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In this paper, a novel method to estimate the multi-path time delays of broadband signal transmission is 
proposed. This new method extends the existed basis selection methods. The difference between the 
problems discussed here and that of basis selection is the occurrence of an unknown weight matrix in 
the measurement equation, which represents the frequency characteristics of the received signal. 
Existed basis selection methods are insufficient to solve the problem. We introduced an iterative 
algorithm in consideration of bi-sparse constraint on solutions of a constructed equation and 
developed a method based on order recursive matching pursuit (ORMP) to obtain the solution. Both 
solution vectors and weight matrix are updated iteratively in our algorithm. Validation of the proposed 
method is confirmed by simulations. 
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INTRODUCTION 
 
Time difference of arrival (TDOA) of the signal received 
by multiple sensors can be used to determine the location 
of the source (Smith and Jonathan, 1987), such as 
electronic warfare and mobile terminal positioning. Due to 
the multipath transmission of wireless signals, in many 
propagation environments, each sensor receives not only 
a direct-path signal but also one or more multipath 
replicas of the signal. There are many methods for 
estimating multipath time delay (Belanger, 1996; Cater, 
1987; Hou and Wu, 1982; Chen et al., 2010).  

The problem addressed in this paper is the estimation 
of direct-path and multipath TDOA in the presence of 
correlated multipath interference. We extended the 
classical basis selection methods (Adler et al., 1997; 
Chen and Wigger, 1995; Irina et al., 1997) to solve this.  
 
 
Problem formulation 
 
It   is   assumed   that   the   unknown   transmitted   signal  can  be 
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problem represented in complex envelope form as a sample from 
a band-limited, stationary and Gaussian stochastic process 
(Belanger, 1996). Suppose there are two sensors and the direct-
path signal on sensor 1 is considered to be the reference signal, the 
received signals 1( )x n  and 2 ( )x n  on these two sensors can be 
expressed using the following equations:  
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where ( )a n , 1, ,n N= �  is the complex envelope of the reference 

signal. 1mτ
 
and 2mτ

 
represent the time delays to be estimated 

between multi-path replicas and the reference signal on sensors 1 
and 2, respectively. The simply system model is shown in Figure 1. 
It should be noted that we treat the direct signal on sensor 2 as a 
multi-path one and estimate its TDOA with respect to the reference 
signal. 1L  and 2L  are the sampling number of multi-path signals on 

sensor 1 and sensor 2, respectively. 1( )v n  and 2 ( )v n  are white 
Gaussian random processes characterizing the additive noise. 



 
 
 
 

If we ignore the noise and make the assumption that 

1 2max( , ) 1m m Nα τ τ= <<  is satisfied, we arrive at to the 
following representation of the received signals in frequency 
domain: 
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N  denotes the number of Discrete Fourier Transform (DFT). K  is 
the number of frequency samplings. A direct result derived from 
Equations (3) and (4) is: 
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which is important for estimating the multi-path time delays. Based 
on this equation, searching algorithm can be derived to find 1mτ

 
and 2mτ . In the following section, we develop an algorithm to 

estimate 1mτ
 
and 2mτ  based on the basis selection. 

 
 
MULTI-PATH TIME-DELAY ESTIMATION BASED ON BI-SPARSE 
CONSTRAINT ON SOLUTIONS 
 
The matrix formulations corresponding to Equations (3) to (5) are 
the following: 
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 are column vectors constructed by DFT of 

received signal having the form of [ ](0),..., ( 1)
T

i i iX X K= −X
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. The 

matrix K KR ×∈W  is a diagonal matrix whose diagonal elements 

are (2 |1, ),  0, , 1A k N N k Kπ ω− = −� . The matrix K MR ×∈E  
K M<  denotes the over-complete dictionary made up of atoms of 
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π τ− −� �= � �e� ,  1, ,i M= � . The matrices 1
K MR ×∈A  

and 2
K MR ×∈A are considered as over-complete dictionaries, 

respectively. They have the form of 1 2=A X E� and 2 1=A X E� , 

where � denotes element by element product 

and 1 1 1,...,� �= � �X X X
� �

, 2 2 2,..,� �= � �X X X
� �

.   The   element   of   the 
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solutions ijs , 1, 2i =  is nonzero if and only if its corresponding jτ  

is one of the true multi-path time delays. Therefore, the time-delays 
can be obtained from the nonzero elements of is� .  

Since W  and is�  are all unknown in Equations (4) and (5), the 
classical basis selection methods are no longer and capable of 
solving the problem. However, as the earlier analysis, these two 
equations are related by Equation (6). It is noted that both 1s

�
 and 

2s�  have the property of sparsity in Equation (6), we name this 

property as bi-sparse. If we have obtained one of the solutions is� , 

then the other solution js� , j i≠ can be achieved based on (6). 

Thus, the iteration process is illuminated from this idea and is stated 
as follows: 
 
Step 1: Generate over-complete dictionary E  in terms of all 
possible multi-path time delays; 

Step 2: Initialization: 0k = , (02)W
�

 and (0)
is� , 1, 2i = ; 

Step 3: Iteration.  
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method of order recursive matching pursuit (ORMP) (Adler et al., 
1997; Chen and Wigger, 1995), ( 1)

1
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Step 4: If the location of the nonzero elements of 1s
�

and 2s� do not 

change, exit; else, go to Step 3. 

In the earlier iterations, W
�

 is a column vector whose elements are 
composed of diagonal elements of W . The operation “ / ” is 
element by element division. 
 
In our method, we use ORMP (Adler et al., 1997; Chen and Wigger, 
1995) to derive sparse solution. The advantage of using ORMP is 
its capability to achieve adjustable number of nonzero elements of 
solution. Thus, if the numbers of multi-paths replicas, that is, 1L  

and 2L , are known, running ORMP at the corresponding times, we 
can achieve required number of time delay estimations. 
 
 
SIMULATION RESULTS 
 

To give an indication of the behavior of the method 
discussed in the previous section, we devised the 
following test scenario. The number of DFT is supposed 
to be 2048 and the number of frequency sampling is 128. 
We use 512 iτ  to generate the over-complete dictionary 
and the time interval is assumed to be unit. Two multi-
paths with respect to two sensors are considered, that 
is, 1 1L = and 2 2L = and the true time delays are 11 0τ = , 

12 135τ = and 21 85τ = , 22 355τ = . The complex amplitude 
of the received signal is assumed to be a Gaussian 
random process with variance equal to 0.2. 
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Figure 1. System model with one source and two sensors. 

 
 
 

 
 
Figure 2. The estimation of time-delays on sensor 1 (noiseless). 

 
 
 

Since the objective function of deriving sparse solution 
is non-convex, local minimums do exist and the algorithm 
may converge to a wrong solution (Gorodnitsky and Rao, 
1997). However, this does not always happen as shown 
in simulations. Actually, we may calculate the residue of 
(6) to determine whether a minimum is reached. If the 
residue is beyond a preset threshold, the current 
estimation should be thrown away and we may run the 
algorithm with another initialization. 

In the first experiment, we tried the proposed method 
without consideration of noise and 100 independent  trials 

which were conducted. The result is shown in Figures 2 
and 3. It is observed that the estimation result is 
satisfactory. In the second experiment, noise is taken into 
account and the signal-to-noise ratio (SNR) is assumed 
to be 13dB. The result of 100 independent trials is given 
in Figures 4 and 5. Under the distortion of additive noise, 
the successful rate of the algorithm decreases, but the 
estimation result is still acceptable. In these two 
experiments, we did not preset threshold to throw away 
the bad estimation. As for those bad estimations, if the 
threshold   was   used,   successful  estimation  would  be
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Figure 3. The estimation of time-delays on sensor 2 (noiseless). 

 
 
 

 
 
Figure 4. The estimation of time-delays on sensor 1 (SNR = 13 dB). 

 
 
 
ready to get. 

We also run our algorithm when the number of multi-
path replicas increased to three and four. The success 
rate decreased at this time due to the increase of number 

of basins (Gorodnitsky and Rao, 1997). However, as 
mentioned earlier, we may run the algorithm with another 
initialization whenever the residue of (6) of current trial is 
beyond the preset threshold. By doing this,  a  successful
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Figure 5. The estimation of time-delays on sensor 2 (SNR = 13 dB). 

 
 
 
estimation can be achieved. We only mention the result 
here instead of giving the figure out and it is stated that 
our method is still effective as the number of multi-paths 
increases. 
 
 
Conclusion 
 
In this paper, we proposed a brand new method to 
estimate TDOA in multi-path propagation environments. 
The iterative process is based on two measurement 
equations and a constructed equation having the property 
of bi-sparsity. An iterative process is presented to derive 
the sparse solution based on the principle of ORMP. 
Simulations verify the validation of our method. 
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