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SUMMARY  Frequency-domain representation of the well-
known time-domain rake combining for the antenna diversity
reception of DS-CDMA signals is derived. Two receiver struc-
tures using frequency-domain rake combining are presented.
Frequency-domain rake combining can alleviate the complexity
problem of the time-domain rake arising from too many paths in
a severe frequency selective fading channel at the cost of guard
interval insertion. The results shown in this paper show a pos-
sibility that a DS-CDMA approach still remain to be promising
for broadband wireless access technique.
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1. Introduction

Frequency selective multipath fading, encountered in a
mobile wireless digital communication system, severely
degrades the bit error rate (BER) performance [1].
In direct sequence code division multiple access (DS-
CDMA), well-known time-domain rake combining is
applied to exploit the frequency selectivity of the chan-
nel and to improve the BER performance [2]. Com-
bined use of antenna diversity reception and rake com-
bining can further reduce the effect of multipath fading.
Increasing the spreading chip rate improves the multi-
path resolution capability [3]. However, if the spread-
ing chip rate becomes too high (or the transmission
bandwidth becomes broader), serious problems arise in
time-domain rake combining. As the spreading chip
rate becomes higher, the number of resolvable propaga-
tion paths increases. A large number of rake fingers are
necessary for collecting enough signal power and this in-
creases the complexity of the time-domain rake receiver.
Rake combining needs accurate channel estimation of
each path. However, as the spreading chip rate be-
comes higher, each propagation path becomes weaker
and weaker and this makes accurate channel estima-
tion more difficult. Because of these, DS-CDMA has
not been considered as a strong candidate for broad-
band wireless systems and much attention has been
paid to multicarrier CDMA (MC-CDMA) [4]-[8]. MC-
CDMA uses frequency-domain spreading and despread-
ing to exploit the multipath channel frequency selectiv-
ity while DS-CDMA uses time-domain spreading and
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despreading. MC-CDMA can achieve a good BER per-
formance by using simple one-tap equalization on each
frequency component. Meanwhile, frequency-domain
equalization has been recently attracting much atten-
tion for single carrier wireless transmission systems [9].
This can also be applied to DS-CDMA signal reception.
In this paper, frequency-domain representation of
the well-known time-domain rake combining for the
antenna diversity reception of DS-CDMA signals is
derived and two receiver structures using frequency-
domain rake combining are presented. The achievable
BER performances using time-domain and frequency-
domain rake combining with antenna diversity recep-
tion in a frequency selective Rayleigh fading channel are
evaluated by computer simulation and are compared.

2. Frequency-Domain Representation for
Time-Domain Rake Combining

The discrete time representation is used throughout the
paper. The DS-CDMA signal at the dth chip time in-
stance may be expressed as

s(i) = V2B, /(SF - T.)e(i) Y dyuli — k- SF),

k=—o0
(1)

where E; denotes the transmit data symbol energy, SF
the spreading factor, T, the spreading chip period, ¢(3)
the ith spreading chip with |c(¢)| = 1, di the kth data
symbol with |dg| = 1, and u(é) =1 (0) for 0 < i < SF
(otherwise). The DS-CDMA signal is transmitted over
a frequency selective fading channel and received by
M antennas. The channel is assumed to have L inde-
pendent propagation paths, for which the chip-spaced
time delay model is adopted. Without loss of gener-
ality, the time delay of the [th path is assumed to be
71 =1T.,l=0~ L—1. The DS-CDMA signal received
on each antenna is filtered by a chip-matched filter and
then sampled at the chip rate. Assuming a single user
case, the signal sample received on the mth antenna
(m =0~ M —1) at time ¢ may be represented in the
equivalent lowpass representation as

L—-1
Tm(i) - Z gm,l(i)s(i - l) + nm(i)a (2)
=0

where &, 1(7) is the complex-valued path gain of the Ith
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propagation path and 7,, (%) is the zero-mean noise pro-
cess due to the additive white Gaussian noise (AWGN)
having a variance of 2(Ny/T.) with Ny being the one-
sided AWGN power spectrum density. For simplicity,
we assume very slow fading and the path gains remain
constant over the data symbol period, i.e., &y (i) =
gm,l,k for i = kSF ~ (k + l)SF — 1.

The time-domain rake combiner consists of L rake
fingers per antenna, each taking the correlation between
{rm (i)} and the delayed replica of the spreading chip
sequence {c(7)}. A total of M x L rake finger outputs
are then coherently combined. Thus, the time-domain
rake combiner output d with M-branch antenna di-
versity reception, which is the decision variable for the
kth transmitted data symbol, can be expressed as

M—-1L-1 1 (k+1)SF-1
Z nglk SF Z Tm(Z+l)C*(Z) 5
m=0 (=0 i=kSF

3)

where (.)* denotes the complex conjugate operation.
Let {Cx(n)} and {R,,x(n)} be the SF-point fast
Fourier transforms (FFTs) of {c(i)} and {r..(:)},
respectively, for the kth data symbol period. A
frequency-domain representation of Eq. (3) is given by

) 1 SF-1 M—-1
dp = S—Fnz:;) C*( (SF ZRmk ’wmk( ))
(4)

where

SF— )
Z m (1 + kESF) exp ( ]27TTLS—F)

=0

ME

c(i + kSF) exp( ]27TTL—>

SF
(5)
and wyy, (n) is the combining weight given by
W, k(n) = Hy, 1 (n) (6)
with
L—1
n) = ;sm,l,kexp( jeml <) (7)

being the transfer function of the propagation chan-
nel at time i=kSF. Since {Cx(n)} can be viewed as
the spreading chip sequence in the frequency-domain,
Eq. (4) is equivalent to the MC-CDMA despreading
process using simple one-tap equalization based on
maximal ratio combining (MRC) [1]. Also applied is
MRC-based antenna diversity reception on each fre-
quency component.

An alternative expression for Eq.(4) can be ob-
tained as
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SF—1

dk:SiF; (i + kSF) (Zrm> (8)

where 7, (7) is the SF-point inverse FFT (IFFT) of
{Rmk(n)Hy, .(n)} and is given by

SF—1 .
i
< o
P ke (1) SF Z Ry k(n)Hy, 1 (n) exp <] ﬂnSF)
(9)
Equations (4) and (8) represent corresponding

frequency-domain rake combining while Eq. (3) repre-
sents time-domain rake combining.

When frequency-domain rake is used, the guard in-
terval (GI) must be inserted in the transmitted spread
signal sample sequence to make the received spread sig-
nal appear to be periodic with a period of SF samples,
similarly to MC-CDMA. A cyclic prefix of Ng samples
is inserted as GI at the beginning of each spread sig-
nal, as shown in Fig.1. GI is designed to be larger
than the maximum time delay difference among prop-
agation paths. Assuming insertion of Ny-sample GI,
the data transmission rate is reduced by a factor of
1+ Ny /SF for the same chip rate and a power penalty
of 10log;y(1 + Ny/SF)dB results. However, since
frequency-domain rake combining applies simple one-
tap frequency-domain equalization on each frequency
component, it can alleviate the complexity problem of
the time-domain rake arising from too many paths in a
severe frequency selective fading channel at the cost of
GI insertion.

v Cyclic prefix

1

GI kth spread signal
A s(i),i = kSEF ~ (k+1)SF -1
\

s@i)i=(k+1)SF-N,
~(k+1DSF-1
Fig.1 Transmitted spread signal with guard interval insertion.

From other
branches

w,,(n)/SF

C*(n.k)/SF

{0}

O Removal
of GI |

(a) Eq. (4)

From other
7, ()} branches

o | CH(TkSF d,
O—p{Removal - - S %Lﬂd(.
of GI * econverter SF ,Z )

(b) Eq. (8)

Fig.2 Frequency-domain rake receiver.
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Two receiver structures using frequency-domain
rake combining with antenna diversity reception are il-
lustrated in Fig. 2. Frequency-domain rake combining
based on Eq. (8) involves SF-point FFT and IFFT op-
erations, while that of Eq. (4) involves FFT operation
only.

3. Computer Simulation

It is assumed that the spreading factor SF=256 and
the GI of NVy=32 samples. Quadrature phase shift key-
ing (QPSK) data modulation is used. The spreading
chip sequence is the M-sequence of 4095 chips. The
fading channel is a very slow L-path frequency selec-
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tive Rayleigh fading channel with uniform power de-
lay profile. For performance comparison, time-domain
rake combining is also considered. As stated earlier,
the transmission data rate with frequency-domain rake
combining is 9/8 times lower than the case with time-
domain rake combining for the same chip rate. Chan-
nel estimation for frequency-domain and time-domain
rake combining is assumed to be ideal. The simu-
lated average BER performances are plotted in Fig.3
as a function of the average received signal energy
per bit-to-AWGN power spectrum density ratio Ep/No
(=0.5E5/Ny for QPSK). Figure 3(a) shows how the
BER performance improves as the number L of paths
increases for the no diversity reception case (M=1).
As was theoretically predicted, frequency-domain rake
combining can achieve the performance similar to time-
domain rake combining. Slight performance degrada-
tion observed is attributed to the power penalty of
0.5dB due to GI insertion. Figure 3(b) compares how
antenna diversity reception improves the BER perfor-
mance when L=16. Again, it is seen that frequency-
domain rake combining can achieve a similar perfor-
mance as time-domain rake combining.

4. Conclusion

We have developed frequency-domain representation of
the well-known time-domain rake combining for the an-
tenna diversity reception of DS-CDMA signals and sug-
gested two receiver structures using frequency-domain
rake combining. Frequency-domain rake combining ap-
plies FFT processing and uses simple one-tap equaliza-
tion on each frequency component; thus, it can alleviate
the complexity problem of the time-domain rake aris-
ing from too many paths in a severe frequency selective
fading channel at the cost of GI insertion. It was con-
firmed by computer simulation that frequency-domain
rake combining achieves an average BER, performance
similar to time-domain rake combining. The results
shown in this paper have shown a possibility that a
DS-CDMA approach still remain to be promising for
broadband wireless access technique.

In this paper, ideal channel estimation was as-
sumed. Both frequency-domain and time-domain rake
combining require accurate channel estimation. In
time-domain rake combining, as the number of paths
increases, the received signal power of each path be-
comes weaker and weaker and this makes accurate
channel estimation more difficult. On the other hand,
in frequency-domain rake combining, the channel trans-
fer function rapidly varying in the frequency-domain
must be estimated. When practical channel estima-
tion method is used, the achievable BER performances
with frequency-domain and time-domain rake com-
bining may be affected differently. Comparison of
frequency-domain and time-domain rake combining us-
ing practical channel estimation is left as an interesting
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future study.
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