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Transmission Performance of Frequency-Domain Filtered
Single-Carrier Transmission Using Frequency-Domain Block
Signal Detection with QRM-MLD

Tetsuya YAMAMOTO†a), Kazuki TAKEDA†, Student Members, KyeSan LEE††, Member,
and Fumiyuki ADACHI†, Fellow

SUMMARY Recently, assuming ideal brick-wall transmit filtering, we
proposed a frequency-domain block signal detection (FDBD) with maxi-
mum likelihood detection employing QR decomposition and M-algorithm
(called QRM-MLD) for the reception of single-carrier (SC) signals trans-
mitted over a frequency-selective fading channel. QR decomposition
(QRD) is applied to a concatenation of the propagation channel and dis-
crete Fourier transform (DFT). However, a large number of surviving paths
is required in the M-algorithm to achieve sufficiently improved bit error rate
(BER) performance. The introduction of filtering can achieve improved
BER performance due to larger frequency diversity gain while keeping a
lower peak-to-average power ratio (PAPR) than orthogonal frequency divi-
sion multiplexing (OFDM). In this paper, we develop FDBD with QRM-
MLD for filtered SC signal reception. QRD is applied to a concatenation
of transmit filter, propagation channel, and DFT. We evaluate BER and
throughput performances by computer simulation. From performance eval-
uation, we discuss how the filter roll-off factor affects the achievable BER
and throughput performances and show that as the filter roll-off factor in-
creases, the required number of surviving paths in the M-algorithm can be
reduced.
key words: single-carrier, frequency-domain filtering, frequency-domain
block signal detection, QRM-MLD

1. Introduction

Broadband data services are demanded in next generation
mobile communication systems. Since the broadband chan-
nel is composed of many propagation paths with differ-
ent time delays, the channel becomes severely frequency-
selective [1]. The single-carrier (SC) transmission with
frequency-domain equalization (FDE) has good bit error
rate (BER) performance [2], [3] and low peak-to-average
power ratio (PAPR) property. Therefore, the SC with FDE
is advantageous for the uplink (mobile-to-base station) ap-
plications [4].

In many practical wireless systems, transmit filtering is
used to limit the transmit signal bandwidth. When a square-
root Nyquist filter is used, the roll-off factor α (0 ≤ α ≤ 1) is
the design parameter of the transmit filter [5]. When α = 0,
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the SC signal has smaller PAPR than orthogonal frequency
division multiplexing (OFDM) signal [6] while keeping the
same signal bandwidth [7], [8]. As α increases, the PAPR
further decreases at the cost of increased bandwidth [9].
Furthermore, this increased bandwidth can be exploited to
obtain larger frequency diversity gain and accordingly, im-
prove the BER performance by using a powerful equaliza-
tion scheme.

The computational complexity of the maximum likeli-
hood (ML)-based equalization, i.e. ML sequence estimation
(MLSE), depends on the number of propagation paths and
becomes extremely high for a severely frequency-selective
channel [10]. Therefore, several suboptimal linear detec-
tion schemes have been proposed to reduce the computa-
tional complexity. A simple one-tap FDE based on the min-
imum mean square error criterion (MMSE-FDE) makes use
of this increased bandwidth to obtain larger frequency diver-
sity gain and improve the BER performance [11]. However,
a big performance gap from the matched-filter (MF) bound
still exists due to the presence of residual inter-symbol inter-
ference (ISI) after FDE. To narrow the performance gap, an
MMSE-FDE combined with iterative ISI cancellation was
proposed [12]–[14]. However, the achievable BER perfor-
mance is still a few dB away from the MF bound, partic-
ularly when high level data modulation (e.g., 16QAM and
64QAM) is used.

Recently, a near ML-based reduced complexity
frequency-domain equalization scheme, which is called
frequency-domain block signal detection (FDBD) using
QR decomposition with M-algorithm ML detection (QRM-
MLD), was proposed for the reception of SC signals trans-
mitted over a frequency-selective channel [15], [16]. QRM-
MLD was originally proposed in [17], [18] as a signal detec-
tion scheme for the multi-input multi-output (MIMO) spa-
tial multiplexing. In FDBD with QRM-MLD, QR decompo-
sition is applied to a concatenation of the propagation chan-
nel and discrete Fourier transform (DFT). We showed [16]
that the FDBD with QRM-MLD can achieve the BER per-
formance close to the MF bound while considerably reduc-
ing the computational complexity compared to the MLD.
However, a large number of surviving paths is required in
the M-algorithm.

It was shown [18] that by increasing the number of re-
ceive antennas, the required number of surviving paths in
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the M-algorithm can be reduced and hence, the computa-
tional complexity of QRM-MLD can be reduced. In the
case of filtered SC transmission, by viewing a concatena-
tion of transmit filter, propagation channel, and DFT as an
equivalent channel, FDBD with QRM-MLD can also be ap-
plied to the filtered SC signal reception. Larger frequency
diversity gain is achieved by exploiting the excess band-
width introduced by the transmit filter, and therefore, in-
creasing the signal bandwidth by the transmit filter can re-
duce the number of surviving paths in the M-algorithm. In
this paper, we develop FDBD with QRM-MLD for the re-
ception of the filtered SC signals and investigate the BER
and throughput performances by computer simulation. We
discuss how the filter roll-off factor affects the achievable
BER and throughput performances and the required number
of surviving paths in the M-algorithm.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical model of frequency-
domain filtered SC signal transmission using FDBD with
QRM-MLD. In Sect. 3, the BER and throughput per-
formances achievable by FDBD with QRM-MLD in a
frequency-selective fading channel are evaluated by com-
puter simulation. Section 4 offers some concluding remarks.

2. Frequency-Domain Filtered SC Transmission Using
FDBD with QRM-MLD

2.1 Transmission System

The system model of the frequency-domain filtered SC sig-
nal transmission using FDBD with QRM-MLD is illus-
trated in Fig. 1. At the transmitter, a binary information
sequence is data-modulated and then, the data-modulated
symbol sequence is divided into a sequence of signal blocks
{d(n); n = 0 ∼ Nm − 1} of Nm symbols each, where Nm

is the number of symbols per block. The data symbol
block is transformed by Nm-point DFT into the frequency-

Fig. 1 System model of the frequency-domain filtered SC transmission
using FDBD with QRM-MLD.

domain signal {D(k); k = −Nm/2 ∼ Nm/2 − 1}, which is
then, expanded to the frequency-domain signal {S (k); k =
−(1 + α)Nm/2 ∼ (1 + α)Nm/2 − 1} having a wider band-
width by applying the frequency-domain transmit filter with
the roll-off factor α. Finally, Nc-point inverse DFT (IDFT)
is applied to obtain the filtered time-domain transmit signal
block {s(t); t = 0 ∼ Nc − 1}. The last Ng samples of transmit
block are copied as a cyclic prefix (CP) and inserted into the
guard interval (GI) placed at the beginning of each trans-
mit block and a CP-inserted filtered signal block of Nc + Ng
samples is transmitted.

The filtered SC signal block is transmitted over a
frequency-selective fading channel. The received signal
block after GI removal is transformed by Nc-point DFT into
the frequency-domain signal {Y(k); k = −Nc/2 ∼ Nc/2 − 1}.
Then, FDBD with QRM-MLD is carried out to obtain the
decision variable block. In this paper, the discrete-time sig-
nal representation normalized by the DFT (also IDFT) sam-
pling period Tc is used.

2.2 Transmit Signal Representation

The data symbol block of Nm symbols is expressed using
the vector form as d = [d(0), . . . , d(n), . . . , d(Nm − 1)]T . d
is transformed by Nm-point DFT into the frequency-domain
signal D = [D(−Nm/2), . . . ,D(k), . . . ,D(Nm/2 − 1)]T as

D = F(Nm)d, (1)

where F(J) is the DFT matrix of size J × J given by

F(J)=
1√
J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 e− jπ −J/2×1
J · · · e− jπ −J/2×(J−1)

J

1 e− jπ (−J/2+1)×1
J · · · e− jπ (−J/2+1)×(J−1)

J

...
...

. . .
...

1 e− jπ (J/2−1)×1
J · · · e− jπ (J/2−1)×(J−1)

J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

D is transformed into the frequency-domain filtered signal
S = [S (−(1 + α)Nm/2), . . . , S (k), . . . , S ((1 + α)Nm/2 − 1)]T

as

S = HT D, (3)

where HT is (1 + α)Nm × Nm transmit filter matrix given by

HT=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HT (− (1+α)Nm
2 ) 0
. . .

HT (− Nm
2 −1)

HT (− Nm
2 ) 0
. . .

. . .

HT (0)

. . .

. . .

0 HT ( Nm
2 −1)

HT ( Nm
2 )

. . .

0 HT ( (1+α)Nm
2 −1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)
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where HT (k), k = −(1+α)Nm/2 ∼ (1+α)Nm/2−1, represents
the transmit filter transfer function. S (k) is given as

S (k)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
HT (k)D(k + Nm) − (1+α)Nm

2 ≤k≤− Nm

2 − 1

HT (k)D(k) − Nm

2 ≤k≤ Nm

2 − 1

HT (k)D(k − Nm) Nm

2 ≤k≤ (1+α)Nm

2 − 1

. (5)

Finally, Nc-point IDFT is applied to obtain the time-domain
signal block s = [s(0), . . . , s(t), . . . , s(Nc − 1)]T as

s =

√
2Es

Ts
F(Nc)H

S̃, (6)

where Es and Ts are respectively the transmit symbol energy
and duration, (.)H is the Hermitian transpose operation, and

S̃ =
[
S̃ (−Nc/2), . . . , S̃ (k), . . . , S̃ (Nc/2 − 1)

]T
given by

S̃=
[
0,. . . ,0, S

(
− (1+α)Nm

2

)
,. . . ,S (k),. . . ,S

(
(1+α)Nm

2 −1
)
, 0,. . . ,0

]T
. (7)

In this paper, IDFT at the transmitter and DFT at the receiver
have the same block size Nc to keep the same sampling rate,
where Nc ≥ (1 + α)Nm, irrespective of the roll-off factor α
of the transmit filter (i.e. the sampling rate is always equal
to T/Nc, where T is the block length excluding the cyclic
prefix).

2.3 Received Signal Representation

We assume that the time delay of each propagation path is
an integer multiple of the sampling period T/Nc. Assuming
L distinct propagation paths, the channel impulse response
h(τ) can be represented as

h(τ) =
L−1∑
l=0

hlδ(τ − τl), (8)

where hl and τl are respectively the complex-valued path
gain with E

[∑L−1
l=0 |hl|2

]
and the time delay of the lth path.

We assume that the path time delay is an integer multiple of
the sampling period T/Nc. The GI-removed received signal
block y =

[
y(0), . . . , y(t), . . . , y(Nc − 1)

]T can be expressed
using the vector form as

y =

√
2Es

Ts
hs + n, (9)

where h is the Nc × Nc channel impulse response matrix
given as

h=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 hL−1 · · · h1

h1 h0
. . .

...
... h1 h0 0 hL−1

hL−1
... h1

. . .

hL−1
... h0

hL−1 h1
. . .

0
. . .

... h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

and n = [n(0), . . . , n(t), . . . , n(Nc − 1)]T is the noise vec-
tor. The tth element, n(t), of n is the zero-mean complex
Gaussian variable having the variance 2N0/Tc with N0 being
the one-sided power spectrum density of the additive white
Gaussian noise (AWGN).

2.4 FDBD with QRM-MLD

The received signal block y is transformed by Nc-
point DFT into the frequency-domain signal Y =

[Y(0), . . . , Y(k), . . . , Y(Nc − 1)]T . Y is expressed as

Y = F(Nc)y =

√
2Es

Ts
F(Nc)hs + F(Nc)n. (11)

Due to the circulant property of h [19], we have

F(Nc)hF(Nc)H
=diag

[
H

(
−Nc

2

)
, ...,H(k), ...,H

(Nc

2
− 1

)]
≡ Hc. (12)

where H(k) =
∑L−1

l=0 hl exp(− j2πkτl/Nc), k = −Nc/2 ∼
Nc/2 − 1.

The desired signal is present only in the
frequency range of −(1 + α)Nm/2 ≤ k < (1 +
α)Nm/2. Therefore, the frequency-domain signal Ỹ

=
[
Ỹ(−(1 + α)Nm/2), . . . , Ỹ(k), . . . , Ỹ((1 + α)Nm/2 − 1)

]T

is taken from Y for FDBD with QRM-MLD. Ỹ can be ex-
pressed as

Ỹ =

√
2Es

Ts
H̃cHT F(Nm)d + Ñ

=

√
2Es

Ts
H̄d + Ñ, (13)

where H̃c=diag [H(−(1+α)Nm/2), ..., H(k), ..., H((1+α)Nm/2−1)] and Ñ =
[N(−(1 + α)Nm/2), . . . ,N(k), . . . ,N((1 + α)Nm/2 − 1)]T is
the frequency-domain noise vector. H̄ = H̃cHT F(Nm) is an
equivalent channel matrix of size (1 + α)Nm × Nm. It can
be understood from Eq. (13) that FDBD with QRM-MLD
can be applied to the frequency-domain filtered SC signal by
treating a concatenation of transmit filter, frequency-domain
propagation channel, and DFT as an equivalent channel.

QRM-MLD is composed of three steps. Firstly, we ap-
ply the QRD [20] to H̄ to obtain H̄ = QR, where Q is a
(1+ α)Nm × Nm matrix satisfying QHQ = I (I is the identity
matrix) and R is an Nm × Nm upper triangular matrix. In the
case of SC transmission, all symbols have the same signal-
to-interference plus noise power ratio (SINR) and hence, no
ordering is necessary.

Secondly, by multiplying QH to frequency-domain re-
ceived signal Ỹ, we have the following transformed vector

Ŷ = QHỸ =

√
2Es

Ts
Rd +QHÑ. (14)

From Eq. (14), MLD can be expressed as

d̂ = arg min
d̄∈XNc

∣∣∣∣∣∣
∣∣∣∣∣∣Ŷ −

√
2Es

Ts
Rd̄

∣∣∣∣∣∣
∣∣∣∣∣∣ , (15)
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where X is the modulation level (e.g., X = 4 for quaternary
phase shift keying (QRSK) and X = 16 for 16-quadrature
amplitude modulation (QAM)) and d̄ is the candidate sym-
bol vector.

Thirdly, MLD using the M-algorithm is carried out.
Thanks to the upper triangular structure of R, MLD has a
tree structure of Nm stages and therefore, the M-algorithm
can be applied to reduce the computational complexity. In
the first stage (n = 0), all possible symbol-candidates for the
last symbol d(Nm − 1) in a data symbol block are generated
(the number of all possible symbol-candidates is X for X-
QAM). The path metric en=0 based on the squared Euclidean
distance between Ŷ(Nm − 1) and each symbol-candidate is
computed using

en=0=

∣∣∣∣∣∣Ŷ(Nm − 1) −
√

2Es

Ts
RNm−1,Nm−1d̄(Nm − 1)

∣∣∣∣∣∣
2

, (16)

where d̄(Nm − 1) is the symbol-candidate for d(Nm − 1).
Next, M ( M ≤ X ) paths having the smallest path metric
are elected as surviving paths. In the next stage (n = 1),
there are a total of X branches for d(Nm − 2) leaving from
each selected surviving path. Therefore, there are a total of
MX possible paths connecting two symbols, d(Nm − 1) and
d(Nm − 2). The accumulated path metric is computed for all
possible MX paths using

en=1 =

∣∣∣∣∣∣Ŷ(Nm − 2)−
√

2Es

Ts

(
RNm−2,Nm−2d̄(Nm − 2)
+RNm−2,Nm−1d̄(Nm − 1)

)∣∣∣∣∣∣
2

+

∣∣∣∣∣∣Ŷ(Nm − 1) −
√

2Es

Ts
RNm−1,Nm−1d̄(Nm − 1)

∣∣∣∣∣∣
2

. (17)

Similar to the first stage, M surviving paths are selected
from MX paths. This procedure is repeated until the last
stage (n = Nm − 1). The accumulated path metric at the nth
stage (n = 0, 1, . . . ,Nm − 1) is computed using

en=

n∑
n′=0

∣∣∣∣∣∣∣∣∣∣
Ŷ(Nm − 1 − n

′
)

−
√

2Es

Ts

n
′∑

i=0

RNm−1−n′ ,Nm−1−id̄(Nm − 1 − i)

∣∣∣∣∣∣∣∣∣∣

2

. (18)

In the uncoded transmission case, the most possible trans-
mitted symbol sequence is found by tracing back the path
having the smallest path metric at the last stage (n = Nm−1).
In the coded transmission case, the log likelihood ratio
(LLR) is used as the soft-input to the decoder. When QRM-
MLD is used, however, the LLR values cannot be directly
computed since M surviving paths selected at the last stage
do not necessarily contain both 1 and 0 for every coded bit
in a data block. In this paper, we apply the LLR estimation
method proposed in [21].

The number of squared Euclidean distance computa-
tions is X{1+M(Nm−1)} for QRM-MLD and is XNm for orig-
inal MLD; therefore, the number of squared Euclidean dis-
tance computations for QRM-MLD is significantly smaller
than that of original MLD.

3. Computer Simulation

The simulation condition is shown in Table 1. We consider
16QAM data modulation, Nm = 64 (the number of data
symbols per block), and Nc = 128 (the size of IDFT/DFT).
The square-root raised cosine Nyquist filter with roll-off fac-
tor α is used. The channel is assumed to be a frequency-
selective block Rayleigh fading channel having L = 16-path
uniform power delay profile and the normalized time delay
τl = l. Ideal channel estimation is assumed.

3.1 BER Performance

In this paper, the channel is assumed to be composed of
L independent propagation paths having time delays of an
integer multiple of the sampling period T/Nc. When α is
small, the filter bandwidth is narrow and therefore, the de-
lay time resolution of the receiver is low. As a consequence,
the number of resolvable paths reduces and the achievable
diversity order is smaller than L. On the other hand, as α
increases, the filter bandwidth gets wider, and therefore, the
delay time resolution of the receiver improves. As a con-
sequence, the number of resolvable paths increases and the
achievable diversity order approaches L. The above discus-
sion about the diversity order suggests that as α increases,
better BER performance can be achieved even if small M is
used.

The average BER performance of the frequency-
domain filtered SC transmission using FDBD with QRM-
MLD is plotted for various values of M in Fig. 2 as a func-
tion of average received bit energy-to-noise power spectrum
density ratio Eb/N0(= (Es/N0)(1 + Ng/Nc)/ log2 X), where
X is the modulation level. For comparison, the BER per-
formances of MMSE-FDE [11], frequency-domain iterative
ISI cancellation (FDIC) [14], and the MF bound [22], [23]
are also plotted. For FDIC, the use of three iterations is suf-
ficient (i.e., I = 3) and therefore, only the BER performance

Table 1 Computer simulation condition.
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Fig. 2 BER performance (uncoded).
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Fig. 3 Required M as a function of roll of factor α.

with I = 3 is plotted. It is seen from Fig. 2 that FDBD
with QRM-MLD provides significantly improved BER per-
formance compared to the MMSE-FDE. It can also be seen
from Fig. 2 that FDBD with QRM-MLD provides better
BER performance than FDIC. By increasing the value of M,
BER performance close to the MF bound is obtained. When
α = 1, FDBD with QRM-MLD can reduce the average re-
ceived Eb/N0 required for achieving an average BER = 10−3

by 2.8, 3.8, and 4.0 dB for QPSK, 16QAM, and 64QAM, re-
spectively, compared to MMSE-FDE. Compared to FDIC,
FDBD with QRM-MLD can reduce the average received by
0.6, 1.0, and 2.0 dB for QPSK, 16QAM, and 64QAM, re-
spectively.

Below, we discuss the performance gap of FDBD with
QRM-MLD from the MF bound in terms of Eb/N0 required
for achieving an average BER = 10−3. When α = 0, Eb/N0

gap with M = 256 is found to be 1.2, 1.8, and 2.0 dB for
QPSK, 16QAM, and 64QAM, respectively. As α increases,
the required M can be reduced if we want to keep the same
Eb/N0 gap as shown abeve. Figure 3 plots the required M as
a function of α. When α = 1, much smaller M can be used;
M = 4 for QPSK and 16QAM and M = 8 for 64QAM.
This suggests that increasing α can significantly reduce the
computational complexity of FDBD with QRM-MLD. The
computational complexity comparison among FDBD with
QRM-MLD, MMSE-FDE, and FDIC will be discussed in
the next subsection.

Below, assuming 16QAM data modulation, we com-
pare the coded BER performances of FDBD with QRM-
MLD, MMSE-FDE, and FDIC. Rate-1/3 turbo coding us-
ing two (13, 15) recursive systematic convolutional (RSC)
component encoders is assumed. The two parity sequences
from the turbo encoder are punctured to obtain rate-1/2, 3/4,
and 8/9 turbo codes. Log-MAP decoding with 6 iterations is
performed after signal detection for FDBD with QRM-MLD

and MMSE-FDE. On the other hand, when FDIC is used,
a series of channel decoding, equalization, and ISI cancela-
tion is performed in an iterative fashion (called MMSE turbo
equalization in this paper) [24], [25] and the number of iter-
ations, I, in the MMSE turbo equalization is assumed to be
I = 6. The packet length is set to 8 blocks (8 Nm symbols)
in all simulations.

The BER performance of turbo coded frequency-
domain filtered SC transmission using FDBD with QRM-
MLD is plotted in Fig. 4 as a function of average received
Eb/N0(= R(Es/N0)(1 + Ng/Nc)/ log2 X). For comparison,
the BER performances of MMSE-FDE and MMSE turbo
equalization are also plotted. It can be seen from Fig. 4
that when α = 1, as in the uncoded case, better BER per-
formance can be achieved even if small M is used. It can
also be seen form Fig. 4 that FDBD with QRM-MLD pro-
vides much better BER performance than MMSE-FDE and
slightly better BER performance than MMSE turbo equal-
ization when high-rate turbo coding is used. When R = 8/9
and α = 0(1), FDBD with QRM-MLD using M = 16 can re-
duce the Eb/N0 value required for achieving an average BER
= 10−3 by about 3.5(2.0) dB compared to MMSE-FDE and
by about 1.0(0.5) dB compared to MMSE turbo equaliza-
tion. On the other hand, when low-rate turbo coding is used,
FDBD with QRM-MLD provides almost the same BER per-
formance as MMSE turbo equalization.

3.2 Complexity

The computational complexity of FDBD with QRM-MLD
is discussed. The complexity here is defined as the num-
ber of complex multiply operations per data symbol block.
First, we examine the number of multiply operations re-
quired for squared Euclidean distance computation. From
Eq. (18), the number of multiply operations at the nth stage
(n = 0 ∼ Nm − 1) in the M-algorithm is MX(n + 2). There-
fore, the number of multiply operations required for squared
Euclidian distance computation is a function of M and is
X{2 + (M/2)(Nm + 4)(Nm − 1)}. As α increases, the required
value of M can be reduced (see Fig. 3) and therefore, the
complexity required for squared Euclidean distance compu-
tation can also be reduced. When α = 1, it can be about
1.6% of the case of α = 0 for 16QAM.

Next, we discuss the overall computational complexity,
(defined as a sum of the complexities required for DFT, QR
decomposition, QH multiplication, and squared Euclidean
distance computation). The number of complex multiply
operations is J2 for J-point DFT, (1+α)N3

m for QR decompo-
sition, and (1+α)N2

m for QH multiplication. As α increases,
the complexity significantly reduces for squared Euclidean
computation, while it gets higher for QR decomposition and
QH multiplication. As a result, the overall complexity re-
duces as α increases. For the uncoded case using 16QAM,
the complexity when α = 1.0 is about 7.6% of that when
α = 0.

Finally, we compare the overall computational com-
plexities of FDBD with QRM-MLD, MMSE-FDE, and
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Fig. 4 BER performance (turbo coded).
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Table 2 Number of multiply operations per block.

Fig. 5 Throughput performance.

FDIC. The number of complex multiply operations per data
symbol block is shown in Table 2. FDBD with QRM-MLD
can achieve better BER performance than MMSE-FDE and
FDIC at the cost of higher complexity. Its complexity is
about 30 times and 14 times higher than MMSE-FDE and

Fig. 6 Throughput versus number M of surviving symbol candiates in
the M-algorithm.

FDIC, respectively for the uncoded case using α = 1.0,
Nm = 64, and 16QAM.
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3.3 Throughput Performance

The throughput performance is plotted for various values of
M in Fig. 5 as a function of average received Es/N0. Un-
coded transmission and 16QAM are assumed. The through-
put η(bps/Hz) is defined as

η = log2 X × (1 − PER) × 1
1 + α

× 1
1 + Ng/Nc

, (19)

where PER is the packet error rate. In this paper, packet
transmission of size 1024 bits is assumed. For compari-
son, the throughput performance using MMSE-FDE [11] is
also plotted in Fig. 5. FDBD with QRM-MLD can signifi-
cantly improve the throughput performance compared to the
MMSE-FDE. Furthermore, by increasing the value of M,
sufficiently improved throughput performance is achieved.
Furthermore, as α increases, sufficiently improved through-
put performance can be achieved even if small M is used.

Figure 6 plots the throughput as a function of M when
the peak Es/N0= 25 dB and 35 dB. Peak Es/N0 is defined as
the average received Es/N0 plus PAPR0.1% value (note that
PAPR0.1% value is taken from [11]). As α increases, smaller
M is required to achieve sufficiently improved throughput.
It can also be seen from Fig. 6 that in low peak Es/N0 region
(peak Es/N0=25 dB), when M is smaller than 4, the through-
put increases as α increases and the maximum throughput
is obtained when α = 1. This is because by increasing
α, larger frequency diversity gain can be obtained. On the
other hand, when M is large enough (e.g., M ≥ 16), the
throughput is maximized when α = 0.5. This is because
when M is large enough, sufficiently improved throughput
can be achieved even when α is small, however, the PAPR
level becomes almost the same beyond α = 0.5. However,
in a high Es/N0 region (peak Es/N0=35 dB), increasing α
reduces the throughput due to increased bandwidth.

4. Conclusion

In this paper, we developed a computational efficient FDBD
with QRM-MLD for filtered SC signal reception. QRD
is applied to a concatenation of transmit filter, propaga-
tion channel, and DFT. We showed that FDBD with QRM-
MLD can significantly improve the BER and throughput
performances compared to the MMSE-FDE. Furthermore,
we showed that as α increases, better BER performance can
be achieved even if small M is used. As a result, by increas-
ing α, the computational complexity of FDBD with QRM-
MLD can be reduced at the cost of increased bandwidth. We
also showed that in the low peak Es/N0 region, when M is
small, the throughput increases as α increases and the maxi-
mum throughput is obtained when α = 1. On the other hand,
when M is large enough, the throughput is maximized when
α = 0.5.

In this paper, we examined the frequency-domain
QRM-MLD assuming a block fading channel (very weak
time-selectivity). If the channel time-selectivity is strong,

the frequency-domain channel matrix is not any more di-
agonal. FDBD with QRM-MLD in a time-selective chan-
nel is left as an important future topic. It should be noted
that QRM-MLD can also be applied to the time-domain
received signal. Time-domain block signal detection with
QRM-MLD is left as another important future topic. In this
paper, we investigated the transmission performance in a
single-user environment. When we apply the FDBD with
QRM-MLD to a multi-user environment, the signal spectra
of adjacent users overlap if the carrier frequency separation
is kept the same as in the case of α = 0. This produces
a large multi-user interference (MUI) and significantly de-
grades the BER and throughput performances. A multi-user
FDBD with QRM-MLD is left as an important future study
topic.
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