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Accurate channel state information (CSI) is necessary at receiver for coherent detection in amplify-and-forward (AF) cooperative
communication systems. To estimate the channel, traditional methods, that is, least squares (LS) and least absolute shrinkage and
selection operator (LASSO), are based on assumptions of either dense channel or global sparse channel. However, LS-based linear
method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage
of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved
channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is
formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse
constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse
channel estimation methods.

1. Introduction

Relay-based cooperative communication [1–6] has been
studied in the last decade due to its capability of enhancing
the transmission range and providing the spatial diversity
for single-antenna receivers by employing the relay nodes
as virtual antennas [7–9]. A typical example of cooperative
communication system is shown in Figure 1, where source S
transmits signal to destinationDwith the help of relayR. It is
well known that utilizing multiple-inputs multiple-outputs
(MIMO) transmission can boost the channel capacity [10,
11] in broadband communication systems. In addition,
diversity techniques in MIMO system could mitigate selec-
tive fading and hence improve the quality of service (QoS)
[12, 13]. However, it poses a practical challenge to integrate
multiple antennas onto a small handheld mobile terminal.
To deal with the limitation, one could choose relay-based
cooperation networks which have been investigated in last
decade [1–5]. The main reason is that the diversity from
relay nodes existing in the network could be exploited, where
relay can either be provided by operators or be obtained from
cooperating mobile terminals of other users.

In the relay-based cooperative communication system
(CCS), data transmission is usually divided into two time
slots. During the first time slot, the source broadcasts its
information to both relay and destination. During the second
time slot, the relay could select different protocols and
then transmit the signal to the destination. Usually, there
are two kinds of protocols in cooperative communication
systems; one is to amplify the received signal at the relay and
forward it to the destination, which is termed as amplify-
and-forward (AF); the second is to decode the received
signal, modulate it again, and then retransmit to destination,
which is often termed as decode-and-forward (DF). Due to
coherent detection in these systems, accurate channel state
information (CSI) is required at the destination (for AF) or
at both relay and destination (for DF). About DF cooperative
communication systems, the channel estimation methods
could be borrowed from point-to-point (P2P) communica-
tion systems directly. However, extra channel estimation will
increase the computational complexity which is a burden
at relay, and broadcasting the estimated channel informa-
tion will result in further interference at the destination.
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Figure 1: An example of AF broadband cooperative communica-
tion system, where source transmits signal to destination with the
help of relay. No. 1, No. 2, and No. 3 are based on partial sparse,
sparse, and dense channel model, respectively.

On the other hand, AF cooperative communication tech-
nique can avoid this disadvantage and we focus on AF CCS
in this study.

As shown in Figure 1, the cooperative channel consists
of a direct link S ⇒ D and a cascaded one S ⇒ R ⇒ D.
Based on the assumption of dense multipath, linear channel
estimation for the relay-based AF cooperative networks has
been proposed [4]. Even though the proposed method can
achieve lower-bound performance, low spectrum efficiency
is unavoidable since the training sequence takes a large
amount of the bandwidth. Hence, one method to improve
the spectral efficiency is by reducing the length of training
sequence for channel estimation.

As channel measurement techniques improved in the last
decade, broadband wireless channels have been confirmed
to exhibit inherent sparse or cluster-sparse structure in
delay spread. If we can take advantage of the sparse prior
information, then the spectral efficiency can be improved.
In allusion to point-to-point (P2P) communication systems,
efficient sparse channel estimation methods [14–16] have
been proposed. To improve the spectral efficient and/or
estimation performance in CCS, we have studied channel
estimation in CCS and proposed an effective sparse channel
estimation method [17].

However, the cascaded channel (S ⇒ R ⇒ D) may be no
longer sparse due to the linear convolutional operation [18].
Relay-based cooperative communication not only reduces
the transmission range but also improves the received
signal-to-noise ratio (SNR) when comparing with the P2P
communication systems. Unlike the previous research under
global sparse hypothesis, the cooperative channel consists
of two parts: sparse part (S ⇒ D) and dense part (S ⇒
R ⇒ D). A simple example is shown in Figure 2. As
a result, our previous method will be degraded since it
cannot fully take advantage of the prior information. Unlike
the previous method, in this paper, we propose a partial
sparse channel estimation method by using LASSO [19]
(PEL) to improve the performance. Based on this idea, an
improved partial sparse channel estimation by using LASSO

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 10 20 30 40 50 60

M
ag

n
it

u
de

Length of channel impulse response

Sparse

(direct link)
Dense

(cascaded link)

Figure 2: A typical example of partial sparse cooperative channel,
where the first part of sparse impulse response is supported by direct
link (S ⇒ D) and the second part of dense impulse response is
contributed by the cascaded link (S⇒ R⇒ D).

(IEL) is proposed by utilizing both partial sparse constraint
and global sparse constraint. On the one hand, the partial
sparse constraint can improve estimation performance in
the cooperative communication systems. On the other hand,
the global sparse constraint can mitigate noise interference
under low SNR regime. To confirm the effectiveness of
the two proposed methods, we give various numerical
simulation results in Section 4.

Section 2 introduces the system model and problem
formulation. In Section 3, two improved channel esti-
mation methods are proposed. The first method is the
improved channel estimation method by using partial sparse
constraint, and the second one is an improved channel
estimation method by using both partial and global sparse
constraint. In Section 4, we give some representative numer-
ical simulation results and related discussions. Concluding
remarks are presented in Section 5.

Notations. In this paper, we use boldface lower case letters
x to denote vectors and boldface capital letters X to
denote matrices. x represents the complex Gaussian random
variable. E[·] stands for the expectation operation. XT , X†

denote transpose and conjugated transpose operations of X,
respectively. ‖x‖0 is the number of nonzero elements of x,
and ‖x‖2 is the Euclidean norm of x. diag(x) represents a
diagonal matrix whose diagonal entries are from vector x.
x1 ∗ x2 denotes the convolution of two vectors x1 and x2.

2. System Model

Consider a multipath fading AF CCS where the source S
sends data to destinationD with the help of relayR as shown
in Figure 1. The three terminals are assumed to be equipped
with a single antenna each. hSD, hSR, and hRD denote the
impulse response of the frequency selective fading channel
vectors between three links S ⇒ D, S ⇒ R, and R ⇒ D,
respectively. The three channel vectors are assumed to be
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Figure 3: Two-time slots partial sparse AF CCS.

zero-mean circularly symmetric complex Gaussian random
variables with variance σ2

h and are independent of each
other. For the time being, we assume perfect synchronization
among three terminals. Note that they differ from our
previous research in [17], because the impulse response of
the cooperative channels, hSR and hRD, is modeled as highly
dense channel model due to the fact that the relay can reduce
transmission range and improve channel quality. In other
words, multipath taps arrive in a very short delay spread.
The two channels are assumed to have length LSR and LRD,
respectively. For simplicity, we assume that they have same
length LSR = LSR = L/2, and the channel model of hSR can be
written as

hSR =
L/2−1∑

l=0

hSR,lδ
(
t − τSR,l

)
, (1)

where hSR,l and τSR,l represent the complex path gain with
E[
∑

l |hSR,l|2] = 1 and symbol spaced time delay of the lth
path, respectively. The training sequence vector x is denoted
as x = [x(1), x(2), . . . , x(N)]T where N is the number of
training length, and the transmit power is PS = E[xHx] =
NP, where P is the symbol power. According to the property
of AF cooperative system, one full transmission can be
divided into two time slots as shown in Figure 3.

At the first time slot, complex baseband received signal at
D and R is given by

yD,1 = HSDx + zD,1,

yR,1 = HSRx + zR,1,
(2)

where HSD and HSR denote two complex circulant chan-
nel matrices with their first columns [hT

SD, 01×(N−L)]
T and

[hT
SR, 01×(N−L/2)]

T respectively [20]; zD,1 and zR,1 are a realiza-
tion of a complex additive Gaussian white noise vector with
zero mean and covariance matrix E[zD,1zHD,1] = E[zR,1zHR,1] =
σ2
nIN , and IN is the N × N identity matrix. Then the relay R

amplifies the received signal yR,1 and retransmits the signal
during the second time slot. The received signal vector at the
destination D is given by

yD,2 = βHRDHSRx + zD,2, (3)

where HRD is a circulant channel matrix with first column
[hT

RD, 01×(N−L/2)]
T ; zD,2 = βHRDzR,1 + z̃D,2 is a composite

noise with zero mean and covariance matrix E[zD,2zHD,2] =
(β2HRDHH

RD + IN )σ2
n , where z̃D,2 is a realization of a complex

additive Gaussian white noise (AWGN) vector with zero
mean and covariance matrix E[z̃D,2z̃HD,2] = σ2

nIN . Consider-
ing long-time averaging, the amplification factor β is given
by

β =
√

PR
σ2
hPS + σ2

n

, (4)

where PR is the transmit power of relay. Using (2), the
effective input-output relation in the AF cooperative com-
munication system can be summarized as

ỹ =
[

yD,1

yD,2

]
=
[

HSD

βHRDHSR

][
x
x

]
+

[
zD,1

zD,2

]
. (5)

According to the matrix theory [21], all circulant matrices
can share the same eigenvectors [20]. That is to say, the same
unitary matrix can work for all circulant matrices. Hence,
the matrices HSD and HRDHSR in (5) are decomposited as
HSD = FHDSDF and HRDHSR = FHDSRDF, respectively,
where DSRD = DRDDSR denotes a diagonal matrix and
F is the unitary discrete Fourier transform (DFT) matrix
with entries fmn = [F]mn = 1/

√
Ne− j2π(m−1)(n−1)/N , m,n =

1, 2, . . . ,N . At the same time, FHDSRDF is the decomposition
of a circulant matrix which is constructed from a cascaded
channel impulse response hSRD � hRD ∗hSR. Here, both DSD

and DSRD are diagonal matrices which are given by

DSD = diag{HSD(0), . . . ,HSD(n), . . . ,HSD(N − 1)},
DSRD = diag{HSRD(0), . . . ,HSRD(n), . . . ,HSRD(N − 1)},

(6)

respectively, where HSD(n) and HSRD(n) are given by

HSD(n) =
L−1∑

l=0

hSD(l)e− j2πnl/N ,

HSRD(n) =
L−2∑

l=0

hSRD(l)e− j2πnl/N ,

(7)

respectively, where hSD = [hSD(0),hSD(1), . . . ,hSD(L − 1)]T

denotes direct link from source S to destinationD at the first
time slot and hSRD = [hSRD(0),hSRD(1), . . . ,hSRD(L − 2)]T

represents cascaded channel from source S to destination D
via help of the relay R at the second time slot. Based on the
above analysis, (5) can be rewritten as

y = Xh + z, (8)

where y = [(FyD,1)T , (FyD,2)T]T denotes 2N-length received
signal vector; X denotes equivalent training matrix, and it
can be written as

X =
[

F diag(x)FSD 0N×(L−1)

0N×L F diag(x)FSRD

]
, (9)
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with 2N × (2L − 1) dimension; h = [hT
SD hT

SRD]
T

represents (2L − 1)-length cooperative channel vector; z =
[(FzD,1)T (FzD,2)T]

T
denotes 2N-length complex AWGN

vector; FSD and FSRD are partial DFT matrices taking the
first L and (L − 1) columns of F, respectively. And the z is
a realization of a complex Gaussian random vector with zero
mean and covariance matrix E[zzH] = (β2|DSR|2 + I2N )σ2

n .

3. Sparse Channel Estimation

In this section, we discuss the sparse channel estimation for
AF CCS. Firstly, we review briefly CS theory and restricted
isometry property (RIP) of training signal matrix. Then,
sparse channel estimation method [17] is introduced. Finally,
we propose improved sparse channel estimators by using
partial sparse constraint to take full advantage of prior
information in AF CCS.

3.1. Review of the CS. In a typical complex sparse identifica-
tion system, one can use known matrix U ∈ CN×L to estimate
an L-length unknown sparse signal vector a based on the
observation linear system model:

b = Ua + c, (10)

where b ∈ CN is a complex observation signal vector, c ∈ CN

is a noise vector, and a is K sparse vector which means
the number of dominant entries is no more than K , that
is, ‖a‖0 ≤ K � L. The position of dominant entries is
randomly distributed. In addition, L 	 N according to CS
assumption. The optimal sparse solution aopt can be obtained
uniquely by solving minimization problem:

aopt = arg min
a

{
1
2
‖b−Ua‖2

2 + λ0‖a‖0

}
, (11)

where λ0 is regularized parameter which trades off the mean
square error (MSE) and sparsity. However, solving �0 norm is
NP hard and cannot be utilized in practical applications [22].

Fortunately, alternative suboptimal sparse recovery
methods have been studied if the known measurement
matrix U satisfies RIP [23]. Let UΩ, Ω ⊂ {1, 2, . . . ,N} be the
N × |Ω| submatrix extracting those columns of U that are
indexed by the elements ofΩ. Then theK-restricted isometry
constant (RIC) of U is defined as the smallest parameter
δK ∈ (0, 1) such that

∣∣∣∣∣
‖UΩaΩ‖2

2 − ‖aΩ‖2
2

‖aΩ‖2
2

∣∣∣∣∣ ≤ δK , (12)

for all Ω with |Ω| ≤ K and all vector aΩ ∈ C|Ω|. Assume
that U is an N ×L random measurement matrix that satisfies
the RIP of order K with RIC δK , that is, U ∈ RIP(K , δK ).
Consider an arbitrary sparse vector a in observation model
b = Ua + c, where ‖c‖2 ≤ ξ, by solving �1 minimization
problem, and suboptimal sparse solution âsub is obtained by

âsub = arg min
a

{
1
2
‖b−Ua‖2

2 + λsub‖a‖1

}
, (13)

where λsub = C0 · σn logN and C0 is a parameter which is
decided by the noise level and RIC of U. Hence, the estimator
âsub satisfies sparse recovery performance with

∥∥âsub − a
∥∥

2 ≤ C1 max
{
ξ,

1√
K
‖a− aK‖1

}
, (14)

where C1 is a parameter which is also decided by noise
level and RIC of U. Let us recall the channel estimation
problem for AF cooperative systems in (8); if the equivalent
training matrix X satisfies RIP, then accurate sparse channel
estimation can be achieved. In the next, we will present
improved sparse channel estimation methods by using
LASSO algorithm [19].

3.2. Sparse Channel Estimation. Channel estimation is done
on sparse channel h by sending the training symbols. Con-
ventional sparse channel estimation method using LASSO
algorithm (SEL) has been proposed for deriving sparse
impulse response for AF CCS [17]. According to the system

model in (8), the global sparse channel estimator ĥSEL can be
achieved by

ĥSEL = arg min
h

{
1
2

∥∥y −Xh
∥∥2

2 + λSEL‖WSELh‖1

}
, (15)

where

WSEL = I(2L−1)×(2L−1), (16)

is an identity matrix and λSEL = 0.02σn
√
N is a regularization

parameter which controls the tradeoff between square error
‖y −Xh‖2

2 and sparse constrained ‖WSELh‖1. However, the
proposed method can only solve global sparse solution well
while neglecting the inherent partial sparse structure. In
the next, we propose a method to fully exploit the prior
information in AF CCS.

3.3. Partial Sparse Channel Estimation. From signal process-
ing perspective, extra prior information of partial sparse can
be further utilized. In this situation, partial sparse channel
estimation by using LASSO (PEL) ĥPEL could be achieved by

ĥPEL = arg min
h

{
1
2

∥∥y −Xh
∥∥2

2 + λPEL‖WPELh‖1

}
, (17)

where

WPEL =
[

IL×L 0L×(L−1)

0(L−1)×L 0(L−1)×(L−1)

]
(18)

is a diagonal weighted matrix and λPEL = 0.2σn
√
N

is a regularization parameter which controls the tradeoff

between square error ‖y −Xh‖2
2 and local partial sparse

constrained ‖WPELh‖1.
Based on the partial sparse constraint on cooperative

channel impulse response, we propose an improved PEL
(IEL) estimator. On the one hand, the local sparse constrain
can improve estimation performance. On the other hand,
the global sparse constraint can mitigate noise interference in
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Figure 4: Channel estimation performance versus SNR.

the low SNR regime. The IEL estimator ĥIEL can be obtained
by

ĥIEL = arg min
h

{
1
2

∥∥y −Xh
∥∥2

2 + λSEL‖WSELh‖1

+λPEL‖WPELh‖1

}
,

(19)

where the regularization parameters λSEL and λPEL are given
by the (15) and (18), respectively. In the following, we
will give representative simulation results to confirm the
effectiveness of the improved sparse channel estimation
methods.

4. Numerical Simulations

In this section, we will compare the performance of the
proposed estimators, that is, PEL and IEL, with SEL esti-
mator and LS estimator. To achieve average estimation per-
formance, 1000 independent Monte-Carlo runs are adopted.
The length of training sequence is N = 36. The length of
direct link hSD is L = 32 with the number of dominant
channel taps K1 = 2, 4, 8. The two cooperative links hSR and
hRD have fixed length of L/2 with the number of dominant
channel taps K2 = 4, 8, 16. All of the nonzero channel
taps are generated following Rayleigh distribution and set to
E[‖hSR‖2] = E[‖hRD‖2] = E[‖hSD‖2] = 1. Transmit power
and AF relay power are fixed as PS = PR = NP, where P is
the symbol power. The received SNR is defined as PS/σ2

n .

Channel estimator ĥ is evaluated by normalized mean
square error (NMSE) which is defined by

NMSE
(

ĥ
)
=
E
[∥∥∥h− ĥ

∥∥∥
2

2

]

‖h‖2
, (20)
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Figure 5: Channel estimation performance versus SNR.

where h and ĥ denote cooperative channel vector and its
estimator, respectively. At first, we compare their estimation
performance with different number of dominant channel
taps K1 and K2. As shown in Figure 4, when K1 = 2 and K2 =
4, the direct link hSD is sparse channel impulse response,
and the cascaded link hSRD may not be sparse since the
linear convolution between hSR and hRD. It can be observed
from Figure 4 that the two proposed channel estimators are
better than both SEL estimator and LS-based linear channel
estimator. It is worth nothing that the IEL estimator has a
better performance than PEL one, since the IEL takes not
only advantage of partial sparse prior information but also
utilizes global sparse constraint to mitigate noise interfer-
ence. The same performance advantage can also be seen in
other scenarios with different number of dominant channel
taps as shown in Figures 5 and 6. When K1 = 4 and K2 = 8,
we can also find that IEL estimator has a better performance
than PEL under low SNR (less than 15 dB). On the other
hand, if the direct link hSD is highly sparse, for example,
K1 = 2, while the cooperative links hSR and hRD are highly
dense, for example, K2 = 16, the two proposed channel
estimators have a more significant performance advantage
over traditional methods. In addition, IEL estimator is worse
than PEL estimator when the SNR is higher than 15 dB.
According to these results, we can conclude the following:
if direct and cooperative links are highly sparse channel,
then IEL can achieve obvious better estimation performance
than PEL; if the direct link is highly sparse channel while
cooperative link is highly dense channel, the estimation
performance of the two proposed methods is very close. It
is worth mentioning that estimation performance of IEL is
better than PEL due to the fact that IEL utilizes global sparse
constraint to mitigate noise interference and partial sparse
constraint to take advantage of channel sparsity. However,
the computational complexity of IEL is higher than PEL.
That is to say, IEL uses higher computational complexity
than PEL to obtain performance advantage. Hence, to use
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IEL or PEL will be decided by the requirement of practical
communication systems. In addition, when the number of
dominant channel taps is very small, for example, K1 = 2
and K2 = 4, the estimation performance is close to the SEL
estimator. However, if the direct link is sparse, for example,
K1 = 2 and cooperative link is highly dense, for example,
K2 = 16, then the two proposed channel estimators are close
to CRLB. According to the previous analysis, we can find that
the proposed methods are generalized from both LS-based
linear estimation method and SEL, since they are either based
on dense or sparse channel assumption. Hence, our proposed
methods can work well in different channel environments.

5. Conclusion

Accurate CSI is indispensable for coherent detection in AF
CCS. Traditional channel estimation methods are based
on assumptions of either dense channel model or sparse
channel model in AF CCS. In this paper, the two kinds of
channel models have been generalized as a partial sparse
channel model. By means of compressive sensing and
partial sparse constraint, we have proposed improved sparse
channel estimation methods to fully exploit channel prior
information. Numerical simulations have confirmed the
performance superiority of the proposed method over the
conventional global sparse channel estimation method and
traditional linear LS method. The proposed method can also
be extended to other cooperative communication systems
such as MIMO AF CCS.
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