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Abstract: Orthogonal matching pursuit (OMP) algorithm with ran-
dom measurement matrix (RMM), often selects an incorrect variable
due to the induced coherent interference between the columns of RMM.
In this paper, we propose a sensing measurement matrix (SMM)-OMP
which mitigates the coherent interference and thus improves the suc-
cessful recovery probability of signal. It is shown that the SMM-OMP
selects all the significant variables of the sparse signal before selecting
the incorrect ones. We present a mutual incoherent property (MIP)
based theoretical analysis to verify that the proposed method has a
better performance than RMM-OMP. Various simulation results con-
firm our proposed method efficiency.
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1 Introduction

Linear inverse problem often arises in applied mathmatics and engineering ap-
plications such as sparse channel estimation for wireless communication [1, 2].
In this case, accurate channel estimation with fewer designed training signal
is a critical problem due to the scarcity of spectral resource. To acquire it,
the training signal should be designed to statisfy restricted isometry property
(RIP) [3] or mutual incoherent property (MIP) [4, 5] with high probability,
e.g., the optimal design is that the probabiliy attains to 1. Traditionally,
optimal training design can not implement due to coherent interference of
colums in training signal. Hence, the problem based on a small number of
measurements is fundamental problem in signal processing. Specifically, a
typical complex system model is given as follows

φ = Xβ + n, (1)

where φ is an M -dimensional observed vector, X is an M ×N random mea-
surement matrix, and n is an M -dimensional measurement noise vector. The
goal of sparse signal recovery is to reconstruct the unknown K-sparsity N -
dimensional complex vector β, i.e., the number of nonzero variables of β is K

and K � N . Conventional methods of signal recovery resolve overdetermind
problem (M ≥ N) with linear algorithms, such as least square (LS) and
minimum mean square error (MMSE). In other words, accurate signal re-
covery acquires the number of measurements M to be larger than dimension
N of the unknown signal. This results in resource waste of measurements.
However, for high-dimensional signal recovery problem, it is very challeng-
ing if M � N . It is worth mentioning that if the measurements satisfies
M ≥ C · K log(N/K), where C denots constant parameter, then the sparse
signal is recovered with a very high probability [4].

Fortunately, in practical environments, most of high-dimensional signals
have the inherent sparse structure. By exploiting this sparsity, we can im-
prove the performance of signal recovery or utilize smaller number of mea-
surements (M � N) to reconstruct a high-dimensional sparse signal, which
is corrupted by measurement noise. Orthogonal matching pursuit (OMP) [4]
is a canonical greedy algorithm for high-dimensional sparse signal recovery
with the over-complete measurement matrix given that M � N . OMP algo-
rithm combines the simplicity and the fastness for high-dimensional sparse
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signal recovery. Hence it is easy to implement in practice. Currently, there
existes two kinds of theoretical analysis of OMP, namely mutual incoherence
property (MIP) [4, 5] and restricted isometry property (RIP) [3].

For an unknown signal vector β=[β1,...,βN ]T and random measurement
matrix (RMM) X = [X1, X2, ..., XN ], we define several concepts which will be
utilized in the following analysis. supp(β) = {i : βi �= 0} denotes the support
of signal vector β which is a K-sparse signal if |supp(β)| ≤ K. To evaluate
the reconstruction performance of sparse signal, mutual incoherence property
(MIP) [4, 5] of measurement matrix is a widely used tool. Commonly, the
mutual incoherence between columns of measurement matrix X is defined by

μ(X, X) = max
i�=j

|〈Xi, Xj〉| , (2)

where 〈·, ·〉 denotes inner product operation of two column vectors. Obvi-
ously, we can find that smaller mutual incoherence μ(X, X), means that the
measurement matrix X has a better MIP. A previous work [5] has proved
that if the measurement matrix X satisfieds μ(X, X) ≤ (2K − 1)−1, then
K-sparse signal can be recovered accurately. However, due to the signal
sparsity, this information can not be utilized in practice. In this letter, we
compare the K-sparse signal β with OMP by utilizing RMM and sensing
measurement matrix (SMM) under the system model (1). OMP algorithm
is an iterative greedy algorithm. It selects a column of measurement matrix
which has the most correlation with current residuals at each step. Hence,
the chosen variable is added into the set of selected variables. The algorithm
updates the residuals by projecting the signal onto the variables which have
already been selected and then the algorithm iterates.

2 OMP for sparse signal recovery

In this section, we describe the OMP algorithm with RMM and SMM from
a MIP perspective. Consider the M × N complex RMM X, where Xi, i =
1, ..., N denotes its i-th column vector and assume that each column of X is
normalized so that ‖Xi‖2 = 1. We define X(ξ) as a submatrix of X for any
subset ξ ⊂ {1, 2, ..., N} and term Xi and X(ξi) as i-th column and selected
ξi-th column of X, respectively.

2.1 RMM-OMP for sparse signal reovery
RMM-OMP iteratively selects a column Xi in X that correlates most strongly
with the residual signal ri = φ − Xi−1βi−1. At each iterative step i, the
optimal column X(ξi) is selected as

X(ξi) = arg max
ξi,i=1,2,..,N

|〈Xi, ri〉| , for i = 1, ..., N, (3)

where 〈·, ·〉 denotes inner product operation of two column vectors. If the ac-
curate column is selected, we update the selected subset X(ξi) = X(ξi−1) ∪
{Xξi}. Set r0 = φ and ri+1 = (IM − Pi)φ, where Pi denotes the pro-
jection into the linear space spanned by the elements of X(ξi), IM is an
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M × M identity matrix. As a result of the coherence of columns of X,
e.g., ξ(1) = |〈X, φ〉| = |〈X, Xβ〉| �= ξ for i = 1. Now the question is how
to mitigate this coherent interference in the OMP algorithm. We caculate
the coherence between columns in X as shown in Fig. 1. We find that most
digonal coefficients are close to 1 and some of off-diagonal coefficients are
close to 0.4. Therefore, these off-diagonal coefficients result in interference
while selecting the optimal column in the measurement matrix. To mitigate
the interference, we design the SMM for OMP in the next section.

Fig. 1. Coherence betweeb columns in X.

2.2 SMM-OMP for sparse signal recovery
In order to identify the correct components in a coherent random mea-
surement matrix, the improved OMP algorithm designs a M × N complex
SMM W = Wi, i = 1, ..., N and uses ξi = arg max |〈Wi, ri〉| rather than
ξi = arg max |〈Xi, ri〉| in OMP. Obviously, when W = X, the OMP al-
gorithm is a special case of the improved OMP. A good SMM should have
a μ (W, X) as small as possible. In a straightforward way, we may calculate
the correlation between X and W , i.e., the sensing vector Wi, as the solution
to the following convex optimization problem:

minimize
Wi

{∥∥∥WH
i X(ξ)

∥∥∥2

∞ + λ · ‖Wi‖2
2

}

s.t. XH
i Wi = 1,

(4)

where ‖a‖∞ = max {|ai| , i = 1, ..., N} and ‖a‖2
2 =

∑N
i=1 |ai|2 with respect to

signal vector a, X(ξ) consists of correct columns corresponding to the Kth
nonzero componments of β in (1) and λ is a regularized parameter which has
a relationship with the noise level. The closed-form solution for (4) is

Wi = ΞiXi, for i = 1, 2, ..., N, (5)

where Ξi is given by

Ξi =
1

XH
i (X(ξ)X(ξ)H + αIM )

−1
Xi

· (X(ξ)X(ξ)H + αIM )−1, (6)
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Fig. 2. Coherence between columns in X and W .

where α is a positive regularized parameter, (·)−1 and (·)H denote inverse
operation and pseudoinverse operation of matrix, respectivley. When Xi is a
column vector of X(ξ), i.e., a correct selected column, the minimum variance
condition (4) will mitigate the correlation between the corresponding sensing
vector Wi and other correct columns; Whereas the distortionless response
constraint (5) will maintain the correlation between Wi and the correct se-
lected Xi. As a result, the nonzero variables of β, which correspond to the
correct columns, are estimated with a distortion as small as possible. On the
other hand, when Xi is not a column vector of X(ξ), the minimum variance
condition (4) will prevent false columns being selected through mitigating
the correlation between Wi and all the correct columns. The aforementioned
fact is given as an example in Fig. 2. The detail of SMM-OMP algorithm
lists as follows:
Input: Observation signal vector φ and SMM W .
Output: Sparse signal vector βSMM

Step 1: Initialize the residual r0 = φ and the set of selected variable X(ξ0) =
∅. Let iteration counter i = 1;
Step 2: Find the variable Xi hat solves the maximization problem max

i
|〈Wi, ri〉|

and add the variable Xi to the set of selected variables. Update X(ξi) =
X(ξi−1) ∪ {Xi}.
Step 3: Let Pi = X(ξi)(X(ξi)HX(ξi))−1X(ξi)H denote the projection onto
the linear space spanned by the elements of X(ξi). Update ri = (I − Pi)φ.
Step 4: If the stopping condition is achieved, stop the algorithm. Otherwise,
set i = i + 1 and return to Step 2.

3 Simulation result

To gain some insights into the effect of the proposed SMM-OMP on sparse sig-
nal recovery, we evaluate 10000 independent Monte-Carlo trials. The nonzero
variables of sparse signal β are generated randomly from a Guassian distri-
bution and subject to ‖β‖2

2 = 1. The signal length is set to N = 48 and
the number of measurements are set from 16 to 40. The positions of nonzero
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Fig. 3. Successful recovery probability versus number of
measurements via sparsity K = 4, 8, 12.

variables of β are generated randomly. Consider the signal to noise ratio
(SNR) as SNR = 10dB. Simulation result is shown in Fig. 3. We observe
that the SMM-OMP has a better recovery performance than RMM-OMP on
sparse signal recovery. Regarding the fact that the sparse signal recovery
is a high-determind recovery problem, OMP algorithm can obtain a better
perforemance if the signal is more sparser.

4 Conclusion

In this paper, we have investigated the OMP for sparse signal recovery while
considering the coherent mitigation of measurement matrix. We proposed
an SMM-OMP to mitigate the coherent interference between the columns
of measurment matrix. Compared to conventional RMM-OMP sparse signal
recovery method, the proposed method has obtained a higher probability
of successful recovery than provious method under the same condition. In
other words, the proposed SMM satisfies RIP or MIP with higher probability
than RMM. For instance, on sparse channel estimation, by utilized SMM-
based training signal obtain a better estimate performance than RMM-based
training signal. Simulation results confirmed the proposed method.
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