IEICE TRANS. COMMUN., VOL.E92-B, NO.5 MAY 2009

1457

| PAPER Special Section on Radio Access Techniques for 3G Evolution

RLS Channel Estimation with Adaptive Forgetting Factor for
DS-CDMA Frequency-Domain Equalization
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SUMMARY  Frequency-domain equalization (FDE) based on the min-
imum mean square error (MMSE) criterion can increase the downlink bit
error rate (BER) performance of DS-CDMA beyond that possible with con-
ventional rake combining in a frequency-selective fading channel. FDE re-
quires accurate channel estimation. Recently, we proposed a pilot-assisted
channel estimation (CE) based on the MMSE criterion. Using MMSE-
CE, the channel estimation accuracy is almost insensitive to the pilot chip
sequence, and a good BER performance is achieved. In this paper, we
propose a channel estimation scheme using one-tap recursive least square
(RLS) algorithm, where the forgetting factor is adapted to the changing
channel condition by the least mean square (LMS) algorithm, for DS-
CDMA with FDE. We evaluate the BER performance using RLS-CE with
adaptive forgetting factor in a frequency-selective fast Rayleigh fading
channel by computer simulation.

key words: DS-CDMA, frequency-domain equalization, channel estima-
tion, RLS algorithm

1. Introduction

The 4th generation (4G) mobile communication systems [1]
which provide broadband wireless services of e.g. 100 Mbps
to 1 Gbps are expected around 2015. In the present 3rd gen-
eration (3G) systems, direct sequence-code division multi-
ple access (DS-CDMA) is adopted as the wireless access
technique [2]. However, since the broadband wireless chan-
nel is severely frequency-selective, the bit error rate (BER)
performance of DS-CDMA with rake combining signifi-
cantly degrades. The use of frequency-domain equalization
(FDE) based on the minimum mean square error (MMSE)
criterion can provide a better BER performance of DS-
CDMA than the rake combining [3], [4].

FDE requires accurate estimation of the channel trans-
fer function. Pilot-assisted channel estimation (CE) can
be used. Time-domain pilot-assisted CE was proposed for
single-carrier transmission in [5]. After the channel impulse
response is estimated according to the least-sum-of-squared-
error (LSSE) criterion, the channel transfer function is ob-
tained by applying fast Fourier transform (FFT). Frequency-
domain pilot-assisted CE was proposed in [6],[7]. The re-
ceived pilot signal is transformed into the frequency-domain
pilot signal and then the pilot modulation is removed using
zero forcing (ZF) or least square (LS) technique. As the pilot
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signal, the Chu sequence [8] that has the constant amplitude
in both time- and frequency-domain is used. However, the
number of Chu sequences is limited. For example, it is only
128 for the case of 256-bit period [8].

PN sequences can be used for the pilot. Using a partial
sequence taken from a long PN sequence, a very large num-
ber of pilots can be generated. However, since the frequency
spectrum of the partial PN sequence is not constant, the use
of ZF-CE produces noise enhancement [9]. The noise en-
hancement can be mitigated by the minimum mean square
error channel estimation (MMSE-CE) [9]. Using MMSE-
CE, the channel estimation accuracy is made almost insen-
sitive to the pilot chip sequence. Recently, we proposed a
2-step maximum likelihood channel estimation (MLCE) to
further improve the estimation accuracy [10]. However, the
2-step MLCE has the tracking ability problem in a fast fad-
ing environment since it assumes a block fading in which
the channel gains stay constant over a frame. Channel es-
timation using recursive least square (RLS) algorithm was
proposed to track the time-varying channels [11]. In [11],
RLS algorithm and the superimposed training sequences are
applied for channel estimation in orthogonal frequency di-
vision multiplexing (OFDM). However, the forgetting factor
of RLS algorithm was not adapted in [11] and needs to be
set according to the channel condition.

In this paper, we propose a channel estimation scheme
using one-tap RLS algorithm, where the forgetting factor
is adapted to the changing channel condition by the least
mean square (LMS) algorithm, for DS-CDMA with FDE.
We evaluate, by computer simulation, the BER performance
of DS-CDMA using RLS-CE with adaptive forgetting factor
in a frequency-selective fast Rayleigh fading channel. The
achievable BER performance is compared with those using
2-step MLCE and using MMSE-CE with 1st order interpo-
lation.

2. Transmission System Model
2.1 Overall Transmission System Model

The transmission system model for multicode DS-CDMA
with FDE is illustrated in Fig. 1. Throughout the paper, the
chip-spaced discrete-time signal representation is used. At
the transmitter, a binary data sequence is transformed into
data-modulated symbol sequence and then converted to U
parallel streams by serial-to-parallel (S/P) conversion. Then,
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Fig.1 Transmitter/receiver structure for DS-CDMA with FDE.

each parallel stream is divided into a sequence of blocks of
N./SF symbols each, where N, and SF denote the size of the
chip-block and the spreading factor, respectively. The mth
data symbol of the nth chip-block (n = 0 ~ N—1) in the uth
stream is represented by d,, ,(m), m = 0~N,./SF-1. d, ,(m)
is spread by multiplying it with an orthogonal spreading se-
quence {c,(t);t = 0~ SF—1}. The resultant U chip-blocks
of N, chips each are added and further multiplied by a com-
mon scramble sequence {cs((¢);¢ =...,1,0,1,...} to make
the resultant multicode DS-CDMA chip-block like white-
noise. The last N, chips of each N, chip-block is copied
as a cyclic prefix and inserted into the guard interval (GI)
placed at the beginning of each chip-block, as illustrated in
Fig. 2. For channel estimation, one pilot chip-block is trans-
mitted every N—1 data chip-blocks to constitute a frame of
N chip-blocks, as shown in Fig. 3.

The Gl-inserted chip-block is transmitted over a
frequency-selective fading channel and is received at a re-
ceiver. After removal of the GI, the received chip-block
is decomposed by N -point FFT into N, frequency compo-
nents. The channel estimation using RLS-CE is performed
as follows. The RLS-CE is carried out using the received
pilot chip-block. Using the channel estimate, a series of
MMSE-FDE, N -point inverse FFT (IFFT), de-spreading
and data de-modulation is performed on the 1st data chip-
block in the frame. Then, the chip-block replica is regen-
erated and the RLS-CE is carried out using the chip-block
replica as a pilot. The forgetting factor used in the RLS algo-
rithm is updated using the LMS algorithm (see Sect. 3). This
is repeated until the reception of the last data chip-block in
the frame.

2.2 Signal Representation

The nth chip-block {5,(#); = 0 ~ N.—1} can be expressed,
using the equivalent lowpass representation, as
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5a() = V2Ps, () (1)
with
(S|
Sn(t) = dn,u o Cu(t mod SF) Cscr(t), (2)
{u:O SF }

where P is the transmit power and | x] represents the largest
integer smaller than or equal to x. After inserting the GI of
Ny chips, the nth chip-block is transmitted. The propaga-
tion channel is assumed to be a frequency-selective fading
channel having chip-spaced L discrete paths, each subjected
to independent fading. The channel impulse response £, (1)
can be expressed as

L-1
ha() = > bz = 71), (3)
1=0

where h,,; and 7; are the complex-valued path gain and time
delay of the I/th path (/ = 0 ~ L—1), respectively, with
,L:‘Ol E[Ihn,llz] = 1 (E[.] denotes the ensemble average op-
eration). In this paper, we assume that the maximum time
delay difference 7, —7¢ of the channel is shorter than the
GI length. We assume that the path gains stay constant over
one chip-block but change block by block.
The nth received chip-block {r,(¢);t = 0 ~ N.—1} can
be expressed as

L-1
Fa(t) = ) hiSalt = 71) + 7(0), @)
1=0

where 1,(?) is a zero-mean complex Gaussian process with
variance 2Ny /T, with T, and Ny being respectively the chip
duration and the single-sided power spectrum density of the
additive white Gaussian noise (AWGN).

2.3 MMSE-FDE

After the removal of the GI, the received chip-block is de-
composed by an N, -point FFT into N, frequency compo-
nents. The kth frequency component of the nth chip-block
(n = 0~N-1) can be written as
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Ne-1

R, (k) = Z ru(t) exp (—jZITkL)
=0 Ne
= H,(k)S »(k) + IL,(k), 5)

where H, (k) is the channel gain, S, (k) is the signal compo-
nent, and IT,(k) is the noise due to zero-mean AWGN. They
are given by

N1

t
Sak) = s,(1) ex (— '27rk—)
ZO] p|-s2mk
L-1 -
H,(k) = «/2_132/1,,,, exp (— j27rkﬁl) (6)
N.—1 =0 ¢
IL,(k) = (1) ex (— '27rk—).
; n p( sk -

One-tap MMSE-FDE is carried out as
Ry(k) = Wy(k)R, (k), (7
where W, (k) is the MMSE-FDE weight and is given by [3],
[4]
H, (k)

W, (k) =
UN., |H,(b)]> + 202

®)

with 202 (= 2NyN./T,) being the variance of II,(k) and =*
denoting the complex conjugate operation. H, (k) and o
are unknown to the receiver and need to be estimated. In this
paper, H,(k) is estimated by RLS-CE. o can be estimated
according to [9].

N, -point IFFT is applied to transform the frequency-
domain signal {R,(k);k = 0~ N.—1)} into the time-domain
chip-block {#,(f);t = 0~N.—1} as

X 1 ok
Put) = < Z R, (k) exp ( jamt ) )

¢ k=0
Finally, de-spreading is carried out on {#,(?)}, giving

(m+1)SF—1
DT Ryt mod SF)ci, (1), (10)

t=mSF

fin,u(m) = ﬁ

which is the decision variable for data de-modulation on
dn,u(m)-

3. RLS Channel Estimation Using Adaptive Forgetting
Factor

The channel estimate of H,(k) is denoted by H,(k). In
Sect. 3.1, we present the one-tap RLS algorithm for the
channel estimation. Then, the forgetting factor adaptation
is described in Sect.3.2. The chip-block replica is gen-
erated to be used as a pilot in the channel estimation for
MMSE-FDE of the next chip-block. The noise reduction
in the channel estimate is done by applying the delay-time
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domain windowing technique [12],[13]. These are pre-
sented in Sect. 3.3. In Sect. 3.4, the computational complex-
ity of the proposed RLS-CE is compared with 2-step MLCE
[10], MMSE-CE with decision-feedback [9], and MMSE-
CE with 1st order interpolation.

3.1 One-Tap RLS Algorithm

One-tap RLS algorithm is illustrated in Fig.4. We use the
following cost function for the RLS algorithm [14]:

n

enl) = " e, (11)

i=1
where e;(k) is given by
ei(k) = Ri(k) — H,(k)S i(k), (12)

where A (0 < A < 1) is the forgetting factor. The chan-
nel estimate H, (k) is the one that minimizes &,(k). Solving
0e,(k)/0H, (k) = 0 gives

H,(k) = Z,(k)[© k), 13)

where Z, (k) and @, (k) are respectively given by

Zy(k) = )" MRS ()
i (14)
O (k) = > ISP

i=1

To update Z,(k) and @, (k) recursively, they are rewritten as

{znac) = AZ, 1 (k) + R,(K)S 5(k) as)

D, (k) = AD,_1 (k) + IS ,(b)I* .

Substituting Eq. (15) into Eq. (13) gives the following up-
date equation based on the RLS algorithm:

H,(k) = H,_1 (k) + G, (k)& (k), (16)
where

{Gmc) = $3(0/ (k) an

En(k) = Ry (k) — Hy—y (K)S (k).
The optimum forgetting factor A changes according to
the change in the channel statistical property (i.e., fading
rate and fading type). In this paper, assuming that channel

statistical property does not change rapidly, A is adapted by
the LMS algorithm [14].

3.2 Adaptive Algorithm of Forgetting Factor A

The following cost function is used:

1
Jn(k) = SE[,RF]. (18)
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Finding A that minimizes Eq. (18) corresponds to the steep-
est descent method as

Ap(k) = Ap1 (k) + p (=V A, (k) , 19)

where u is the step size and the gradient vector V4,,(k) is the
differentiation of the cost function J,(k) with respect to A.
VA,(k) is given as

oJ,(k .
VA0 = T RefE[Y, (RS, MER]], (20)
where
_ 0H,(k)
(k) = == 1)
Substituting Eqs. (16) and (18) into (21) gives
W, (k) = (1 = Gu(k)S (k) W1 (k)
aCD;l(k)S* k)¢ (k 22
a1 2O (K). (22)

Differentiation of inverse of Eq. (15) with respect to A gives
the updating equation for d®;'(k)/0 as

0w, (k) , 00,1, (k)
ryaa A {(1 = G, (k)S (k) o
+G, (o) + @n‘(lo}. (23)

The above mentioned steepest descent method requires
the gradient vector VA4, (k) at each iteration n. However,
VA,(k) is unknown and must be estimated using the avail-
able data. The instantaneous estimate of VA, (k) on the basis
of Eq. (20) is

VA (k) = —Re[W,,-1(0)S 5 (k)é; (k)] - (24)

Replacing VA, (k) in Eq. (19) by Eq. (24), we obtain the fol-
lowing LMS algorithm for updating the forgetting factor:

An(k) = Ayey (k) + pRe[ W1 (K)S n ()&, (K)] . (25)

The forgetting factor A,(k) depends on statistical charac-
teristics of the fading channel. Statistical characteristics
are identical for all frequencies. Therefore, in this paper,
A, =(1/N,) ZkN;al A, (k) is used to suppress the noise.

The proposed RLS-CE requires the knowledge of the
transmitted chip-block {S ,(k);k = 0~N,—1}, n > 1. How-
ever, since {S ,,(k); k = 0~ N_.—1} is unknown at the receiver,
the transmitted chip-block replica (S 2k)k =0~N.—1}
needs to be generated by the decision-feedback. This is
done as follows. First, MMSE-FDE (Egs. (7) and (8)) is
carried out using the channel estimate for the (n—1)th chip-
block. After performing a series of MMSE-FDE, N, -point
IFFT, de-spreading and data de-modulation on the nth chip-
block, the tentatively detected symbol sequence {c?,w(m);
m=0~N./SF—-1},u = 0~ U-1, is spread to generate
the transmitted chip-block replica {5,(#); t = 0~ N.—1}:
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Fig.4  One-tap RLS algorithm using adaptive forgetting factor.

o v-1 o
5,(t) = {Z; e ([ SFJ) ¢, (t mod SF)} e, (26)

The chip-block replica is transformed by an N.-point FFT
into N, frequency components {S,(k);k = 0 ~ N. — 1}.
The kth frequency component S ,(k) of the transmitted chip-
block replica is obtained as

) N.—1 ;

Sak) = S,(Hexp|—j2nk—]. 27
(k) ;0 P(] NC) 27)

Using {8, (k); k = 0~N_.—1} instead of

{S,.(k); k = 0~ N.—1}, the channel estimate

{H,(k);k = 0~N, — 1} for the nth chip-block is obtained by

RLS algorithm (Egs. (16) and (17)). The forgetting factor 4,

is updated by LMS algorithm (Egs. (22), (23) and (25)).
The flowchart of the above-mentioned one-tap RLS

algorithm using adaptive forgetting factor is illustrated in
Fig.4.

3.3 Further Improvement by Delay Time-Domain Win-
dowing Technique

The instantaneous channel estimate {H,(k);k = 0~ N.—1}
obtained by RLS-CE is perturbed by the noise due to the
AWGN. In this paper, the delay time-domain windowing
technique [12], [13] is introduced to reduce the noise. The
instantaneous channel estimate {H,(k);k = 0 ~ N, —1} is
transformed by N -point IFFT into the instantaneous chan-
nel impulse response {/1,(7); 7 = 0~N,.—1} as

Ne-1
- I '« 4 k
hy(1) = — H,(k)exp (j27r‘r—). (28)
N, 2 N
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The actual channel impulse response is present only within
the GI length, while the noise is spread over an entire delay-
time range. Replacing 7, (t) with zero’s for Ny<t<N.-~-1
and applying N -point FFT, the improved channel estimate
{H,(k); k = 0~N.—1} is obtained as

Ny-1

Hyk) = Y hu(t)exp (— jznkNi). (29)
=0 ¢

The MMSE-FDE weight of the (n + 1)th chip-block is com-
puted using Eq. (8) by replacing H,(k) by H, (k). The chan-
nel estimate of the (n + 1)th chip-block is updated using
H, (k).

3.4 Complexity Comparison

The computational complexity of the proposed RLS-CE
is compared with 2-step MLCE [10], MMSE-CE with
decision-feedback [9], and MMSE-CE with 1st order inter-
polation in terms of the number of complex multiplication
operations (CMOs) per frame. Noting that N -point FFT
(and also IFFT) operation requires (N./2)log, N. CMOs,
Table 1 compares four channel estimation schemes. For
SF =16, U = 16, N, = 256, and N = 16, it can be shown
that the complexity of RLS-CE is approximately 1.2 times
higher than MMSE-CE with decision-feedback and is ap-
proximately 1.9 times higher than MMSE-CE with 1st or-
der interpolation. However, the complexity of RLS-CE is

Table 1  CMOs of four channel estimation schemes.
No. of CMOs
RLS-CE 2-step MLCE [10]
per frame
RLS-CE N(I6N, + 1) —
MMSE-CE — 3N,
MLCE — (N + 1)N,
Delay time-domain NN, log, N, 2N, log, N,
windowing
FDE & IFFT (N - 1){3N, 2(N — D{3N,
+(N¢/2)log, N, +(N¢/2)logy Ne

& de-spreadi
e-spreading +U(N,/SF)2SF + 1)} | +UN./SF)2SF + 1)}

(N = D{N(U + 1) (N = DINe(U + 1)
+(Ne/2)1ogy Ne} +(Ne/2)logy Ne}

Data chip-block

replica generation

No. of CMOs MMSE-CE with MMSE-CE with st
per frame decision-feedback [9] order interpolation
MMSE-CE 3NN, 6N,
1st order interpolation — 8N,
Delay time-domain NN, log, Ne 2N, log, N,
windowing
1st order filtering 2(N = )N, —
FDE & IFFT (N = D{3N, (N = D3N,
+(N¢/2)log, N +(N./2)log, N,

& de-spreading
+U(N./SF)2SF + 1)} | +U(N./SF)(2SF + 1)}

(N-=D{NU + 1)
+(Ne/2)logy N}

Data chip-block

replica generation
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approximately 0.8 times that of 2-step MLCE.
4. Computer Simulation

The simulation condition is shown in Table 2. We assume
16QAM data modulation, an FFT block size of N, = 256
chips and a GI of N, = 32 chips. One pilot chip-block
is transmitted every 15 data chip-blocks (i.e., N = 16).
We assume the spreading factor SF = 16 and an L= 16-
path frequency-selective Rayleigh fading channel having
uniform power delay profile. The initial value of A is set
tod_; =0.7.

Figurs 5(a) and 5(b) show the convergence perfor-
mance of forgetting factor A and that of block-average BER,
respectively, with the normalized Doppler frequency fpT
(where T (= (N + Ny)T.) is the chip-block length) as a pa-
rameter for the full code-multiplexing case (U = SF = 16)
at E, /Ny = 24 dB. As seen from Fig. 5(a), the convergence
rate of A tends to become slower when smaller value of u
is used for fpT = 1x107*, 1 x 1073 and 5 x 1073, How-
ever, it can be seen from Fig. 5(b) that the convergence rate
of the block-average BER is similar even if which value of
i =5%x107%, 1x1073 or 1x10~*is used when fpT = 1x10™*
and 1 x 1073, On the other hand, when fpT =5X% 1073 (fast
fading), the convergence rate of the block-average BER is
different for a different value of u. Because of limitation in
the tracking capability against fast fading, the block-average
BER periodically varies at the pilot block insertion cycle (or
frame period) even if which value of u is used. However,
it can be seen that the use of u = 5 x 107 provides the
minimum BER. Below, u = 5 x 107 is used.

Figure 6 shows the impact of fading rate on the achiev-
able BER as a function of the normalized Doppler frequency
fpT at E,/Ny = 24 dB for the full code-multiplexing case
(U = SF = 16). It is seen from Fig. 6 that the forgetting

Table 2  Simulation condition.
Data modulation 16QAM
FFT block size N, =256
Guard interval length Ny =32
. Product of Walsh
Transmitter :
Spreading sequence sequence and PN
sequence
Spreading factor SF =16
Code multiplexing order U=1,16
Pilot chip sequence PN sequence
No. of chip-blocks/frame N=16
. Frequency-selective
Fading ]
Channel block Rayleigh
L=16-path uniform
Power delay profile
power delay profile
Frequency-domain MMSE
Receiver equalization
L RLS-CE
Channel] estimation
(L=5%x107%
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Fig.5 Convergence performance.

factor A can be optimally adjusted by LMS algorithm over
all fpT’s.

The simulated BER performance of multicode DS-
CDMA using RLS-CE is plotted in Fig. 7 for U = 1 and 16
as a function of the average received bit energy-to-AWGN
noise power spectrum density ratio E, /Ny (= 0.25(P - SF -
T:/No)(1 + Ny/N.)N/(N —1)). The BER performances us-
ing 2-step MLCE, pilot-assisted MMSE-CE with decision-
feedback, MMSE-CE with 1st order interpolation and ideal
CE are also plotted for comparison.

First, the U = 1 case is discussed. It is seen from
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Fig. 7 that RLS-CE provides a better BER performance than
MMSE-CE with decision-feedback and MMSE-CE with 1st
order interpolation. The E}, /Ny loss from the ideal CE case
for BER = 107* is about 0.8 (1) dB for MMSE-CE with
decision-feedback when fpT = 5 x 107* (1073), but about
1.3dB for MMSE-CE with 1st order interpolation when
foT = 5% 10" and 1073. The E,/N, loss includes a pi-
lot insertion loss of 0.28 dB. RLS-CE gives the Ej; /N, loss
of about 0.4 (0.5) dB which is the same as 2-step MLCE
when fpT = 5x 107 (1073).

Next, the U = 16 case is discussed. When fpT =
5 x 107* (see Fig.7(a)), RLS-CE provides a better BER
performance than 2-step MLCE, MMSE-CE with decision-
feedback and MMSE-CE with Ist order interpolation. When
T = 1073 (see Fig.7(b)), RLS-CE provides a better
BER performance than 2-step MLCE and MMSE-CE with
decision-feedback. It provides a same BER performance as
MMSE-CE with 1st order interpolation.

Figure 8 shows the impact of fading rate on the achiev-
able BER at E,/Ny = 24dB as a function of the normal-
ized Doppler frequency fpT for the full code-multiplexing
case (U = SF = 16). For comparison, the BER perfor-
mance using 2-step MLCE, pilot-assisted MMSE-CE with
decision-feedback and MMSE-CE with 1st order interpola-
tion are also plotted. It is seen from Fig. 8 that RLS-CE al-
ways provides a better BER performance than 2-step MLCE
and MMSE-CE with decision-feedback. However, RLS-
CE is inferior to MMSE-CE with Ist order interpolation if
fpT = 1073, As an example, assume a CDMA system of
chip-rate 1/7T, = 100 Mcps (bandwidth of 100 MHz) and
SF = 16 using 3.5 GHz carrier frequency (the global use of
3.4~3.6 GHz has been allocated for IMT advanced systems
in Nov. 2007 by ITU-R [15]), fpT becomes 1073 when the
moving speed reaches v = 107 km/h. Therefore, RLS-CE
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can be superior to MMSE-CE with 1st order interpolation if
v < 107 kmy/h. If the terminal speed is above this speed, then
MMSE-CE with 1st order interpolation should be used.

5. Conclusions

In this paper, we proposed a one-tap RLS-CE with adaptive
forgetting factor for multicode DS-CDMA with FDE. It was
shown by computer simulation that the proposed RLS-CE
improves the BER performance compared to 2-step MLCE
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Fig.8 Impact of fading rate.

and pilot-assisted MMSE-CE with decision-feedback. RLS-
CE with adaptive forgetting factor has a better tracking abil-
ity against the fading variation and provides a better BER
performance than MMSE-CE with 1st order interpolation
for the normalized Doppler frequency fpT < 1073.
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Appendix A: Derivation of Eq. (22)

Substituting Eq. (16) into Eq. (21) gives

aFIn—l(k) + aGn(k)

(k) = o ol &n(k)
+ G(k) 6%/(1](). (A-1)
By substituting Eq. (17) into Eq. (A- 1), we have
W (k) = (1 = Gu(k)S (k) W1 (k)
+ M)gi;(k)s (k)& (K). (A-2)
Appendix B: Derivation of Eq. (23)
D, L(k) of Eq. (15) can be rewritten as
o, (k) = 7' () - 2 (0, 0) 15,007 L (A3)
L+ ol (0 1S (k)P
0®;, ' (k)/04 is given by
M);_—/ll(k) =170 (k) + /r‘aq)'é;;l(k)
o 42 (@71,0) 1S, 0P "

S| T+ A0 ()15, (0P

The 3rd term for Eq. (A-4) can be rewritten as

o (207, ) 1S.0P

OA| 1+ 4710 (k) 1S, ()P

- I‘{ (261018 1(0) = 1GA I 1S (0IF)

IEICE TRANS. COMMUN., VOL.E92-B, NO.5 MAY 2009

G(D’ll(k)
=l G0
X G (k)
2
72 (01, () IS u(R)P
- > (A-5)
L+ 271 (k)1S (0
Hence, we have
o0 (k) oD, !, (k)
Zn AN = Gy (k)S (k) —=
a1 {( Gu(k)S n(k)) ol
+1Ga (k) + @;‘(k)}. (A-6)
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