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On Received Signal Power Distribution of Wideband

Signals in a Frequency-Selective Rayleigh Fading Channel

Fumiyuki ADACHI†a), Regular Member and Akihito KATO†∗, Student Member

SUMMARY A mathematical expression for the received sig-
nal power in a severe frequency-selective fading channel is de-
rived. Using the derived expression, the signal power distribu-
tions are obtained by Monte-Carlo simulation and compared with
the Nakagami m-power distribution. It is found that the power
distribution matches well with the Nakagami m-power distribu-
tion when the multipath channel has a uniform power delay pro-
file.
key words: signal power distribution, frequency-selective chan-
nel, Nakagami m-fading, mobile communication

1. Introduction

A wideband mobile radio propagation channel con-
sists of many distinct paths with different time de-
lays. Wideband signals transmitted over such a chan-
nel undergo severe frequency-selective fading. Re-
cently, multi-carrier code division multiple access (MC-
CDMA) is under intensive study as a promising wire-
less access technique for high-speed data transmissions
[1]. In MC-CDMA, the received signal power is the
sum of powers of SF subcarriers, where SF represents
the spreading factor. In direct sequence CDMA (DS-
CDMA), rake combining is used to improve the trans-
mission performance [2]. If rake combining is ideal, all
powers of the received multipath signal components can
be collected for data demodulation [3]. Hence, knowing
the statistical properties of the received signal powers
is of practical importance as it helps to assess the trans-
mission performance, and also mathematically interest-
ing. Objective of this paper is to find the approximate
distributions of the received signal power in a severe
frequency-selective fading channel.

2. Analysis

Let hT (τ ) and hC(t, τ ) be respectively the transmit fil-
ter impulse response and the propagation channel im-
pulse response. The overall impulse response of the
transmit filter and propagation channel is given by
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h(t, τ ) = hT (τ )⊗hC(t, τ ), where⊗ denotes the convolu-
tion operation. Note that hC(t, τ ) is time-variant while
hT (τ ) is time-invariant. An alternative expression for
the transmission channel is the overall transfer function
taking into account the transmit filter and propagation
channel, which is given by H(t, f) = HT (f)HC(t, f),
where HT (f) and HC(t, f) are respectively the Fourier
transforms of hT (τ ) and hC(t, τ ), respectively.

The received signal r(t) can be expressed using the
equivalent low-pass representation as

r(t) = s(t)⊗ h(t, τ ) =
∫ ∞

−∞
s(t − τ )h(t, τ )dτ, (1)

where s(t) is the signal waveform before transmit fil-
tering. We are interested in the instantaneous received
signal power Q(t) at time t. Slow fading is assumed
such that the overall channel impulse response h(t, τ )
stays almost constant over the power measurement time
interval [t − T/2, t+ T/2]. We obtain

Q(t) =
1
T
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s(z − τ )h(t, τ )dτ
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2

dz

=
∫ ∞

−∞

∫ ∞

−∞

(
1
2T

∫ t+T/2

t−T/2

s(z − τ )s∗(z − τ ′)dz

)

× h(t, τ )h∗(t, τ ′)dτdτ ′

= S

∫ ∞

−∞
|h(t, τ )|2 dτ , (2)

where S is the power spectrum density of s(t) and (.)*
denotes the complex conjugate operation. In the above
equation, transmitted wideband signals are assumed to
be white noise-like and their autocorrelation functions
are represented by the delta function, i.e.,

1
2T

∫ t+T/2

t−T/2

s(z − τ )s∗(z − τ ′)dz = Sδ(τ − τ ′). (3)

The above white noise assumption of s(t) is valid for
DS-CDMA and MC-CDMA signals. In DS-CDMA,
the pseudo-noise (PN) spreading chip sequence (or
the product of PN scramble sequence and orthogonal
spreading chip sequence) is used and hence, the resul-
tant DS-CDMA signal can be approximated as a ran-
dom process. In MC-CDMA (the spreading sequence
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defined in the frequency-domain is used unlike DS-
CDMA), the MC-CDMA signal is the sum of many
data-modulated orthogonal subcarriers and its power
spectrum is uniform (white).

As a consequence, the instantaneous received sig-
nal power normalized by its average can be expressed
as

x(t) =

∫ ∞

−∞
|h(t, τ )|2 dτ∫ ∞

−∞
|h(t, τ )|2dτ

, (4)

where x̄ represents the time average operation. Assum-
ing a discrete time delay model of the propagation chan-
nel, the channel impulse response may be expressed as

hC(t, τ ) =
∞∑

l=0

ξl(t)δ(τ − τl) (5)

with
∑∞

l=0 |ξl(t)|2 = 1, where ξl(t) and τl respectively
represent the path gain and time delay of the lth prop-
agation path. Using Eq. (5), h(t, τ ) can be expressed
as

h(t, τ ) =
∞∑

l=0

ξl(t)hT (τ − τl). (6)

Substituting Eq. (6) and
∑∞

l=0 |ξl(t)|2 = 1 into Eq. (4),
we obtain

x(t) =

∞∑
l=0

∞∑
m=0

ξl(t)ξ∗m(t)
∫ ∞

−∞
hT (τ − τl)h∗

T (τ − τm)dτ

∫ ∞

−∞
|hT (τ )|2 dτ

.

(7)

Since


∫ ∞

−∞
hT (τ − τl)h∗

T (τ − τm)dτ

=
∫ ∞

−∞
|HT (f)|2 exp(j2πf(τm − τl))df∫ ∞

−∞
|HT (f)|2 df =

∫ ∞

−∞
|hT (τ )|2 dτ

, (8)

we have

x(t) =
∞∑

l=0

∞∑
m=0

ξl(t)ξ∗m(t)q(τm − τl), (9)

where

q(τ ) =

∫ ∞

−∞
|HT (f)|2 exp(j2πfτ)df∫ ∞

−∞
|HT (f)|2 df

. (10)

3. Discussions

The frequency-selective fading channel can be charac-
terized by the power delay profile Ω(τ ) which is de-
fined as Ω(τ ) = |hC(t, τ )|2

/∫∞
−∞ |hC(t, τ )|2dτ . We as-

sume a propagation channel consisting of L Rayleigh-
faded discrete paths with uniform power delay pro-
file. In this case, Ω(τ ) =

∑L−1
l=0 |ξl(t)|2δ(τ − τl) with∑L−1

l=0 |ξl(t)|2 = 1. Path gains {ξl(t); l = 0 ∼ L −
1} are independent and identically distributed (i.i.d.)
zero-mean complex Gaussian processes with the same
variance of 1/L since |ξl(t)|2 is the same for all l.
Also assumed is a transmit filter with rectangular-
spectrum pulse shaping of bandwidth B, i.e., HT (f) =
1 for |f | ≤ B/2 and 0 otherwise. In this case, we
have q(τ ) = sin(πBτ)/(πBτ). Two extreme cases
are considered: strong frequency-selective case where
max |τm − τl| 
 1/B and weak frequency-selective case
where max |τm − τl| � 1/B for all m and l but m �= l.

3.1 Strong Frequency-Selective Case

When max |τm − τl| 
 1/B, q(τ ) ≈ 1(0) for τ =
0 (otherwise) and thus, the overall impulse response to
the transmit pulse do not overlap at all. Substitution of
q(τm − τl) = 1 (0) for τm = τl (otherwise) into Eq. (9)
gives

x(t) =
L−1∑
l=0

|ξl(t)|2 (11)

and the received signal power follows the chi-square dis-
tribution with 2L degrees of freedom [4]:

p(x) =
LLxL−1

(L − 1)! exp(−Lx), (12)

which is a special case of the power distribution of the
Nakagami-m faded signal [5]:

p(x) =
mmxm−1

Γ(m)
exp(−mx), (13)

where Γ(m) denotes the gamma function and m is

m =
(x)2

x2 − (x)2
≥ 1
2
. (14)

Eq. (13) with m = L is identical to Eq. (12). The
Nakagami m-distribution represents the distribution of
the signal amplitude R =

√
x. In this paper, the power

distribution of Eq. (13) is called the Nakagamim-power
distribution for convenience. The Nakagami m-power
distribution covers a wide range of distributions includ-
ing exponential and the chi-square distribution.
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3.2 Weak Frequency-Selective Case

When max |τm − τl| � 1/B, q(τ ) ≈ 1 over the range
of τ of interest and thus, the overall impulse response
to the transmit pulse totally overlap. Substitution of
q(τm − τl) = 1 into Eq. (9) gives

x(t) =

∣∣∣∣∣
L−1∑
l=0

ξl(t)

∣∣∣∣∣
2

. (15)

Remember that the sum of complex Gaussian pro-
cesses also becomes another complex Gaussian process.
ξ(t) =

∑L−1
l=0 ξl(t) becomes a zero-mean complex Gaus-

sian process with unity variance. This means that the
propagation channel becomes frequency non-selective
as often encountered in narrowband mobile communi-
cations and the rms envelope of the received signal fol-
lows the well-known Rayleigh distribution. Hence, the
received signal power follows the exponential distribu-
tion:

p(x) = exp(−x), (16)

which is obtained by letting m=1 in Eq. (13).

3.3 General Case

The power distribution may be between the Nakagami
m-power distribution with m=1 and that with m =
L. In the following, we discuss how the frequency-
selectivity affects the received signal power statistics.
The L-path uniform power delay profile with the time
delays τl = l∆τ , l = 0 ∼ L − 1, is assumed. In this
case, Eq. (9) becomes

x(t) =
L−1∑
l=0

L−1∑
m=0

ξl(t)ξ∗m(t)
{
sin(π(m − l)B∆τ )

π(m − l)B∆τ

}
.

(17)

Assuming L=4 and 8, the cumulative distribution func-
tion P (x) =

∫ x

0
p(x)dx is found by the Monte-Carlo

simulation. In the Monte-Carlo simulation, time de-
pendency of ξl(t) and x(t) is dropped. The set of {ξl} is
generated to compute x using Eq. (9). This is repeated
sufficient number of times to obtain P (x). The re-
sults are plotted in Fig. 1 for various values of B∆τ to-
gether with the Nakagami m-power distribution curves
with the value of m determined using Eq. (14). The
frequency-selectivity of the channel is represented by
the parameter B∆τ . It can be seen that the simulated
power distribution matches well with the Nakagami m-
power distribution for the strong frequency-selective
case, i.e., B∆τ > 0.8 (0.4) for L=4 (8). For the case of
weak frequency-selectivity, i.e., 0 < B∆τ < 0.8 (0.4)
for L=4 (8), the simulated power distribution devi-
ates from the Nakagami m-power distribution having

(a) L = 4

(b) L = 8

Fig. 1 Simulated cumulative power distributions and Nakagami-
m power distributions for uniform power delay profile model.

the value of m computed from Eq. (14). We found the
value of m, denoted by m1%, that makes the distri-
bution curve to fit the simulated one at a cumulative
probability of 1%. The fitted Nakagami m-power dis-
tribution curves are plotted in Fig. 1 as dotted lines.
It is found that if B∆τ < 0.8 (0.4) for L=4 (8), m1%

can be used to better approximate the power distribu-
tion. The dependency of m on B∆τ is calculated using
Eq. (14) and is plotted in Fig. 2 as a solid curve. Also
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Fig. 2 Dependency of m on B∆τ for uniform power delay
profile model.

plotted is the value of m1%.

4. Conclusion

It was found that the received signal power distribu-
tion in a frequency-selective Rayleigh channel having a

uniform power delay profile well matches the Nak-
agami m-power distribution for the strong frequency-
selective case. The value of m depends on the num-
ber of resolvable propagation paths and can be com-
puted using Eq. (14). For the case of weak frequency-
selectivity, however, the power distribution deviates
from the Nakagami m-power distribution, but can still
be well approximated by the Nakagami m-power dis-
tribution using m1%. Interesting future studies include
finding the received signal power distribution when the
multipath channel has a non-uniform power delay pro-
file. Obviously, in this case, the power distribution is
different from the Nakagami m-power distribution.
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