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PAPER

Frequency-Interleaved Spread Spectrum with MMSE
Frequency-Domain Equalization

Kazuaki TAKEDA†a), Student Member and Fumiyuki ADACHI†b), Member

SUMMARY The use of frequency-domain equalization (FDE) based
on minimum mean square error (MMSE) criterion can significantly im-
prove the downlink bit error rate (BER) performances of DS- and MC-
CDMA in a frequency-selective fading channel. However, the uplink BER
performance degrades due to a strong multi-user interference (MUI). In
this paper, we propose frequency-interleaved spread spectrum (SS) using
MMSE-FDE, in which the subcarrier components of each user’s signal
are interleaved onto a wider bandwidth. Then, the frequency-interleaved
frequency-domain signal is transformed into a time-domain signal by the
inverse fast Fourier transform (IFFT). Frequency-interleaving patterns as-
signed to different users are orthogonal to each other. The proposed scheme
can avoid the MUI completely while achieving frequency diversity gain
due to MMSE-FDE. It is shown by computer simulation that the use of
frequency-interleaving can significantly improve the uplink performance
in a frequency-selective Rayleigh fading channel.
key words: component, MMSE-FDE, frequency-interleaving

1. Introduction

There have been tremendous demands for high-speed data
transmissions in mobile communications [1]. A mobile
communication channel is composed of many distinct prop-
agation paths having different time delays, resulting in a
frequency-selective fading channel [2]. The hostile fad-
ing channel is a major obstacle to achieve high-speed and
high-quality data transmissions. In a frequency-selective
fading channel, inter-symbol interference (ISI) is produced
and the bit error rate (BER) performance significantly de-
grades when single carrier (SC) transmission is used with-
out using equalization technique. Direct sequence code di-
vision multiple access (DS-CDMA), which is classified as
the SC transmission technique, is adopted in the present
cellular mobile communication systems for data transmis-
sions of up to around a few Mbps [3]. DS-CDMA can
exploit the channel frequency-selectivity by the use of co-
herent rake combining that resolves the propagation paths
having different time delays and then coherently combines
them to get the path diversity gain [4]. Recently, a lot
of research attention is paid to the next generation mobile
communication systems that will support transmission data
rates higher than few tens of Mbps [5]. However, the wire-
less channel for such high speed data transmission becomes
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severely frequency-selective and the BER performance with
rake combining degrades due to a strong inter-path interfer-
ence. Hence, the use of some advanced channel equalization
technique is indispensable.

Multi-carrier (MC)-CDMA can exploit the channel
frequency-selectivity by using simple one-tap frequency-
domain equalization (FDE) based on minimum mean square
error (MMSE) criterion and therefore, has been attracting
much attention for the downlink transmission [6]–[8]. Re-
cently, DS-CDMA has been considered again, but with the
application of FDE as in MC-CDMA. It was shown [9]–
[11] that MMSE-FDE can replace rake combining to sig-
nificantly improve the downlink BER performance of DS-
CDMA and give a similar BER performance to MC-CDMA.
However, for both DS- and MC-CDMA uplink transmis-
sions, different user’s signal goes through different propa-
gation channels and hence, a BER floor is produced due to
a strong multi-user interference (MUI) even if MMSE-FDE
is applied [12]. To avoid MUI, some technique (e.g., MUI
cancellation and pre-equalization) is necessary [13]. Quite
recently, chip repetition DS-CDMA has been proposed that
uses comb-like spectrum to avoid the spectrum overlapping
among different users [14], [15].

If different users’ spectra are interleaved and spread
over a wider bandwidth so as not to overlap, the MUI
can be eliminated. In this paper, frequency-interleaved
spread spectrum (SS) using MMSE-FDE is proposed to
avoid the MUI completely and improve the uplink perfor-
mance. In the proposed scheme, the subcarrier compo-
nents of each user’s SS signal are interleaved, using or-
thogonal interleaving patterns, onto a wider bandwidth.
Then, the frequency-interleaved SS signal is transformed
into a time-domain signal by inverse fast Fourier transform
(IFFT). Orthogonal frequency-interleaving patterns are as-
signed to different users. The proposed scheme can avoid
MUI completely while maximizing the frequency diversity
gain owing to MMSE-FDE. The uplink BER performance
of the proposed scheme is evaluated by computer simulation
in a frequency-selective Rayleigh fading channel. When
frequency-interleaving is used, the transmit signal power
varies in the time-domain even in SC transmission, thereby
producing the peak-to-average power ratio (PAPR) problem
similar to MC transmission. The PAPR of the frequency-
interleaved SS signals is also discussed.

The remainder of this paper is organized as follows.
Section 2 presents the uplink transmission system model
of the frequency-interleaved SS with MMSE-FDE. The de-
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sign of frequency-interleaving pattern is discussed in Sect. 3.
In Sect. 4, the simulated BER performance of the proposed
frequency-interleaved SS is evaluated by computer simula-
tion. Section 5 gives some conclusions.

2. Frequency-Interleaved SS with MMSE-FDE

2.1 Overall Transmission System

Figure 1 shows the uplink transmitter/receiver for single-
carrier (SC)-SS using frequency-interleaving. We assume
that U users are transmitting their data to the base station. At
the uth user’s (u = 0 ∼ U−1) mobile transmitter, after turbo
encoding, a binary data sequence is transformed into a data
modulated symbol sequence and is divided into a sequence
of blocks of Nc/SFt symbols each, where Nc is the FFT win-
dow size and SFt is the spreading factor. Then, the symbol
sequence {d(u)(n); n = 0 ∼ Nc/SFt − 1} in each block is
spread by a spreading sequence {c(u)(t); t = · · · ,−1, 0, 1, · · ·}
of spreading factor SFt. The resulting Nc-chip sequence in
each block is decomposed by Nc-point FFT into frequency-
domain signal S(u) = {S (u)(k); k = 0 ∼ Nc − 1}. S(u) is inter-
leaved onto an SF f times wider bandwidth of NcSF f subcar-
riers [16]. Here, the overall spreading factor SF is given by
SF = SFtSF f . Interleaving patterns are determined so that
different users’ subcarrier components do not overlap with
each other (see Fig. 2). Finally, NcSF f -point IFFT is ap-
plied to obtain the frequency-interleaved time-domain chip
sequence of NcSF f chips. The last Ng chips of each chip
block are copied and inserted, as a cyclic prefix, into the
guard interval (GI) at the beginning of each block to form a
block of NcSF f + Ng chips.

The frequency-interleaved SC-SS chip block is trans-
mitted over a frequency-selective fading channel and is re-
ceived at a base station receiver. The received chip sequence
is decomposed by NcSF f -point FFT into NcSF f subcarrier
components. Then, MMSE-FDE is carried out and fre-
quency de-interleaving is performed to extract each user’s
frequency-domain signal. Finally, Nc-point IFFT is applied
to obtain the time-domain chip block for despreading and
turbo decoding.

When U users communicate with a base station, the
choice of (SFt, SF f ) is important for a given SF. (SFt, SF f )
is chosen as follows; first SF f is set as SF f = U so that
different users’ frequency components do not overlap with
each other. Then, SFt is set as SFt = SF/U to suppress the
residual inter-chip interference (ICI) produced after MMSE-
FDE. The reason why we set S F f first is that the MUI is the
predominant cause of the performance degradation rather
than the residual ICI. The above choice of (SFt, SF f ) shows
the best trade off between suppressing the residual ICI and
suppressing the MUI. This is confirmed by computer simu-
lation in Sect. 4.

The same transmitting/receiving processing can be ap-
plied to multi-carrier (MC)-SS by just removing Nc-point
FFT and IFFT from the transmitter and the receiver, respec-
tively [17].

(a) Mobiles station transmitter.

(b) Base station receiver.

Fig. 1 Uplink transmitter/receiver for frequency-interleaved SC-SS.

Fig. 2 Frequency-interleaving.

2.2 Transmit Signal Representaion

First, we consider SC-SS. Throughout this paper, the chip-
spaced time representation of transmit signals is used. With-
out loss of generality, transmission of data symbol sequence
{d(u)(n); n = 0 ∼ Nc/SFt − 1} in one block is consid-
ered, where |d(u)(n)| = 1. The chip sequence after spread-
ing is expressed, using vector representation, as s(u)

SC =

[s(u)
SC(0), · · · , s(u)

SC(t), · · · , s(u)
SC(Nc − 1)]T, where T denotes the

transposition. s(u)
SC(t) can be expressed, using the equivalent

lowpass representation, as

s(u)
SC(t) =

√
2Es/(TcSFt)d

(u)(�t/SFt�)c(t), (1)

where Es and Tc denote the symbol energy and the chip du-
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ration, respectively.
s(u)

SC is decomposed by Nc-point FFT into frequency-
domain signal S(u)

SC = [S (u)
SC(0), · · · , S (u)

SC(k), · · · , S (u)
SC(Nc−1)]T,

where S (u)
SC(k) is the kth subcarrier component, given by

S (u)
SC(k) =

Nc−1∑
t=0

s(u)
SC(t) exp

(
− j2πk

t
Nc

)
. (2)

S(u)
SC is interleaved onto SF f times wider bandwidth of NcSF f

subcarriers. The resulting frequency-interleaved signal can
be represented as

Ŝ
(u)
SC = [Ŝ (u)

SC(0), · · · , Ŝ (u)
SC(k′), · · · , Ŝ (u)

SC(NcSF f − 1)]T

= Q(u)S(u)
SC, (3)

where Q(u) is an (NcSF f )-by-Nc frequency-interleaving ma-
trix.

Interleaving patterns are determined so that different
users’ subcarrier components do not overlap with each other
(see Fig. 2). Q(u) must satisfy

{
Q(u)

}T
Q(u′) =

{
I if u = u′
0 otherwise

, (4)

where I is an Nc × Nc identity matrix. Below, an example
is shown for the case of SF f = 2 and Nc = 4 for multi-
plexing two users (u = 0 and 1). The following interleaving
matrices, Q(0) and Q(1), can be used:

Q(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

Positions of “1” for Q(0) and Q(1) are not overlapping and
therefore Q(0) and Q(1) are orthogonal to each other.

Finally, NcSF f -point IFFT is applied to obtain the
frequency-interleaved SC-SS signal s̃(u)

SC(t′), t′ = 0 ∼
(NcSF f − 1), which can be expressed as

s̃(u)
SC(t′) =

1
Nc

NcSF f−1∑
k′=0

Ŝ (u)
SC(k′) exp

(
j2πk′

t′

NcSF f

)
. (6)

Next we consider MC-SS. The kth subcarrier compo-
nent is given by

s(u)
MC(k) =

√
2Es/(TcSFtNc)d

(u)(�k/SFt�)c(k). (7)

s(u)
MC = [s(u)

MC(0), · · · , s(u)
MC(k), · · · , s(u)

MC(Nc − 1)]T is interleaved
onto SF f times wider bandwidth as in SC-SS. The resulting
frequency-interleaved signal is represented as

ŝ(u)
MC = Q(u)s(u)

MC. (8)

NcSF f -point IFFT is applied to obtain the frequency-
interleaved MC-SS signal s̃(u)

MC(t′), t′ = 0 ∼ (NcSF f − 1),
which can be expressed as

s̃(u)
MC(t′) =

NcSF f−1∑
k′=0

ŝ(u)
MC(k′) exp

(
j2πk′

t′

NcSF f

)
. (9)

After the GI insertion, the frequency-interleaved SC-
or MC-SS signal is transmitted over a frequency-selective
fading channel.

2.3 Received Signal Representation

We assume a block fading so that the path gains remain con-
stant over one block length of (NcSF f + Ng) chips. Assum-
ing that the channel has L independent propagation paths
with Tc-spaced distinct time delays {τl; l = 0 ∼ L − 1}, the
discrete-time impulse response h(u)(t′) of the uth user multi-
path channel is expressed as [18]

h(u)(t′) =
L−1∑
l=0

h(u)
l δ(t

′ − τl), (10)

where h(u)
l is the lth path gain with

∑L−1
l=0 E[|h(u)

l |2] = 1 (E[.]
denotes the ensemble average operation). It is assumed that
the maximum time delay difference of the channel is shorter
than the GI.

The received signal rSC(or MC)(t′), t′ = −Ng ∼ (NcSF f −
1), at the base station is expressed as

rSC(or MC)(t
′) =

U−1∑
u=0

L−1∑
l=0

h(u)
l s̃(u)

SC(or MC)(t
′ − τl) + η(t

′),

(11)

where η(t′) is a zero-mean complex Gaussian noise process
having a variance of 2N0SF f /Tc with N0 being the single-
sided power spectrum density of the additive white Gaussian
noise (AWGN).

2.4 MMSE-FDE and Frequency-Deinterleaving

The received signal r(t′) is decomposed by NcSF f -point
FFT into NcSF f subcarrier components {RSC(or MC)(k′); k′ =
0 ∼ (NcSF f − 1)}. The k′th subcarrier component
RSC(or MC)(k′) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RSC(k′) =
NcSF f−1∑

t′=0

rSC(t′) exp

(
− j2πk′

t′

NcSF f

)

=

U−1∑
u=0

SF f H(u)(k′)Ŝ (u)
SC(k′) + Π(k′)

RMC(k′) =
NcSF f−1∑

t′=0

rMC(t′) exp

(
− j2πk′

t′

NcSF f

)

= NcSF f

U−1∑
u=0

H(u)(k′)ŝ(u)
MC(k′) + Π(k′),

(12)
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where H(u)(k′) and Π(k′) are the channel gain and the noise
component due to the AWGN, respectively, and they are
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(u)(k′) =
L−1∑
l=0

h(u)
l exp

(
− j2πk′

τl

NcSF f

)

Π(k′) =
NcSF f−1∑

t′=0

η(t′) exp

(
− j2πk′

t′

NcSF f

)
.

(13)

Without loss of generality, detection of the 0th (u = 0)
user’s data sequence is considered. MMSE-FDE is carried
out to obtain

R̂(0)
SC(or MC)(k

′) = RSC(or MC)(k
′)w(0)(k′), (14)

where w(0)(k′) is the MMSE equalization weight at the k′th
subcarrier. It is given by [8]

w(0)(k′) =
H(0)∗(k′)

|H(0)(k′)|2 +
(

1
SFt

Es

N0

)−1
, (15)

where Es/N0 is the average symbol energy-to-AWGN power
spectrum density ratio and * denotes the complex conjugate
operation. Substituting Eq. (12) into Eq. (14), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̂(0)
SC(k′) = SF f

U−1∑
u=0

w(0)(k′)H(u)(k′)Ŝ (u)
SC(k′)

+ w(0)(k′)Π(k′)

= SF f

U−1∑
u=0

H̃(u)(k′)Ŝ (u)
SC(k′) + Π̃(k′)

R̂(0)
MC(k′) = NcSF f

U−1∑
u=0

w(0)(k′)H(u)(k′)ŝ(u)
MC(k′)

+ w(0)(k′)Π(k′)

= NcSF f

U−1∑
u=0

H̃(u)(k′)ŝ(u)
MC(k′) + Π̃(k′),

(16)

where H̃(u)(k′) and Π̃(k′) are the equivalent channel gain
and the noise component after MMSE-FDE, respectively.
H̃(u)(k′) and Π̃(k′) are given by{

H̃(u)(k′) = w(0)(k′)H(u)(k′)
Π̃(k′) = w(0)(k′)Π(k′). (17)

Using the vector representation R̂
(0)
SC(or MC) =

[R̂(0)
SC(or MC) (0), · · · , R̂(0)

SC(or MC)(NcSF f − 1)]T, Eq. (16) can be
rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̂
(0)
SC = SF f

U−1∑
u=0

H̃
(u)

Ŝ
(u)
SC + Π̃

R̂
(0)
MC = NcSF f

U−1∑
u=0

H̃
(u)

ŝ(u)
MC + Π̃,

(18)

where H̃
(u)

and Π̃ are (NcSF f )-by-(NcSF f ) equivalent chan-
nel gain matrix and (NcSF f )-by-1 noise vector after MMSE-
FDE, respectively. They are represented as

⎧⎪⎪⎨⎪⎪⎩
H̃

(u)
= diag

(
H̃(u)(0), · · · , H̃(u)(k′), · · · , H̃(u)(SF f Nc − 1)

)
Π̃ =

[
Π̃(0), · · · , Π̃(k′), · · · , Π̃(SF f Nc − 1)

]T
.

(19)

R̂
(0)
SC(or MC) is deinterleaved to extract the 0th user’s

frequency-domain signal R̃
(0)
SC(or MC) = [R̃(0)

SC(or MC)(0), · · · ,
R̃(0)

SC(or MC) (Nc − 1)]T. Using Eqs. (3) and (8) for SC-SS and

MC-SS, respectively, and Eq. (18), R̃
(0)
SC(or MC) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃
(0)
SC = Q(0)T

R̂
(0)
SC

= SF f

U−1∑
u=0

{
Q(0)T

H̃
(u)

Q(u)
}

S(u)
SC + Q(0)T

Π̃

R̃
(0)
MC = Q(0)T

R̂
(0)
MC

= NcSF f

U−1∑
u=0

{
Q(0)T

H̃
(u)

Q(u)
}

s(u)
MC + Q(0)T

Π̃.

(20)

Since the frequency-interleaving matrices Q(u), u = 0 = U −
1, are orthogonal (see Eq. (4)) and H̃

(u)
is a diagonal matrix,

Q(u′)T
H̃

(u)
Q(u) satisfies

Q(u′)T
H̃

(u)
Q(u) =

{
Q(u′)T

H̃
(u′)

Q(u′) if u = u′
0 otherwise.

(21)

Hence, we obtain
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R̃
(0)
SC = SF f

{
Q(0)T

H̃
(0)

Q(0)
}

S(0)
SC + Q(0)T

Π̃

R̃
(0)
MC = NcSF f

{
Q(0)T

H̃
(0)

Q(0)
}

s(0)
MC + Q(0)T

Π̃,
(22)

where
{
Q(0)T

H̃
(0)

Q(0)
}

is an Nc-by-Nc diagonal matrix of

the deinterleaved equivalent channel gains. It is understood
from Eq. (22) that S(0)

SC is perfectly extracted without MUI

since
{
Q(0)T

H̃
(0)

Q(0)
}

is a diagonal matrix.

In SC-SS, Nc-point IFFT is applied to R̃
(0)
SC to obtain the

time-domain chip sequence {r̃(0)
SC(t); t = 0 ∼ (Nc − 1)}:

r̃(0)
SC(t) =

1
Nc

Nc−1∑
k=0

R̃(0)
SC(k) exp

(
j2πt

k
Nc

)
. (23)

Finally, despreading is carried out on r̃(0)
SC(t). In MC-SS, on

the other hand, despreading is carried out on the deinter-
leaved chip sequence R̃

(0)
MC. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̃(0)
SC(n) =

1
SFt

(n+1)SFt−1∑
t=nSFt

r̃(0)
SC(t)c(0)∗(t)

d̃(0)
MC(n) =

1
SFt

(n+1)SFt−1∑
k=nSFt

R̃(0)
MC(k)c(0)∗(k),

(24)

which are the decision variables for data-demodulation on
d(0)(n) for SC and MC transmissions.
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3. Frequency-Interleaving

3.1 Frequency-Interleaving Patterns

In this paper, we consider three frequency-interleaving pat-
terns: a) equal-space, b) block and c) random, as shown in
Fig. 3. In equal-space interleaving, each user’ subcarriers
are periodically interleaved onto the entire bandwidth (see
Fig. 3(a)) and therefore, a large frequency diversity gain can
be obtained. The (p, q)-th element of Q(u) of Eq. (4) is given
by

[
Q(u)

]
p,q
=

{
1 if q=0 ∼ (Nc − 1) and p=SF f × q+u
0 otherwise

(25)

for equal-space interleaving and

[
Q(u)

]
p,q
=

{
1, if q = 0 ∼ (Nc − 1), p = Nc × u + q
0, otherwise

(26)

for block interleaving. For example, when SF f = 2 and
Nc = 4, two users can be orthogonally multiplexed. The
interleaving matrices, Q(0) and Q(1), can be

Q(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(27)

for equal-space interleaving and

(a) Equal space

(b) Block

(c) Random

Fig. 3 Interleaving pattern.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(28)

for block interleaving. In random interleaving, Nc rows
of Nc-by-Nc identity matrix are randomly permutated over
SF f Nc rows of (SF f Nc)-by-Nc matrix, but so as not to over-
lap with other users. An example of random interleaving has
been given by Eq. (5).

3.2 Time-Domain Signal Representation of Equal-Space
Interleaving for SC-SS

When equal-space interleaving is applied to SC-SS sig-
nal, the k′th subcarrier component Ŝ (u)

SC(k′) after frequency-
interleaving is given, from Eqs. (3) and (25), by

Ŝ (u)
SC(k′) =

{
S (u)

SC(k) k′=SF f k+u and k=0 ∼ Nc−1
0 otherwise.

(29)

Substituting Eq. (29) into Eq. (6), we obtain

s̃(u)
SC(t′) =

1
Nc

Nc−1∑
k=0

S (u)
SC(k) exp

(
j2π(SF f k + u)

t′

NcSF f

)
.

(30)

Substitution of Eq. (2) into Eq. (30) gives

ŝ(u)
SC(t′) =

1
Nc

Nc−1∑
t=0

s(u)
SC(t)

Nc−1∑
k=0

exp

(
− j2π(t − t′)

k
Nc

)

× exp

(
j2πt′

u
NcSF f

)

= s(u)
SC

(
t′ mod Nc

)
exp

(
j2πt′

u
NcSF f

)
, (31)

where (1/Nc)
Nc−1∑
k=0

exp
(
− j2πt k

Nc

)
= δ(t mod Nc) is used. It

can be understood from Eq. (31) that equal-space interleav-
ing of SC-SS can be performed in the time-domain by SF f

times repetition of the chip sequence {s(u)
SC(t); t = 0 ∼ Nc−1}.

The resulting interleaving pattern is exactly the same as that
obtained by the chip repetition scheme (this does not require
the FFT, frequency-interleaving and IFFT operations at the
transmitter) proposed in [15].

4. Computer Simulation

Simulation parameters are summarized in Table 1. We con-
sider quaternary phase shift keying (QPSK) data modula-
tion, the overall spreading factor SF = SFtSF f = 16 and the



TAKEDA and ADACHI: FREQUENCY-INTERLEAVED SPREAD SPECTRUM WITH MMSE-FDE
265

Table 1 Simulation parameters.

number of subcarriers of the transmitted signal (or the num-
ber of IFFT points for the transmitter) is NcSF f = 1024.
A long PN sequence of 4095 chips is used as a spreading
code. The channel is assumed to be a frequency-selective
block Rayleigh fading channel having L = 16-path uniform
power delay profile (i.e., E[|hl|2] = 1/L for all l) with a time
delay τl of τl = l chips. The path gain hl is characterized by
zero-mean complex Gaussian process and is generated using
Jakes model [2] having 64 plane waves. A normalized max-
imum Doppler frequency of fDTc(NcSF f + Ng) = 0.004 is
assumed, where fD = v/λ with v and λ representing respec-
tively the mobile terminal traveling speed and the carrier fre-
quency; fDTc(NcSF f + Ng) = 0.004 corresponds to a termi-
nal moving speed of 82 km/h for a chip rate of 100 Mcps,
5 GHz carrier frequency, NcSF f = 1024 and Ng = 32. A
R = 1/2-rate turbo code with a constraint length of 4 and
decoding with 8 iterations are assumed. The information
bit sequence length to be transmitted is taken to be 1024
bits. Perfect chip timing and ideal channel estimation are
assumed. To obtain a similar frequency diversity gain to
SC-SS, subcarriers of MC-SS are interleaved by an SFt-by-
(Nc/SFt) row-column block interleaver before frequency-
interleaving.

4.1 Comparison of Frequency-Interleaving Patterns

The uplink average BER performance achievable with joint
frequency-interleaving and MMSE-FDE is plotted for SC-
and MC-SS in Fig. 4 as a function of the average received
bit energy-to-AWGN noise power spectrum density ratio
Eb/N0, given by Eb/N0 = 0.5 (Ec/N0) [1 + Ng/(NcSF f )].
We assume equal-space, block and random interleaving pat-
terns. In random interleaving, a different random interleav-
ing pattern is used every transmission of 1024 bits. As
many as SF f users can be multiplexed without MUI, hence,
(SFt, SF f ) is set as (SFt, SF f ) = (1, 16) for U = 16. SC-
and MC-SS with (SFt, SF f ) = (1, 16) correspond to non-
spread SC transmission and OFDMA, respectively. MC-SS

Fig. 4 Average BER performances with equal-space, blcok and random
frequency-interleaving.

provides a slightly better BER performance than SC-SS. In
MC-SS, higher coding gain is achieved, while larger fre-
quency diversity gain is obtained in SC-SS. However, in SC-
SS, the residual inter-chip interference (ICI) is present after
MMSE-FDE and this degrades the BER performance.

In both SC- and MC-SS, the equal-space interleaving is
superior to the block and random interleavings. The block
interleaving pattern provides the smallest frequency diver-
sity gain (or smallest coding gain for MC-SS) since each
user’s subcarrier components remain consecutive. In ran-
dom interleaving, some subcarrier components of the origi-
nal signal may be mapped very closely, and hence the BER
performance degrades since the frequency diversity gain re-
duces similar to the block interleaving. In equal-space in-
terleaving, on the other hand, each user’s subcarrier compo-
nents are interleaved onto the entire bandwidth with equal
spacing. Therefore, the largest frequency diversity gain
can be obtained in SC-SS, while the largest coding gain
can be achieved in MC-SS. According to our preliminary
simulation, we found that the equal-space interleaving pat-
tern gives the best performance. Hence, we consider only
the equal-space interleaving pattern in the following simu-
lations.

4.2 Optimum Choice of SF f and SFt

The uplink average BER performance achievable with joint
frequency-interleaving and MMSE-FDE is plotted for SC-
and MC-SS in Fig. 5. We consider three cases of (SFt, SF f ):
(SFt, SF f ) = (1, 16), (4, 4) and (16, 1). The first case cor-
responds to the non-spread SC transmission and OFDMA.
The third is equivalent to the pure DS- and MC-CDMA.
It can be seen from Fig. 5 that SC-SS provides a slightly
worse BER performance than MC-SS since the residual ICI
is present after MMSE-FDE in SC-SS.

As many as U = SF f users can access a base station
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(a) U = 1 (b) U = 4

(c) U = 16

Fig. 5 Average BER performance with joint frequency-interleaving and MMSE-FDE.

without causing MUI at all. When U = 1 (see Fig. 5(a)),
the choice of (SFt, SF f ) = (16, 1) provides the best BER
performance. This is because, in SC-SS, the residual inter-
chip interference (ICI) after MMSE-FDE can be best sup-
pressed by time-domain despreading process, while in MC-
SS, the largest frequency diversity gain can be obtained with
(SFt, S F f ) = (16, 1). For the case of U = 4 (see Fig. 5(b)),
however, the BER performance degrades with (SFt, SF f ) =
(16, 1) because different users’ subcarriers overlap and MUI
is produced. With (SFt, SF f ) = (4, 4), the best BER perfor-
mance is achieved due to MUI-free frequency-interleaving
while reducing the residual ICI by time-domain despread-
ing process. With (SFt, SF f ) = (1, 16), although the MUI
can be avoided, the residual ICI cannot be all suppressed
since the time-domain spreading is not used. When U = 16
(see Fig. 5(c)), large BER floors are seen with (SFt, SF f ) =
(16, 1) and (4, 4) due to the MUI. On the other hand, with

(SFt, SF f ) = (1, 16), no BER floor is seen and better BER
performance than when (SFt, SF f ) = (16, 1) and (4, 4) is
achieved. This is because when (SFt, SF f ) = (1, 16), all
users’ subcarrier components do not overlap at all and the
orthogonality among users is maintained. The Eb/N0 degra-
dation in SC-SS (MC-SS) from the case of U = 1 is 2.4
(2.3) dB for BER = 10−4. As a result, the optimum choice
of (SFt, SF f ) is (SF/U,U) for the given overall spreading
factor SF.

4.3 Discussion on PAPR

Figure 6 shows the complementary cumulative distribution
function (CCDF) of the PAPR using frequency-interleaving
with (SFt, SF f ) = (1, 16) for SC- and MC-SS. PAPR is de-
fined as the instantaneous peak transmit power in a block
normalized by the average transmit power and is given, us-
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Fig. 6 CCDF of PAPR of frequency-interleaved SC- and MC-SS.

ing Eqs. (6) and (9) by

PAPR =

max
0≤t′≤NcSF f−1

∣∣∣∣s̃(u)
SC(or MC)(t

′)
∣∣∣∣2

1
NcSF f

E

⎡⎢⎢⎢⎢⎢⎢⎣
NcSF f−1∑

t′=0

∣∣∣∣s̃(u)
SC(or MC)(t

′)
∣∣∣∣2
⎤⎥⎥⎥⎥⎥⎥⎦
, (32)

where E[.] denotes the ensemble average operation, but it
can be removed in our case since QPSK data modulation is
used. SC-SS has a smaller PAPR than MC-SS irrespective
of the frequency-interleaving patterns; the equal-space in-
terleaving pattern of SC-SS gives the smallest PAPR among
the three interleaving patterns. It can be understood from
Eq. (31) that equal-space interleaving of SC-SS is equiva-
lent to the chip repetition scheme [15].

5. Conclusion

In this paper, frequency-interleaved SS with MMSE-FDE
has been proposed. The BER performance of the proposed
system was evaluated by computer simulation. Higher cod-
ing gain is obtained in MC-SS, while a larger frequency di-
versity gain is obtained in SC-SS. However, in SC-SS, the
residual ICI is present after MMSE-FDE and this degrades
the BER performance. When U users access a base sta-
tion, the choice of (SFt, SF f ) = (SF/U,U) achieves the best
BER performance due to MUI-free frequency-interleaving.
When U = 16, both MC- and SC-SS provide almost iden-
tical BER performance; the Eb/N0 degradation in SC-SS
(MC-SS) from the case of U = 1 was found to be 2.4
(2.3) dB for BER = 10−4. PAPR is also discussed when
frequency-interleaving is applied. SC-SS always shows a
smaller PAPR than MC-SS; no PAPR problem exists if the
equal spacing frequency-interleaving is used in SC-SS.
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