because the es-
timation error increases due to noise when the received
signal fades in a slow fading and due to increasing pre-
diction error for a fast fading environment. The latter

can possibly be overcome by replacing a simple moving
average filter of Eq. (8) by a prediction filter.

The causes of channel estimation errors are (a)
feedback of decision errors and (b) insufficient tracking
ability against fading. The proposed adaptive predic-
tion channel estimation schemes have improved track-
ing ability against fading. The linear prediction filter
tap weights are adaptively updated according to the
change in fading environments. For a slow fading en-
vironment, the adaptive prediction filter acts as an av-
eraging filter (i.e., the tap weights becomes almost the
same) to emphasize on increasing the noise reduction.
On the other hand, for a fast fading environment, the
adaptive prediction filter emphasizes on predicting the
fast varying complex channel gains at the cost of losing
the noise reduction power. As clearly seen in Fig. 6,
although the feedback errors affect the performance of
iterative channel estimation, its effect can be made al-
most negligible if fading is not too fast (e.g., less than
fDTslot is 0.32). This is because the use of adaptive pre-
diction filter can reduce the BER at the first stage com-
pared to non-adaptive channel estimation, i.e., WMSA,
and hence, reduced feedback errors achieve better BER
performance.

Of course, the joint use of iterative channel esti-
mation and error correction decoding can improve the
BER performance because of less feedback errors. Since
each iteration requires error correction decoding, the
overall decoding delay increases. However, iterative
channel estimation well matches the iterative decod-
ing structure of turbo codes. Recently, the joint use
of iterative channel estimation and turbo coding has
been attracting much attention [17]. This study is out

(a) Without diversity (M = 1) (b) With diversity (M = 2)

Fig. 7 Required Eb/N0 for BER = 10−3 with the value of fDTslot as a parameter.
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of scope of this paper and left for an interesting future
research topic.

Figure 7 plots the required Eb/N0 for BER = 10−3

as a function of the number of iterations with the value
of fDTslot as a parameter. The comparison of SA and
LI (used at the 3rd step of the 1st stage) in the adap-
tive prediction iterative channel estimation shows that
the former provides better performance in a slow fading
channel (fDTslot = 0.0064). In faster fading channels
(fDTslot = 0.128 and 0.256), however, adaptive pre-
diction iterative channel estimation using LI provides
better performance than using SA. With non-adaptive
iterative channel estimation, the best performance is

(a) No. of iterations=1 (b) No. of iterations=2

(c) No. of iterations=3 (d) No. of iterations=4

Fig. 8 Average BER performance in the presence of frequency offset of ∆fTslot =
0.0625 and 0.25 for fDTslot = 0.064 and no diversity (M = 1).

obtained using K = 3 WMSA in a slow fading chan-
nel but using K = 1 WMSA in a fast fading chan-
nel. Notice that the use of K = 2 and 3 WMSA in
non-adaptive iterative channel estimation shows signif-
icant degradations in the performance in the fast fading
channel (non-adaptive iterative channel estimation us-
ing K = 3 WMSA cannot achieve BER = 10−3 in the
fast fading of fDTslot = 0.256). Although, in the slow
fading channel, the adaptive prediction iterative chan-
nel estimation using LI is inferior to the non-adaptive
iterative channel estimation using K = 3 WMSA, the
performance difference is very small. As a consequence,
the adaptive prediction iterative channel estimation us-
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ing LI provides overall superior performance to the
non-adaptive iterative channel estimation in slow-to-
fast fading channels.

3.6 Impact of Frequency Offset between Transmitter
and Receiver

When the frequency offset ∆f between the transmitter
and receiver exists, the MF output rm,l(g, n) given by
Eq. (5) can be rewritten as

rm,l(g, n) =
√

2Sξ′m,l(g, n) exp[jφ(g, n)]
+ wm,l(g, n), (10)

where ξ′m,l(g, n) represents the complex channel gain
containing the effect of frequency offset ∆f and is given
by

ξ′m,l(g, n) = ξm,l(g, n) exp[j2π∆f(gTslot +nT )].
(11)

It can be understood that the multipath fading pro-
duces the random phase variations, but the frequency
offset produces the constant phase rotation. The adap-
tive prediction channel estimation scheme proposed in
this paper can estimate ξ′m,l(g, n). The average BER
performance degrades due to the frequency offset as
well as fading. How the proposed channel estimation
scheme improves the average BER performance is eval-
uated by computer simulations. The simulation results
are plotted in Figs. 8 and 9. To see clearly the effect of
adaptive prediction channel estimation in the presence
of frequency offset, we consider no diversity (M = 1)
case only.

Figure 8 plots the BER performance in the pres-
ence of the frequency offset when the normalized fre-
quency offset ∆fTslot = 0.0625 and 0.25 (i.e., ∆fT =

Fig. 9 Average BER at the average Eb/N0 = 20dB as a func-
tion of ∆fTslot for fDTslot = 0.064 and no diversity (M = 1).

0.000977 and 0.00391). When ∆fTslot = 0.0625, the
impact of the frequency offset is very small and itera-
tive channel estimation can almost completely remove
the effect of frequency offset. On the other hand, when
∆fTslot = 0.25, the BER performance is significantly
degraded if adaptive prediction iterative channel esti-
mation is not used. As discussed in Sect. 3.4, the use of
three iterations is considered to be sufficient to reduce
the effect of frequency offset. Adaptive prediction chan-
nel estimation using SA and LI (used at the 3rd step
of the 1st iteration stage) provides better performance
than non-adaptive channel estimation using WMSA.

Figure 9 plots the BERs with and without iterative
channel estimation (the number of iterations=1 and 3,
respectively) at the average Eb/N0 = 20 dB as a func-
tion of ∆fTslot for fDTslot = 0.064. For the small val-
ues of ∆fTslot below about 0.05, the predominant cause
of decision errors is the AWGN and hence, the BER is
almost constant. However, as ∆fTslot increases beyond
0.05, the BER starts to increase due to the rapid phase
rotation due to the frequency offset. However, it can be
clearly seen that the use of adaptive iterative channel
estimation using SA and LI (used at the 3rd step of
the 1st iteration stage) significantly reduces the BER
produced by the frequency offset; using LI is found to
provide overall the best performance.

4. Conclusion

Adaptive prediction iterative channel estimation was
presented for combined antenna diversity and coher-
ent rake reception of DSSS signals. The first iteration
stage uses a pilot-aided adaptive prediction and the sec-
ond and later iteration stages use decision-feedback and
moving average filtering for channel re-estimation. The
computer simulation confirmed that, as the number of
iterations increases, the BER performance significantly
improves and approaches that of ideal channel estima-
tion. In the low Eb/N0 regions, the use of three itera-
tions (including the first) is sufficient. The use of iter-
ative channel estimation is even significant in reducing
the BER floor observed in high Eb/N0 regions. This
is also true in the presence of frequency offset between
the transmitter and receiver in addition to multipath
fading. It is also found that the choice of first stage
channel estimation method does not affect much the re-
sultant BER performance if the number of iterations is
more than three. However, the adaptive prediction iter-
ative channel estimation using linear interpolation (LI)
provides overall superior performance to non-adaptive
iterative channel estimation in slow-to-fast fading chan-
nels.

In this paper we did not consider channel coding.
Iterative channel estimation well matches the iterative
decoding structure of turbo codes. The joint use of it-
erative channel estimation and turbo coding has been
attracting much attention [17]. This is left for an in-
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teresting future research topic. As seen in Fig. 6, there
is a performance gap between the achievable BER per-
formance with adaptive prediction iterative channel es-
timation and with ideal channel estimation. The gap
may be able to narrow by replacing a simple moving
average filter of Eq. (8) by a prediction filter. This is
also left for a future study.
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Appendix: Adaptive Prediction Channel Esti-
mation

Figure A· 1 illustrates the structure of pilot-aided adap-
tive prediction channel estimation, which consists of 3
steps [8]. In the first step, the instantaneous channel
gain is estimated by coherent addition of Np received
pilot symbols after removing pilot phase. Without loss
of generality, the pilot symbol phase of φ = π/4 is as-
sumed. The instantaneous channel estimate, ξ̂m,l(g),
at the beginning of the gth slot is given by

ξ̂m,l(g) =
1
Np

Np−1∑
n=0

rm,l(g, n) exp(−jπ/4). (A· 1)

Then, the second step predicts the instantaneous chan-
nel gains, ξ̃m,l,f (g) and ξ̃m,l,b(g), at the end of and be-
ginning of data slot by a forward predictor and back-
ward predictor using the K past and K future instan-
taneous channel gains, {ξ̂m,l(g)}, respectively. The tap
weights of forward predictor and backward predictor
are adaptively updated using the normalized LMS al-
gorithm [15]. ξ̃m,l,f (g) and ξ̃m,l,b(g) are given by

{
ξ̃m,l,f (g) = W m,l,f (g)XT

m,l,f (g)
ξ̃m,l,b(g) = W m,l,b(g)XT

m,l,b(g)
(A· 2)

with


W m,l,f (g) = [wm,l,0(g), wm,l,−1(g),
· · · , wm,l,−K+1(g)]

Xm,l,f (g) = [ξ̂m,l(g), ξ̂m,l(g − 1),
· · · , ξ̂m,l(g −K + 1)]

, (A· 3a)




W m,l,b(g) = [wm,l,1(g), wm,l,2(g),
· · · , wm,l,K(g)]

Xm,l,b(g) = [ξ̂m,l(g + 1), ξ̂m,l(g + 2),
· · · , ξ̂m,l(g + K)]

, (A· 3b)

where [.]T denotes transpose, W m,l,f (g) and W m,l,b(g)
are respectively the complex tap weight vectors for the
forward and backward predictions, and Xm,l,f (g) and
Xm,l,b(g) are respectively the vectors of estimated in-
stantaneous channel gains used for the forward and
backward predictors.

The tap weight vectors, W m,l,f (g) and W m,l,b(g)
are updated based on the normalized LMS algorithm
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Fig. A· 1 Adaptive prediction in the first iteration stage.

[15] using ξ̂m,l(g+1) and ξ̂m,l(g) as the reference signals:



W m,l,f (g + 1) = W m,l,f (g)

+µ
em,l,f (g)

K−1∑
j=0

|ξ̂m,l(g − j)|2
X∗

m,l,f (g)

em,l,f (g) = ξ̂m,l(g + 1) − ξ̃m,l,f (g)

, (A· 4a)




W m,l,b(g + 1) = W m,l,b(g)

+µ
em,l,b(g)

K∑
j=1

|ξ̂m,l(g + j)|2
X∗

m,l,b(g)

em,l,b(g) = ξ̂m,l(g) − ξ̃m,l,b(g)

, (A· 4b)

where em,l,f (g) and em,l,b(g) are the estimation errors
and µ is the step size.

Finally, in the third step, the instantaneous chan-
nel gain, ξ̃m,l(g, n), at the nth data symbol position of
the gth data slot is estimated by simple averaging (SA)
or linear interpolation (LI) using the two adaptively
predicted instantaneous channel gains of ξ̃m,l,b(g) and
ξ̃m,l,f (g). Then, ξ̃(1)m,l(g, n), for n = Np ∼ Np + Nd − 1,
is given by
SA:

ξ̃
(1)
m,l(g, n) =

ξ̃m,l,f (g) + ξ̃m,l,b(g)
2

(A· 5a)

LI:

ξ̃
(1)
m,l(g, n) =

(
n− Np − 1

2

)

Np + Nd
ξ̃m,l,f (g)

+




1 −

(
n− Np − 1

2

)

Np + Nd




ξ̃m,l,b(g).

(A· 5b)

In the computer simulations, we use K = 4 and the
step size µ = 0.01.
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