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Performance Analysis of Analog Network Coding
with Imperfect Channel Estimation in a

Frequency-Selective Fading Channel
Haris Gacanin, Mika Salmela, and Fumiyuki Adachi

Abstract—Broadcast nature of the wireless channel enables
wireless communications to make use of network coding at the
physical layer (PNC) to improve the network capacity. Recently,
narrowband and later broadband analog network coding (ANC)
were introduced as a simpler implementation of PNC. The ANC
schemes require two time slots while in PNC three time slots are
required for bi-directional communication between two nodes
and hence ANC is more spectrum efficient. The coherent detec-
tion and self-information removal in ANC require accurate chan-
nel state information (CSI). In this paper, we theoretically analyze
the bit error rate (BER) performance with imperfect knowledge
of CSI for broadband ANC using orthogonal frequency division
multiplexing (OFDM), where the channel estimation error is
modeled as a zero-mean complex Gaussian random variable. We
investigate the BER performance for three cases: (𝑖) the effect
of imperfect self-information removal due to channel estimation
(CE) error with fading tracking errors, (𝑖𝑖) the effect of imperfect
self-information removal due to CE error without fading tracking
errors, and (𝑖𝑖𝑖) the ideal CE case. We discuss how, and by how
much, our results obtained by theoretical analysis can be used for
design of broadband ANC system with the imperfect knowledge
of CSI. Our results show that imperfect channel estimation due to
the noise effect has less impact on self-information removal than
the imperfect channel estimation due to fading tracking errors.
The tracking against fading is an important problem for accurate
self-information removal as well as coherent detection and thus,
the effect of channel time-selectivity is also theoretically studied.
The achievable BER performance gains due to the polynomial
time-domain channel interpolation are investigated using the
derived close-form BER expressions and it was shown that the
broadband ANC schemes with practical CE in a time- and
frequency-selective channel should include a more sophisticated
channel interpolation techniques since the impact of Doppler
shift has prevalent effect on the achievable BER performance.

Index Terms—Broadband ANC, BER, theoretical analysis,
channel estimation, OFDM.

I. INTRODUCTION

NETWORK coding has been studied as a means to in-
crease network capacity in wired networks [1]. In [2],

[3], network coding was applied to wireless networks in
order to achieve capacity gains due to broadcast nature of
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wireless channel. Narrowband physical layer network coding
(PNC) schemes [4], [5] were shown to increase the capacity
of bi-directional communication in a frequency-nonselective
fading channel. To further improve the spectrum efficiency
narrowband analog network coding (ANC), in [6], was in-
troduced for communication over a frequency-nonselective
fading channel without any processing at the relay which uses
an amplify-and-forward (AF) scheme. However, in broadband
wireless communications, the channel is frequency-selective,
which renders schemes in [4]-[6] not applicable. Recently,
broadband ANC scheme was presented for communication
over a frequency-selective channel [7].

In broadband ANC scheme the coherent detection and
self-information removal require accurate channel state in-
formation (CSI). The bit error rate (BER) performances
with maximum likelihood (ML) channel estimation (CE) for
narrowband ANC [8] and with two-slot pilot-assisted CE
(PACE) for broadband ANC [9] were evaluated by computer
simulation. In [9], it was shown that the BER performance
with two-slot PACE is slightly degraded for low and moderate
terminal speeds in comparison with ideal CE case. To our
best knowledge, impact of imperfect knowledge of CSI on
broadband ANC has not been well studied. We note that the
CE error may degrade the BER performances of PNC and
ANC schemes differently since PNC performs digital encoding
at the packet level and its exact BER analysis in a frequency-
selective channel may be very difficult if not impossible. In
this work, we only consider the analysis of broadband ANC
due to its higher spectrum efficiency.

In this paper, we present the BER performance analysis of
bi-directional broadband ANC in a frequency-selective fading
channel. We derive a closed-form BER expression using
orthogonal frequency division multiplexing (OFDM) radio
access with imperfect knowledge of CSIs, where the CE error
is modeled as a zero-mean complex Gaussian random variable.
In our analysis we investigate the BER performance for three
cases: (𝑖) the effect of imperfect self-information removal due
to CE error with fading tracking errors, (𝑖𝑖) the effect of
imperfect self-information removal due to CE error without
fading tracking errors, and (𝑖𝑖𝑖) the ideal CE case. We discuss
how, and by how much, the achievable BER performance is
affected by the CE error with imperfect channel tracking and
the imperfect self-information removal. We also discuss how
the results obtained by theoretical analysis can be used to de-
sign the broadband ANC system with imperfect knowledge of
CSI. Our results show that the imperfect CE due to the additive
noise effect has less impact on self-information removal than
the imperfect CE due to fading tracking error, which is also
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Fig. 1. Frame structure.

theoretically studied. The achievable BER performance gains
due to the polynomial time-domain channel interpolation are
investigated using the derived close-form BER expressions to
show that the broadband ANC system should include a more
sophisticated channel interpolation techniques since the impact
of Doppler shift has prevalent effect on the achievable BER
performance.

The remainder of this paper is organized as follows. In
Section II, we present the network model. The performance
analysis is presented in Section III, while the numerical results
and discussions are presented in Sect. IV. The conclusion is
set out in Section V.

II. NETWORK MODEL

This section is devoted in part to definition of the multipath
channel and the ANC signal transmission. We consider a bi-
directional network with relay 𝑅 and two users 𝑈0 and 𝑈1

that are assumed to be out of each other’s transmission range.
The transmission frame structure is illustrated in Fig. 1. Each
frame consists of 𝑀 blocks, where the first block (𝑚 = 0) is
used for pilot-assisted CE. The communication between two
users in the 𝑚th block takes place during two slots; (𝑖) in the
first slot (𝑞 = 0) the users simultaneously transmit to the relay
(𝑖𝑖) during the second slot (𝑞 = 1) the relay broadcasts the
received signals to both users using an amplify-and-forward
protocol.

Without loss of generality, below we consider the 𝑚th block
transmission in a frame.

A. Channel Model

The propagation channel over a frame is characterized by
the impulse response given by

ℎ𝑞,𝑗,𝑚(𝜏) =

𝐿−1∑
𝑙=0

ℎ𝑞,𝑗,𝑚(𝑙)𝛿(𝜏 − 𝜏𝑙), (1)

where 𝐿 denotes the number of paths, ℎ𝑞,𝑗,𝑚(𝑙) denotes the
path gain between the relay 𝑅 and 𝑗th user 𝑈𝑗 at slot 𝑞
(𝑞 ∈ {0, 1}) during the 𝑚th block of 𝑘th frame, 𝛿(⋅) denotes
the delta function and 𝜏𝑙 denotes the time delay of the 𝑙th
path. Without loss of generality, we assume 𝜏0 = 0 < 𝜏1 <
⋅ ⋅ ⋅ < 𝜏𝐿−1 and that the 𝑙th path time delay is 𝜏𝑙 = 𝑙Δ, where
Δ (≥ 1) denotes the time delay separation between adjacent
paths. The guard interval (GI) is assumed to be longer than the
maximum channel time delay. The shadowing and distance-
dependent path loss are not considered in this model for the
sake of brevity.

We consider the Jakes fading model, where incoming rays
constituting each propagation path arrive at a user with uni-
formly distributed angles [10]. Thus, the normalized autocor-
relation function of a Rayleigh faded channel with motion at
a constant velocity is given by 𝑅(𝜍) = 𝐸[ℎ𝑞,𝑗,𝑚ℎ

∗
𝑞,𝑗,𝑚+𝜍 ] =

𝐽0(2𝜋𝑓𝐷𝜍) at delay 𝜍 when the maximum Doppler shift
is 𝑓𝐷, where 𝐽0(𝛼) = 1

𝜋

∫ 𝜋

0
exp(𝑗𝛼 cos𝜙)𝑑𝜙 is the 0𝑡ℎ

order Bessel function of first kind. We also consider the
block fading, where the fading gains remain constant during
one block and vary block-by-block within the frame. The
channel gain at the 𝑛th subcarrier is given as an output
of Fourier transform operation represented by 𝐻𝑞,𝑗,𝑚(𝑛) =∑𝐿−1

𝜏=0 ℎ𝑞,𝑗,𝑚(𝜏) exp{−𝑗2𝜋𝑛 𝜏
𝑁𝑐

} for 𝑛 = 0 ∼ 𝑁𝑐 − 1.

B. Transmission Signal Representation

The 𝑗th (𝑗 ∈ {0, 1}) user’s data block symbol sequence
{𝑑𝑗,𝑚(𝑛); 𝑛 = 0 ∼ 𝑁𝑐 − 1} is fed to an 𝑁𝑐-point inverse
fast Fourier transform (IFFT) to generate the 𝑗th user’s time-
domain OFDM signal {𝑠𝑗,𝑚(𝑡); 𝑡 = 0 ∼ 𝑁𝑐 − 1}. Then, an
𝑁𝑔-sample guard interval (GI) is added and the GI-added
OFDM signal is transmitted over a time-varying frequency-
selective fading channel.

First time slot (q=0): By assuming perfect time and
frequency synchronization at the relay, during the first time
slot (𝑇𝑆0), the 𝑛th subcarrier component can be expressed as

𝑅𝑟,𝑚(𝑛) =
√
𝑃𝑑0,𝑚(𝑛)𝐻0,0,𝑚(𝑛)

+
√
𝑃𝑑1,𝑚(𝑛)𝐻0,1,𝑚(𝑛) +𝑁𝑟,𝑚(𝑛),

(2)

for 𝑛 = 0 ∼ 𝑁𝑐 − 1, where 𝐻𝑞,𝑗,𝑚(𝑛) and 𝑁𝑟,𝑚(𝑛),
respectively, denote the Fourier transforms of the channel
impulse response during the 𝑚th block between 𝑈𝑗 and 𝑅
and the zero mean additive white Gaussian noise (AWGN)
having power spectral density 𝑁0. In the above expression 𝑃
represents the signal transmit power. The received signal given
by (2) is amplified and broadcasted over a frequency-selective
fading channel. For the sake of the analysis we normalize the
transmit signal by a factor 𝛽, which is the square root of the
average received signal power plus noise power.

Second time slot (q=1): During the second slot, by assum-
ing perfect time and frequency synchronization, the received
signal at the 𝑗th user 𝑈𝑗 after FFT can be expressed as

𝑅𝑗,𝑚(𝑛) =

√
𝑃

𝛽
𝑅𝑟,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛) +𝑁𝑗,𝑚(𝑛) (3)

for 𝑛 = 0 ∼ 𝑁𝑐 − 1, where 𝑁𝑗,𝑚(𝑛) is the zero-mean noise
having variance 𝑁0/𝑇𝑠 due to the AWGN. The 𝑗th user 𝑈𝑗

removes its self-information as

�̃�𝑗,𝑚(𝑛) = 𝑅𝑗,𝑚(𝑛)− 𝑃

𝛽
𝑑𝑗,𝑚(𝑛)𝐻0,𝑗,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛). (4)

Finally, the decision variables of the 𝑗th user 𝑈𝑗 are given by

𝑑𝑗,𝑚(𝑛) = �̃�𝑗,𝑚(𝑛)𝑤𝑗,𝑚(𝑛) (5)

for 𝑛 = 0 ∼ 𝑁𝑐 − 1, where 𝑤𝑗,𝑚(𝑛) denotes the maximum
ratio combining (MRC) frequency domain equalization weight
given by 𝑤𝑗,𝑚(𝑛) = 𝐻∗

0,�̄�,𝑚
(𝑛)𝐻∗

1,𝑗,𝑚(𝑛). Note that 𝐴 rep-
resents the logical negation (i.e., logical ’NOT’ operation) of
𝐴.
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III. PERFORMANCE ANALYSIS

We first establish a mathematical definition of the channel
estimation error and then, we develop a mathematical model
for the closed-form BER expressions with quadrature phase
shift keying (QPSK) data modulation. We also analytically
evaluate the impact of channel time-selectivity on the BER
performance with practical pilot-assisted CE scheme [9]. Fi-
nally, the closed-form BER expression for broadband ANC
with perfect knowledge of CSI is also presented. Without
loss of generality we only consider the derivation of BER
expressions for the 𝑗th user 𝑈𝑗 for the sake of brevity.

The transmission frame structure, where the 𝑘th frame con-
stitutes of one pilot block and 𝑀 -1 data blocks, is illustrated
in Fig. 1. The block fading channel model is assumed, where
the fading gains remain constant during one block, but vary
block-by-block within the frame.

A. CE Error Model

The estimated channel gains for the 𝑚th block within the
𝑘th frame can be represented as

�̄�𝑘
𝑞,𝑗,0(𝑛) = 𝐻𝑘

𝑞,𝑗,0(𝑛) + 𝜖𝑘𝑞,𝑗,0(𝑛) (6)

where 𝜖𝑘𝑞,𝑗,𝑚(𝑛) is the channel estimation error. We model the
channel estimation error 𝜖𝑘𝑞,𝑗,𝑚(𝑛) as independent identically
distributed zero-mean complex Gaussian random variable with
the variance given by 𝜎2

𝑒 .

B. Impact of CE Error with Fading Tracking Errors

In this subsection, we only consider the 𝑘th frame trans-
mission with the 𝑧𝑒𝑟𝑜th order channel time interpolation (i.e.,
the channel estimate obtained by a pilot block is used for
detection of succeeding 𝑀 -1 data blocks in a frame). Thus,
without loss of generality, in this subsection the frame index
𝑘 is omitted from (6) for the sake of brevity.

The coherent detection in the 𝑚th OFDM data block given
by (5) can be expressed as

𝑑𝑗,𝑚(𝑛) = 𝑋𝑗,𝑚(𝑛)𝑌 ∗
𝑗,𝑚(𝑛) (7)

for 𝑛 = 0 ∼ 𝑁𝑐 − 1, where⎧⎨
⎩

𝑋𝑗,𝑚(𝑛) = 𝑃
𝛽 𝑑�̄�,𝑚(𝑛)𝐻𝑠𝑑,𝑚(𝑛)

+
√
𝑃
𝛽 𝐻1,𝑗,𝑚(𝑛)𝑁𝑟,𝑚(𝑛)+𝑁𝑗,𝑚(𝑛)

+𝑃
𝛽 𝑑𝑗,𝑚(𝑛)𝐻𝑑,𝑚(𝑛)− 𝑃

𝛽 𝑑𝑗,𝑚(𝑛)𝐻𝑑,0(𝑛)

−𝑃
𝛽 𝑑𝑗,𝑚(𝑛)𝜖𝑥(𝑛)

𝑌𝑗,𝑚(𝑛) = 𝐻𝑠𝑑,𝑚(𝑛) + 𝜖𝑦(𝑛)
(8)

and⎧⎨
⎩

𝐻𝑠𝑑,𝑚(𝑛) =𝐻0,�̄�,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛),
𝐻𝑑,𝑚(𝑛) =𝐻0,𝑗,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛),
𝜖𝑥(𝑛) =𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)

+𝜖0,𝑗,0(𝑛)𝐻1,𝑗,0(𝑛)+𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛),
𝜖𝑦(𝑛) =𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)

+𝜖0,�̄�,0(𝑛)𝐻1,𝑗,0(𝑛)+𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛),

(9)

where 𝐻𝑠𝑑,𝑚(𝑛) denotes channel gain at the 𝑛th subcarrier
that the signal experiences from source to destination terminal,
while 𝐻𝑑,𝑚(𝑛) denotes the channel gain experienced by the
self-information term.

In this paper, we assume that 𝜖𝑞,𝑗,𝑚(𝑛) are independent
zero-mean complex Gaussian random variables. Thus, for the
given channel gains {𝐻0,𝑗,0(𝑛)} and {𝐻1,𝑗,0(𝑛)}, we assume
that the terms 𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛) and 𝜖0,𝑗,0(𝑛)𝐻1,𝑗,0(𝑛) as
well as 𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛) and 𝜖0,�̄�,0(𝑛)𝐻1,𝑗,0(𝑛) are also
independent complex Gaussian random variables. However,
the cross terms 𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛) and 𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛) are
not a Gaussian variables, but most of the time it can be
assumed that they are much smaller than 𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)+
𝜖0,𝑗,0(𝑛)𝐻1,𝑗,0(𝑛) and 𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)+ 𝜖0,�̄�,0(𝑛)𝐻1,𝑗,0(𝑛)
and therefore, can be neglected. Thus, 𝜖𝑥(𝑛) and 𝜖𝑦(𝑛) are as-
sumed to be independent (i.e., 𝐸[𝜖𝑦(𝑛)𝜖𝑦(𝑛)] = 0) zero-mean
complex Gaussian random variables. Consequently, for the
given channel gain {𝐻𝑞,𝑗,𝑚(𝑛)} both 𝑋𝑗,𝑚(𝑛) and 𝑌𝑗,𝑚(𝑛)
for 𝑛 = 0 ∼ 𝑁𝑐 − 1 are zero-mean complex Gaussian
random variables. We note here that exact BER derivation
taking into consideration the cross-terms 𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛) and
𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛) is very difficult if not impossible. Thus, the
𝑗th user’s BER within the 𝑚th frame can be represented as
[11]

𝑃4𝑏,𝑚 = 𝑃 [𝑅𝑒[𝑋𝑗,𝑚(𝑛)𝑌 ∗
𝑗,𝑚(𝑛)] < 0] =

1

2

[
1− 𝜇√

2− 𝜇2

]
,

(10)
where 𝑃 [𝑎] and 𝜇, respectively, denote the probability of 𝑎
and the normalized covariance given as

𝜇 =
𝑅𝑒[𝑔𝑥𝑦]√

𝑔𝑥𝑥𝑔𝑦𝑦 − 𝐼𝑚[𝑔𝑥𝑦]2
(11)

with the second moments⎧⎨
⎩

𝑔𝑥𝑥 = 𝐸[∣𝑋𝑗,𝑚(𝑛)∣2],
𝑔𝑦𝑦 = 𝐸[∣𝑌𝑗,𝑚(𝑛)∣2],
𝑔𝑥𝑦 = 𝐸[𝑋𝑗,𝑚(𝑛)𝑌 ∗

𝑗,𝑚(𝑛)].
(12)

Since⎧⎨
⎩

𝐸[∣𝐻𝑞,𝑗,𝑚(𝑛)∣2] = 1,
𝐸[𝐻𝑞,𝑗,𝑚(𝑛)𝐻∗

𝑞,𝑗,0(𝑛)] = 𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚),
𝐸[∣𝑁𝑗,𝑚(𝑛)∣2] = 𝐸[∣𝑁𝑟,𝑚(𝑛)∣2] = 2𝜎2

𝑛,
𝐸[∣𝜖𝑞,𝑗,𝑚(𝑛)∣2] = 2𝜎2

𝑒 ,

(13)

we obtain [Appendix]⎧⎨
⎩

𝑔𝑥𝑥 = 2𝑃 2

𝛽2 +
𝑃 2

𝛽2 (1 + 2𝜎2
𝑒)

2

−2𝑃 2

𝛽2 𝐽
2
0 (2𝜋𝑓𝐷𝑇𝑠𝑚) + ( 𝑃

𝛽2 + 1)2𝜎2
𝑛,

𝑔𝑦𝑦 = (1 + 2𝜎2
𝑒)

2,
𝑔𝑥𝑦 = 𝑃

𝛽 𝐽
2
0 (2𝜋𝑓𝐷𝑇𝑠𝑚).

(14)

In the above expressions 𝜎2
𝑒 denotes the variance of channel

estimation error 𝜖𝑞,𝑗,𝑚(𝑛) and 𝜎2
𝑛 = 𝑁0/𝑇𝑠 is the noise power

due to AWGN with 1/𝑇𝑠 being data symbol rate. From (14)
it can be seen that 𝑔𝑥𝑥 and 𝑔𝑥𝑦 are a function of the frame
index 𝑚. This is due to the fact that the CE is done only at
position 𝑚 = 0 and the same channel estimates are used for
the following blocks with 𝑚 ∕= 0. As the cross-correlation
term 𝑔𝑥𝑦 is a real number and thus, (11) reduces to

𝜇 =
𝑔𝑥𝑦√
𝑔𝑥𝑥𝑔𝑦𝑦

. (15)

Using (14), (11) and (10) the normalized covariance 𝜇 [Ap-
pendix] and 𝑃4𝑏,𝑚 are shown as (16) and (17), respectively,
at the top of the next page. The second moments in (14)
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are derived by taking ensemble average over fading statistics.
Thus, 𝑔𝑥𝑦, 𝑔𝑥𝑥 and 𝑔𝑦𝑦 are not a function of the user index
𝑗. Consequently, the BER given by (17) is the same for both
users 𝑈0 and 𝑈1. Using (17) the average BER expression for
the OFDM frame is finally calculated by averaging the 𝑀 −1
data blocks as 𝑃4𝑏 =

∑𝑀−1
𝑚=1 𝑃4𝑏,𝑚.

C. BER with Polynomial Interpolation

The channel time-selectivity is a very important problem
in practice. Here, the BER expressions with pilot-assisted CE
scheme using polynomial interpolation are derived to evaluate
the impact of channel time-selectivity on the BER performance
of broadband ANC.

The BER performance with polynomial interpolation is
affected by the channel time-selectivity. The analysis of BER
performance with interpolation takes into consideration differ-
ent transmission frames. Thus, in this subsection, we take into
consideration the frame index 𝑘 and the channel estimates in
the first block (𝑚 = 0) of the 𝑘th frame are given by (6).

The channel estimates are obtained from the pilot signal,
which is transmitted in the first block (i.e., 𝑚 = 0) of the
each frame as shown in Fig. 1. Blocks are divided into two
stages, corresponding to the first and second time slot, 𝑇𝑆0

and 𝑇𝑆1, respectively, each consisting of 𝑁𝑐 + 𝑁𝑔 samples
(i.e., duration of 𝑇𝑠). In the first time slot 𝑇𝑆0, the users
𝑈0 and 𝑈1, respectively transmit their pilot signals, 𝑝0(𝑡) and
𝑝1(𝑡) = 𝑝0((𝑡 −Δ)𝑚𝑜𝑑𝑁𝑐), where Δ denotes the time shift
[9]. The relay estimates the channel gains and in the second
time slot 𝑇𝑆1 broadcasts its pilot signal 𝑝0(𝑡) to both users.
Finally, the users estimate the corresponding channel gains
using the broadcasted pilot signal in 𝑇𝑆1 of the first block.
The estimated CSIs obtained from the pilot block are used
in detecting the following 𝑀 − 1 data blocks within the 𝑘th
frame. We note here that more details about the CE scheme
can be found in [9].

1) First order interpolation: The first order interpolated
channel gain �̄�𝑘

𝑞,𝑗,𝑚(𝑛) of the 𝑘th frame at the 𝑚th block
is obtained as

�̄�𝑘
𝑞,𝑗,𝑚(𝑛) = 𝑀−𝑚

𝑀 [𝐻𝑘
𝑞,𝑗,0(𝑛) + 𝜖𝑘𝑞,𝑗,0(𝑛)]

+𝑚
𝑀 [𝐻𝑘+1

𝑞,𝑗,0(𝑛) + 𝜖𝑘+1
𝑞,𝑗,0(𝑛)].

(18)

Using (18) with (28) and (29) in Appendix the second mo-
ments 𝑔𝑥𝑦 , 𝑔𝑥𝑥 and 𝑔𝑦𝑦 for the first order interpolation can be
represented by

⎧⎨
⎩

𝑔𝑥𝑥 = 2
𝑃 2

𝑠

𝛽2 + ( 𝑃
𝛽2 + 1)2𝜎2

𝑛 +
𝑃 2

𝑠

𝛽2 𝐴1 +
𝑃 2

𝑠

𝛽2 𝑔𝑦𝑦,

𝑔𝑦𝑦 =
[
(𝑀−𝑚

𝑚 )2 + (𝑀𝑚 )2
]2
(1 + 2𝜎2

𝑒)
2

+4(𝑀−𝑚
𝑚 )3(𝑀𝑚 )(1 + 2𝜎2

𝑒)𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑀)
+4(𝑀−𝑚

𝑚 )(𝑀𝑚 )3(1 + 2𝜎2
𝑒)𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑀)

+4(𝑀−𝑚
𝑚 )2(𝑀𝑚 )2𝐽2

0 (2𝜋𝑓𝐷𝑇𝑠𝑀),
𝑔𝑥𝑦 = 𝑃

𝛽𝐴2,

(19)

where 𝐴1 and 𝐴2 for the sake of brevity are given as (33)
in Appendix. It can be seen in (19) that 𝑔𝑥𝑥 and 𝑔𝑥𝑦 are also
functions of the frame index 𝑚 and consequently, the channel
time-selectivity.

2) Second order interpolation: The second order interpo-
lated channel gain �̄�𝑘

𝑞,𝑗,𝑚(𝑛) of the 𝑘th frame at the 𝑚th block
is obtained as

�̄�𝑘
𝑞,𝑗,𝑚(𝑛) = (𝑀−𝑚)(𝑚−2𝑀)

2𝑀2 [𝐻𝑘
𝑞,𝑗,0(𝑛) + 𝜖𝑘𝑞,𝑗,0(𝑛)]

+𝑚(2𝑀−𝑚)
𝑀 [𝐻𝑘+1

𝑞,𝑗,0(𝑛) + 𝜖𝑘+1
𝑞,𝑗,0(𝑛)]

+𝑚(𝑚−𝑀)
2𝑀2 [𝐻𝑘+2

𝑞,𝑗,0(𝑛) + 𝜖𝑘+2
𝑞,𝑗,0(𝑛)],

(20)

which leads to⎧⎨
⎩

𝑔𝑥𝑥 = 2
𝑃 2

𝑠

𝛽2 + ( 𝑃
𝛽2 + 1)2𝜎2

𝑛 +
𝑃 2

𝑠

𝛽2 𝐴1 +
𝑃 2

𝑠

𝛽2 𝑔𝑦𝑦,

𝑔𝑦𝑦 =
[
( (𝑀−𝑚)4(2𝑀−𝑚)4

16𝑀8 + 𝑚4(2𝑀−𝑚)4

𝑀8

+𝑚4(𝑚−𝑀)4

16𝑀8 + 𝑚2(𝑚−𝑀)4(2𝑀−𝑚)2

8𝑀8

+𝑚4(𝑚−𝑀)2(2𝑀−𝑚)2

2𝑀8

+𝑚2(𝑚−𝑀)2(2𝑀−𝑚)4

2𝑀8

]
(1 + 2𝜎2

𝑒)
2

+𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑀)𝐵1 + 𝐽0(2𝜋𝑓𝐷𝑇𝑠2𝑀)𝐵2

𝑔𝑥𝑦 = 𝑃
𝛽𝐴2,

(21)

where 𝐴1, 𝐴2, 𝐵1 and 𝐵2 are given by (34) in Appendix.
Here it can be seen that 𝑔𝑥𝑥 and 𝑔𝑥𝑦 are also a function on
the frame index 𝑚 as shown for the first order interpolation
case.

3) BER Evaluation: Substituting the second moments to
(15) we obtain

𝜇 =
𝐴2√

(2+ ( 𝐸𝑠

2𝑁0
)−1 + ( 𝐸𝑠

2𝑁0
)−2 +𝐴1 + 𝑔𝑦𝑦)𝑔𝑦𝑦

. (22)

Thus, the BER performance for broadband ANC with first and
second order interpolation schemes is finally derived as

𝑃4𝑏,𝑚 =

1
2

[
1− 𝐴2√

(4+2( 𝐸𝑠
2𝑁0

)−1+2( 𝐸𝑠
2𝑁0

)−2+2𝐴1+2𝑔𝑦𝑦)𝑔𝑦𝑦−𝐴2
2

]
.

(23)

Next we present a closed-form BER for broadband ANC
with perfect knowledge of CSI (i.e., ideal CE case).

D. Exact BER Analysis with Perfect Knowledge of CSI

In the case of perfect knowledge of CSI the channel
estimation error is not present and (14) collapses to⎧⎨

⎩
𝑔𝑥𝑥 = 𝑃 2

𝛽2 + ( 𝑃
𝛽2 + 1)2𝜎2

𝑛,

𝑔𝑦𝑦 = 1,
𝑔𝑥𝑦 = 𝑃

𝛽 ,

(24)

and after some manipulations the average BER is given by

𝑃4𝑏 =
1

2

[
1− 1√

1+ 2( 𝐸𝑠

2𝑁0
)−1 + 2( 𝐸𝑠

2𝑁0
)−2

]
. (25)

IV. NUMERICAL RESULTS AND DISCUSSIONS

The numerical simulation parameters are shown in Table
I. We assume ideal coherent QPSK modulation/demodulation
with 𝑁𝑐 = 256 and GI length of 𝑁𝑔 = 32. The propagation
channel is an 𝐿-path Rayleigh fading channel, where the path
gains {ℎ𝑞,𝑙,𝑗,𝑚; 𝑙 = 0 ∼ 𝐿 − 1} are zero-mean independent
complex variables with 𝐸[∣ℎ𝑞,𝑙,𝑗,𝑚∣2] = 1/𝐿. The maximum
time delay of the channel is assumed to be less than the guard
interval and that all paths are independent of each other. 𝑓𝐷𝑇𝑠
denotes the normalized Doppler frequency, where 1/𝑇𝑠 is the
transmission symbol rate (𝑓𝐷𝑇𝑠 = 10−3 corresponds to a
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𝜇 =
𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠𝑚)√

(2+(1 + 2𝜎2
𝑒)

2 − 2𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠𝑚) + ( 𝐸𝑠

2𝑁0
)−1 + ( 𝐸𝑠

2𝑁0
)−2)(1 + 2𝜎2

𝑒)
2

(16)

𝑃4𝑏,𝑚 =
1

2

[
1− 𝐽2

0 (2𝜋𝑓𝐷𝑇𝑠𝑚)√
(4+2(1 + 2𝜎2

𝑒)
2 − 4𝐽2

0 (2𝜋𝑓𝐷𝑇𝑠𝑚) + 2( 𝐸𝑠

2𝑁0
)−1 + 2( 𝐸𝑠

2𝑁0
)−2)(1 + 2𝜎2

𝑒)
2 − 𝐽4

0 (2𝜋𝑓𝐷𝑇𝑠𝑚)

]
(17)

TABLE I
NUMERICAL SIMULATION PARAMETERS.

Transmitter
Data modulation QPSK

Block size 𝑁𝑐 = 256
GI 𝑁𝑔 = 32

Channel 𝐿-path block Rayleigh fading with Δ=1
Receiver FDE MRC

mobile terminal speed of approximately 80 km/h for a trans-
mission data rate of 100 Msymbols/s and a carrier frequency
of 5GHz). Distance-dependent path loss and shadowing loss
are not considered.

A. Impact of CE Error and Imperfect Self-information Re-
moval

We first evaluate the impact of CE error on the BER
performance and then, the derived theoretical expressions are
used to evaluate the impact of imperfect self-information
removal due to CE errors. Figure 2 illustrates the impact of
channel estimation error on the BER performance of broad-
band ANC in a frequency-selective fading channel with 𝑧𝑒𝑟𝑜th
order channel time interpolation. The BER performance as a
function of the average signal energy per bit-to-AWGN power
spectrum density ratio 𝐸𝑏/𝑁0 (= 0.5(𝐸𝑠/𝑁0)(1 + 𝑁𝑔/𝑁𝑐))
with 𝑓𝐷𝑇𝑠 = 0 and 𝜎2

𝑒 as a parameter is illustrated in Fig.
2(a). The results shows that for the values less than 𝜎2

𝑒 = 10−4

the BER performance with imperfect and perfect CSI can be
considered fairly equal. On the other hand, it can be seen
from the figure that for 𝜎2

𝑒 larger than 10−4 the BER floor is
observed. As the value of 𝜎2

𝑒 increases from 10−3 to 10−2 and
10−1 the BER floor increases to about 3 × 10−3, 3 × 10−2

and 2 × 10−1, respectively. A good agreement between the
analytical approach and computer simulation can be seen from
the figure.

Figure 2(b) illustrates the BER performance as a function
of channel estimation error variance 𝜎2

𝑒 with 𝑓𝐷𝑇𝑠 as a
parameter. We consider three cases: (𝑖) the effect of imperfect
self-information removal due to CE error with fading tracking
errors which is labeled as "Imperfect CSI (𝑓𝐷𝑇𝑠 = 10−3)",
(𝑖𝑖) the effect of imperfect self-information removal due to
CE error without fading tracking errors, which is labeled as
"Imperfect CSI (𝑓𝐷𝑇𝑠 = 0)" and (𝑖𝑖𝑖) the ideal CE case.
It was shown that for 𝜎2

𝑒 = 10−4, the CE error due to
AWGN has less impact on self-information removal than
fading tracking errors, which is labeled as "Imperfect CSI
(𝑓𝐷𝑇𝑠 = 10−3)". Thus, the broadband ANC system should
be designed to be more robust to the channel time variation
with a careful selection of the pilot insertion interval 𝑀 . This
issue is elaborated in the following.
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Fig. 2. Impact of channel estimation error on BER performance.

B. Impact of Pilot Insertion Rate

Figures 3(a) and 3(b) illustrate the average BER perfor-
mance as a function of the average 𝐸𝑏/𝑁0 with the frame
size 𝑀 as a parameter with (i.e., 𝜎2

𝑒 = 10−3) and without
(i.e., 𝜎2

𝑒 = 0) CE error. It can be seen from the figure that
as the frame size 𝑀 increases and the difference between
actual channel gain and its estimate used in self-information
removal gets larger the resulting self-interference increases
which causes the BER performance degradation.
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Fig. 3. Impact of frame size on BER performance.

Figure 4 illustrates the BER performance of the 𝑚th block
within the 𝑘th frame as a function of the average 𝐸𝑏/𝑁0 when
𝜎2
𝑒 = 10−3. The figure shows that the larger the block index
𝑚 is, the BER performance with imperfect knowledge of CSI
is more degraded. This is because the channel gains at the end
of the frame vary from the channel gains at the pilot block
(𝑚 = 0) due to the channel time-selectivity.

Figure 5 shows the BER performance as a function of 𝑓𝐷𝑇𝑠
with 𝐸𝑏/𝑁0 as a parameter when 𝜎2

𝑒 = 10−4. The general
behavior of the plots is that BER increases as the Doppler
spread increases. The reason is the existence of severe ICI
caused by self-information removal due to Doppler shifts as
indicated in Fig. 2(b). Another observation from this plot is
that if the value of 𝑓𝐷𝑇𝑠 is below 10−4 (corresponding to
a vehicle moving at a speed of about 8km/h for a carrier
frequency of 5GHz) the BER degradation is negligible. How-
ever, as 𝑓𝐷𝑇𝑠 increases (i.e., higher vehicular speeds), the
channel time-selectivity clearly has a larger impact on the
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Fig. 4. BER performance of individual block 𝑚 within the frame.
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Fig. 5. Impact of 𝑓𝐷𝑇𝑠.

BER performance due to tracking errors then the AWGN and
consequently, an improved channel estimation scheme using
either time-domain interpolation or decision feedback must be
designed to better cope with the Doppler shift.

C. Impact of the Channel Time-selectivity

Figure 6(a) shows the BER performance of broadband ANC
with the first-order channel interpolation as a function of
𝐸𝑏/𝑁0 with 𝑓𝐷𝑇𝑠 as a parameter with 𝜎2

𝑒 = 10−3 and
𝑀 = 16. Our simulations were performed for three different
values of the OFDM-symbol normalized Doppler frequency,
namely for 𝑓𝐷𝑇𝑠=0.03, 0.01 and 0.001. It can be seen that the
performance of the system without time-domain interpolation
is indeed tolerant to the Doppler frequency for the mobile user
velocity of about 80 km/h (corresponding to the normalized
Doppler frequency 𝑓𝐷𝑇𝑠 = 10−3 for a carrier frequency of
5GHz). On the other hand, for the mobile user velocity of
about 800 km/h (corresponding to the normalized Doppler
frequency 𝑓𝐷𝑇𝑠 = 10−2 for a carrier frequency of 5GHz)
the significant BER performance improvement is observed
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Fig. 6. BER performance using polynomial interpolation.

in comparison with the CE case where interpolation is not
used (i.e., 0𝑡ℎ order). However, for a higher mobile user
velocity (corresponding to the normalized Doppler frequency
𝑓𝐷𝑇𝑠 = 10−1 for a carrier frequency of 5GHz) a BER floor is
observed due to a fast fading variation that cannot be tracked
by the first-order interpolation.

Figure 6(b) shows the BER performance of broadband ANC
using pilot-assisted CE with the second-order interpolation
as a function of 𝐸𝑏/𝑁0 with 𝑓𝐷𝑇𝑠 as a parameter. The
values of 𝜎2

𝑒 and 𝑀 are same as in Fig. 6(a). For the
the mobile user speed of about 80 km/h (i.e., normalized
Doppler frequency 𝑓𝐷𝑇𝑠 = 10−3 for a carrier frequency of
5GHz) the second-order interpolation slightly improves the
BER performance in comparison with the CE case when the
first-order interpolation. The larger BER performance gain
with the second-order interpolation can be observed for the
mobile user velocity of about 800 km/h (i.e., normalized
Doppler frequency 𝑓𝐷𝑇𝑠 = 10−2 for a carrier frequency of
5GHz), while for the higher velocity (corresponding to the

normalized Doppler frequency 𝑓𝐷𝑇𝑠 = 10−1 for a carrier
frequency of 5GHz) the BER performance severely degrades
since the channel fluctuations are too fast and they cannot be
encountered by the polynomial interpolation. Furthermore, it
can be confirmed from Fig. 6 that the channel time-selectivity
have a stronger impact on the performance of broadband ANC
with imperfect knowledge of CSI in comparison with the effect
of CE error discussed above.

In general, this suggests that the broadband ANC schemes
with practical CE in a time- and frequency-selective channel
should include a more sophisticated channel interpolation
techniques since the impact of Doppler shift has prevalent
effect on the achievable BER performance.

V. CONCLUSION

In this paper, we presented the closed-form BER expres-
sions for bi-directional ANC with imperfect knowledge of
CSI in a frequency-selective fading channel. In this paper,
the Gaussian model of channel estimation error was used. We
discussed the impact of imperfect self-information removal
and the channel tracking on the achievable BER performance.
The results with the 𝑧𝑒𝑟𝑜th order channel time interpolation
show that the imperfect CE due to AWGN has less impact on
self-information removal than the imperfect channel tracking
(i.e., fading tracking error). To improve the tracking ability,
polynomial interpolation can be used. The BER expressions
with pilot-assisted CE scheme using polynomial interpola-
tion were also derived to evaluate impact of the channel
time-selectivity. It was shown that the BER performance of
broadband ANC with polynomial interpolation is more robust
against the negative effect of channel time-selectivity and CE
errors that cause imperfect self-information removal.

Further performance improvements can be obtained by
using a higher order interpolation techniques, but their anal-
ysis may become very difficult if not impossible to track.
Development of pilot-assisted CE for bi-directional ANC with
improved fading tracking ability is an important future study.
The performance analysis and comparison of ANC and PNC
with pilot-assisted CE is also left as an interesting future work.
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APPENDIX

In this appendix we give some details on derivation of
second moments and normalized covariance for broadband
ANC with imperfect knowledge of CSI. We assume the 𝑧𝑒𝑟𝑜th
order channel time interpolation over 𝑀 observed blocks
within the frame.

A. Decision Variables

The received signal at the 𝑗the user 𝑈𝑗 is given by

𝑅𝑗,𝑚(𝑛) =
𝑃

𝛽
𝑑𝑗,𝑚(𝑛)𝐻0,𝑗,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛)

+
𝑃

𝛽
𝑑�̄�,𝑚(𝑛)𝐻0,�̄�,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛)

+

√
𝑃

𝛽
𝑁𝑟,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛) +𝑁𝑗,𝑚(𝑛) (26)



GACANIN et al.: PERFORMANCE ANALYSIS OF ANALOG NETWORK CODING WITH IMPERFECT CHANNEL ESTIMATION . . . 749

for 𝑛 = 0 ∼ 𝑁𝑐 − 1, while the signal after imperfect self-
information removal due to CE error is given by

�̃�𝑗,𝑚(𝑛) = 𝑅𝑗,𝑚(𝑛)

− 𝑃

𝛽
𝑑𝑗,𝑚(𝑛)�̄�0,𝑗,𝑚(𝑛)�̄�1,𝑗,𝑚(𝑛), (27)

where the channel estimates are represented by �̄�𝑠,𝑗,𝑚(𝑛) =
𝐻𝑠,𝑗,0(𝑛)+𝜖𝑠,𝑗,0(𝑛). Finally, after some manipulation, the de-
cision variables for broadband ANC with imperfect knowledge
of CSI are given by

�̃�𝑗,𝑚(𝑛) = 𝑋𝑗,𝑚 =
𝑃

𝛽
𝑑𝑗,𝑚(𝑛)𝐻0,𝑗,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛)

− 𝑃

𝛽
𝑑𝑗,𝑚(𝑛)𝐻0,𝑗,0(𝑛)𝐻1,𝑗,0(𝑛)

+
𝑃

𝛽
𝑑�̄�,𝑚(𝑛)𝐻0,�̄�,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛)

+

√
𝑃

𝛽
𝑁𝑟,𝑚(𝑛)𝐻1,𝑗,𝑚(𝑛) +𝑁𝑗,𝑚(𝑛)

− 𝑃

𝛽
𝑑𝑗,𝑚(𝑛)𝐻0,𝑗,0(𝑛)𝜖𝑥(𝑛) (28)

for 𝑛 = 0 ∼ 𝑁𝑐 − 1, where 𝜖𝑥(𝑛) = 𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛) +
𝐻1,𝑗,0(𝑛)𝜖0,𝑗,0(𝑛) + 𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛).

The equalization weight with imperfect knowledge of CSI
is given by

𝑤𝑗,𝑚(𝑛) = 𝑌 ∗
𝑗,𝑚 = �̄�∗

0,�̄�,𝑚(𝑛)�̄�∗
1,𝑗,𝑚(𝑛)

= 𝐻∗
0,�̄�,0(𝑛)𝐻

∗
1,𝑗,0(𝑛) + 𝜖∗𝑦(𝑛), (29)

where 𝜖𝑦(𝑛) = 𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛) + 𝐻1,𝑗,0(𝑛)𝜖0,�̄�,0(𝑛) +
𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛).

B. Derivation of Second Moments

1) Impact of CE Error with Fading Tracking Errors: Using
(28) and (29) the second moments can be represented by⎧⎨
⎩

𝑔𝑥𝑥 = 𝐸[∣𝑋𝑗,𝑚∣2] = 3𝑃2

𝛽2 + 𝑃2

𝛽2 𝐸[∣𝜖𝑥∣2]− 2𝑃2

𝛽2 𝐽
2
0 (2𝜋𝑓𝑑𝑇𝑠𝑚)

+2

(
𝑃2

𝛽2 + 1

)
𝜎2
𝑛,

𝑔𝑦𝑦 = 𝐸[∣𝑌𝑗,𝑚∣2] = 𝐸[∣𝐻𝑠𝑑,𝑚(𝑛)∣2] + 𝐸[∣𝜖𝑦(𝑛)∣2],
𝑔𝑥𝑦 = 𝐸[𝑋𝑗,𝑚𝑌 ∗

𝑗,𝑚] = 𝐸

[
𝑃
𝛽
𝑑�̄�,𝑚(𝑛)𝐻𝑠𝑑,𝑚(𝑛)𝐻∗

𝑠𝑑,0(𝑛)

]
,

(30)
while the estimation error variances 𝐸[∣𝜖𝑥∣2] and 𝐸[∣𝜖𝑦∣2] are
derived based on the channel estimation error model defined
in Sect. III as

𝐸[∣𝜖𝑥∣2] = 𝐸[∣𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)∣2]
+ 𝐸[𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)𝐻

∗
1,𝑗,0(𝑛)𝜖

∗
0,𝑗,0(𝑛)]

+ 𝐸[𝐻0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)𝜖
∗
0,𝑗,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[∣𝐻1,𝑗,0(𝑛)𝜖0,𝑗,0(𝑛)∣2]
+ 𝐸[𝐻1,𝑗,0(𝑛)𝜖0,𝑗,0(𝑛)𝐻

∗
0,𝑗,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[𝐻1,𝑗,0(𝑛)𝜖0,𝑗,0(𝑛)𝜖
∗
0,𝑗,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[∣𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)∣2]
+ 𝐸[𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)𝐻

∗
0,𝑗,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[𝜖0,𝑗,0(𝑛)𝜖1,𝑗,0(𝑛)𝐻
∗
1,𝑗,0(𝑛)𝜖

∗
0,𝑗,0(𝑛)]

= 4𝜎2
𝑒 + 4𝜎4

𝑒 (31)

and

𝐸[∣𝜖𝑦∣2] = 𝐸[∣𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)∣2]
+ 𝐸[𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)𝐻

∗
1,𝑗,0(𝑛)𝜖

∗
0,�̄�,0(𝑛)]

+ 𝐸[𝐻0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)𝜖
∗
0,�̄�,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[∣𝐻1,𝑗,0(𝑛)𝜖0,�̄�,0(𝑛)∣2]
+ 𝐸[𝐻1,𝑗,0(𝑛)𝜖0,�̄�,0(𝑛)𝐻

∗
0,�̄�,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[𝐻1,𝑗,0(𝑛)𝜖0,�̄�,0(𝑛)𝜖
∗
0,�̄�,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[∣𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)∣2]
+ 𝐸[𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)𝐻

∗
0,�̄�,0(𝑛)𝜖

∗
1,𝑗,0(𝑛)]

+ 𝐸[𝜖0,�̄�,0(𝑛)𝜖1,𝑗,0(𝑛)𝐻
∗
1,𝑗,0(𝑛)𝜖

∗
0,�̄�,0(𝑛)]

= 4𝜎2
𝑒 + 4𝜎4

𝑒 . (32)

After substituting (31) and (32) into (30) based on the fading
channel modeling [10] in Sect. II-A we obtain the second
moments given by (14).

2) 1𝑠𝑡 Order Interpolation: Factors 𝐴1 and 𝐴2 in (19) are
given by

⎧⎨
⎩

𝐴1=−2
[
(𝑀−𝑚

𝑚 )𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚)

+(𝑀𝑚 )𝐽0(2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))
]2

𝐴2=
[
(𝑀−𝑚

𝑚 )𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚)

+(𝑀𝑚 )𝐽0(2𝜋𝑓𝐷𝑇𝑠(𝑀−𝑚))
]2
.

(33)

3) 2𝑠𝑡 Order Interpolation: Factors 𝐴1 and 𝐴2 in (21) are
given by

⎧⎨
⎩

𝐴1 = 2𝑚(𝑚−𝑀)(2𝑀−𝑚)2

𝑀4 𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚)𝐽0(2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))

+𝑚(𝑚−𝑀)2(2𝑀−𝑚)

𝑀4 𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚)𝐽0(2𝜋𝑓𝐷𝑇𝑠(2𝑀 −𝑚))

−2𝑚2(𝑚−𝑀)(2𝑀−𝑚)

𝑀4 𝐽0(2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))
×𝐽0(2𝜋𝑓𝐷𝑇𝑠(2𝑀 −𝑚))

− (𝑚−𝑀)2(2𝑀−𝑚)2

2𝑀4 𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠𝑚)

−2𝑚2(2𝑀−𝑚)2

𝑀4 𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))

−𝑚2(𝑚−𝑀)2

2𝑀4 𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠(2𝑀 −𝑚))

𝐴2 = (𝑚−𝑀)2(2𝑀−𝑚)2

4𝑀4 𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠𝑚)

+𝑚2(2𝑀−𝑚)2

𝑀4 𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))

+𝑚2(𝑚−𝑀)2

4𝑀4 𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠(2𝑀 −𝑚))

−𝑚(𝑚−𝑀)(2𝑀−𝑚)2

𝑀4 𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚)𝐽0(2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))

−𝑚(𝑚−𝑀)2(2𝑀−𝑚)

2𝑀4 𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑚)𝐽0(2𝜋𝑓𝐷𝑇𝑠(2𝑀 −𝑚))

+𝑚2(𝑚−𝑀)(2𝑀−𝑚)

𝑀4 𝐽0(2𝜋𝑓𝐷𝑇𝑠(𝑀 −𝑚))
×𝐽0(2𝜋𝑓𝐷𝑇𝑠(2𝑀 −𝑚))

𝐵1 =
[𝑚2(𝑚−𝑀)2(2𝑀−𝑚)4

𝑀8 + 𝑚4(𝑚−𝑀)2(2𝑀−𝑚)2

𝑀8

−2𝑚3(𝑚−𝑀)2(2𝑀−𝑚)3

𝑀8

]
𝐽0(2𝜋𝑓𝐷𝑇𝑠𝑀)

+
[
2𝑚4(𝑚−𝑀)(2𝑀−𝑚)3

𝑀8

−𝑚(𝑚−𝑀)3(2𝑀−𝑚)4

2𝑀8 − 2𝑚3(𝑚−𝑀)(2𝑀−𝑚)4

𝑀8

+𝑚4(𝑚−𝑀)3(2𝑀−𝑚)

2𝑀8

+𝑚2(𝑚−𝑀)3(2𝑀−𝑚)3

2𝑀8 − 𝑚3(𝑚−𝑀)3(2𝑀−𝑚)2

2𝑀8

]
(1 + 2𝜎2

𝑒)

𝐵2 = 𝑚2(𝑚−𝑀)4(2𝑀−𝑚)2

4𝑀8 𝐽0(2𝜋𝑓𝐷𝑇𝑠2𝑀)

+
[
𝑚2(𝑚−𝑀)3(2𝑀−𝑚)3

𝑀8

−𝑚3(𝑚−𝑀)3(2𝑀−𝑚)2

𝑀8

]
𝐽2
0 (2𝜋𝑓𝐷𝑇𝑠𝑀)𝐽0(2𝜋𝑓𝐷𝑇𝑠2𝑀)

−[
𝑚(𝑚−𝑀)4(2𝑀−𝑚)3

4𝑀8 + 𝑚3(𝑚−𝑀)2(2𝑀−𝑚)3

𝑀8

+𝑚3(𝑚−𝑀)4(2𝑀−𝑚)

4𝑀8

]
(1 + 2𝜎2

𝑒).
(34)
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𝜇 =

𝑃
𝛽 𝐽

2
0 (2𝜋𝑓𝑑𝑇𝑠𝑚)√[

3𝑃 2

𝛽2 + 𝑃 2

𝛽2 𝐸[∣𝜖𝑥∣2]− 2𝑃 2

𝛽2 𝐽2
0 (2𝜋𝑓𝑑𝑇𝑠𝑚) + 2

(
𝑃 2

𝛽2 + 1

)
𝜎2
𝑛

][
𝐸[∣𝐻𝑠𝑑,𝑚(𝑛)∣2] + 𝐸[∣𝜖𝑦(𝑛)∣2]

] . (35)

C. Normalized Covariance

1) Impact of CE Error with Fading Tracking Errors: The
normalized covariance is derived by substituting (14) into (11)
and it is given by (35) at the top of the page.

Then, by substituting (31) and (32) into (30) and after some
manipulation we obtain the normalized covariance given by
(11). Finally, using (11) the BER given by (10) and average
BER are calculated.

2) Polynomial Interpolation: The same procedure is done
for derivation of the normalized covariance and BER expres-
sion for polynomial interpolation by substituting (19) and (21)
into (11) we obtain the normalized covariance given by (22).
Finally, using (22) the BER given by (23) is derived.
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