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SUMMARY

Broadband channel is often characterized by a sparse multipath channel where dominant multipath taps are
widely separated in time, thereby resulting in a large delay spread. Accurate channel estimation can be done
by sampling received signal with analog-to-digital converter (ADC) at Nyquist rate and then estimating all
channel taps with high resolution. However, these Nyquist sampling-based methods have two main disad-
vantages: (i) demand of the high-speed ADC, which already exceeds the capability of current ADC, and
(ii) low spectral efficiency. To solve these challenges, compressive channel estimation methods have been
proposed. Unfortunately, those channel estimators are vulnerable to low resolution in low-speed ADC sam-
pling systems. In this paper, we propose a high-resolution compressive channel estimation method, which
is based on sampling by using multiple low-speed ADCs. Unlike the traditional methods on compressive
channel estimation, our proposed method can approximately achieve the performance of lower bound.
At the same time, the proposed method can reduce communication cost and improve spectral efficiency.
Numerical simulations confirm our proposed method by using low-speed ADC sampling. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the number of wireless subscribers increasing every day, various wireless devices, for exam-
ple, smart phones, netbooks, and laptops, generate massive data traffic on the rise. An authoritative
industry report predicts that mobile-generated traffic will exceed that from fixed personal computers
(PCs) by 2015, underscoring the fact that most information and communication technology services
may be expected to migrate to portable mobile devices over the next few years. This trend toward
mobile platforms has significant implications for radio technology and wireless networks, which
will enable this paradigm shift, as well as for the wide variety of internet applications currently
supported by fixed network devices such as PCs and televisions [1]. To satisfy the greedy demand
of high-speed data services, high data rate broadband communication is an indispensable technique
[2] in the next-generation communication systems.

Broadband signal transmission over multipath channel is often susceptible to frequency-selective
fading. Hence, the accurate channel state information is required at the receiver for coherent detec-
tion. On the basis of the assumption of rich multipath channel, linear channel estimation meth-
ods have been proposed for different advanced systems [3—10]. A typical diagram of high-speed
ADC-based channel estimation method is shown in Figure 1. However, these linear methods pose

*Correspondence to: Guan Gui, Department of Communication Engineering, Graduate School of Engineering, Tohoku
_University, Sendai, Japan.
"E-mail: gui@mobile.ecei.tohoku.ac.jp

Copyright © 2012 John Wiley & Sons, Ltd.



G. GUI, W. PENG AND F. ADACHI

—,—— e —— ——————————
| i 4
high-speed | (¢ broadband | (¢) | high-speed s .
DAC ( ): channel > ADC T 1 lmea.r chz}nnel
{z.d} interpolation h(t),z(t) sampling estimation
Equivalent discrete-time channel: /, z * h
Tu
> channel
equalization

'

d

Figure 1. Broadband system model based on the high-speed ADC sampling.
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Figure 2. A typical example of sparse multipath channel where the overall sampling length is 100 while the
number of dominant channel taps is 5 and most of channel taps are close to the noise level.

two challenges for the next-generation broadband communication. On the one hand, the well-
known approach becomes impractical when the bandwidth is too large because it is challenging to
build sampling hardware that operates at a sufficient sampling rate. The demands of many modern
applications exceed the capabilities of current technology. Even though recent developments in
analog-to-digital converter (ADC) technologies have increased the sampling speed, state-of-the-art
architectures are not yet adequate for high-dimensional signal processing [11]. Aside from its
incapability, high-speed ADC is very expensive in general and cannot be utilized widely. In addi-
tion, increasing transmission bandwidth requires much higher ADC sampling rate at the receiver.
Equipping low-speed ADC at the receiver is a good candidate to solve the challenge. On the other
hand, all of the proposed methods never take advantage of channel sparsity and will then cause the
performance to degrade.

Indeed, recent physical experiments have confirmed that a broadband wireless channel easily
exhibits sparse structure in various signal spaces [12], for example, time-delay/Doppler spread
domain. An typical example of sparse multipath channel is shown in Figure 2. In the sequel, the
broadband channel is described by the sparse channel model in which multipath taps are widely
separated in time, thereby creating a large delay spread [13]. To relax the strict requirement of high-
speed ADC sampling, recently, in [11, 14-16], some pioneering works have been carried out. In
these works, different ADCs working at sub-Nyquist sampling rate have been proposed. However,
these pioneering works focus on the theoretical analysis of using compressive sensing (CS) [17, 18].
All of the works have not considered their applications on compressive channel estimation in sparse
multipath broadband wireless communication systems.

In the sparse multipath communication system, the receiver is equipped with low-speed ADC,
which is shown in Figure 3. Compressive channel estimation method using compressive sam-
pling matching pursuit algorithm (CoSaMP) [19] has been proposed in our previous work [20].
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Figure 3. Broadband system model based on the low-speed ADC sampling.

However, low-speed ADC sampling will result in a low-resolution channel estimator by using
traditional estimation methods. The worst case is that low-resolution channel estimation often dete-
riorates equalization at the receiver. To solve the contradiction between high-resolution channel esti-
mation and low communication costs, that is, low-speed ADC sampling, it is necessary to develop
high-resolution compressive channel estimation techniques. In this paper, different from the tradi-
tional method, we assume that the receiver is equipped with multiple low-speed ADCs as shown in
Figure 3. On the basis of the low-speed ADC sampling system model, we propose a high-resolution
compressive channel estimation method better than the conventional method in our previous work
[20]. Numerical results also confirm the advantage of our proposed method.

Section 2 introduces the system model and problem formulation. Section 3 discusses compres-
sive channel estimation for broadband communication systems under low-speed ADC sampling. In
Section 4, various numerical simulation results and discussions on their performance comparison
are given. Concluding remarks are presented in Section 5.

Notations

In this paper, we use boldface lower case letters x to denote vectors and boldface capital letters X to
denote matrices. x represents the complex Gaussian random variable. E[.] stands for the expectation
operation, and X, X T denote the matrix X transposition and conjugated transposition operations.
||x o accounts the nonzero number of x, and || x||, is the Euclidean norm of x.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Assuming a W/2-bandwidth waveform x (¢) is transmitted over a frequency-selective fading chan-
nel h(z) with additive Gaussian noise z(¢), the received continuous-time signal waveform is
obtained as

r(1) = /Om h(o)x(t — 7)dt + 2(0), )

where 7, denotes the maximum time-delay spread of channel. According to the Shannon sampling
theorem, channel comprises N = [W tpax | + 1 sampling taps with the Nyquist rate sampling period
1/ W, where [W t.x | is the smallest integer larger than or equal to the W t,,,,x. Hence, the physical
channel impulse response /(¢) can be approximated by h(t) = Z,Ilvz_ol h,8(t —n/W) [21]. Here,
we assume that the N-length discrete channel vector h = [hg, hy,...,hy—1]" is supported by only
K dominant channel taps. Such a channel is often termed as K-sparse multipath channel (K < N).

If we use low-speed ADC with sampling speed 1/ W' at the receiver as shown in Figure 3, then the
mth sampling coefficient r,, is given by

T
m = / r(0) f(m/W' —di,m =1,2,... M, @
0
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where f(t) = sinnwt/mt denotes low-speed ADC sampling function and 7 is the signal period.
Note that the sub-Nyquist sampling speed 1/ W' is much slower than the Nyquist 1/ W . Hereby, the
equivalent baseband discrete-time system model is described by

r=Xh+z, 3)

where r = [ry, 12, ...,rM]T is an M -dimensional observed signal vector, z is an M -dimensional
Gaussian noise samples of zero mean and variance 0.2, and equivalent sub-Nyquist sampling-based
training matrix X is an M x N partial Toeplitz matrix of the form

XN-1 XN—-2 e X1 X0
XN-2 XN-3 e X2 X1
X = . . ) . : “4)
XN+M—-2 XN+M-3 - XM XM-1

As we know in a conventional signal processing perspective, because we reduce the ADC sam-
pling speed too low to satisfy the Nyquist sampling rate in the system model as shown in Figure 3,
the channel estimator is vulnerable to low resolution and poor performance. To make up the inher-
ent incapability of hardware, it is hence necessary to develop a smart estimation method, which
can acquire robust high-resolution channel estimator. Unlike the traditional communication system
using only one low-speed ADC, we replace it with multiple low-speed ADCs, which are much
cheaper than the high-speed ones. Suppose that the receiver is equipped with P parallel low-
speed ADCs as shown in Figure 3. The integration period 7 is then split into P subintervals, and
Y = Dm1s> Ym2s s ymp]T,m = 1,2,.., M denote the vectors of subsamples collected against the

sampling waveform {x,, (¢)}M_,. The subsample coefficient y,,, is then given by

pT/P

v = [ @SN/ W) 1, )
(p—1)T/P

where m = 1,2,..., M. Then the total number of subsamples collected by all parallel ADCs over

all the subperiods is an M x P matrix, which is shown in Figure 4. These subsamples can be

expressed as

Y1 Yi2 -+ 1P
Y21 Y22 o+ 2P

Y = i . . , (6)
YmMi1 YM2 ' YMP

where the mth row contains the subsamples obtained by correlating the measured signal with the
waveform x,,(¢) over P N/ P-length subperiods. Compared with ADC-based original M samples
in Equation (3), that is, the sampling matrix Y collected at parallel low-speed ADCs over the whole
signal duration 7" in Equation (6), the relationship between them is given as

P
rm = E ympa m = 1’25"'9 M9 (7)
p=1
Analog domain Digital domain
r(t) segment low-speed | ], Yu o Yo 0 Yip
» integrator —>» sampling
window ADC > Yo Y o Yap
= a o °o o
|l 2 ||
.y > LY Yu2 0 Yup

Figure 4. Low-speed ADC working at sub-Nyquist rate sampling.
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for the vector rg = [ry,72, ..., rM]T. In the sequence, we can easily find the following relation

pN/P

Ymp = Z Xmnhn, (8)

n=(p—1)N/P

where p=1,2,..,P,n=1,2,..,N,and m = 1,2, ..., M. Hence, the observation signal r,, can be
rewritten as

Tm=Y. Y. Xmnhpm=12.,M. )

p=1n=(p—1)N/P

According to Equations (7)—(9), an equivalent extra observation vector re = [Fag41, "M +25 -
M+ Me]T can be obtained, where M, is the extracted length and its mth element rs,, is extracted
from observation matrix, given by

P
'M+m = Z Y{[(m~+ p—2)mod M +1] p}
p=1
P pN/P
= Z Z x{[(m+P—2)modM+1]n}hn (10)
p=1n=(p—1)N/P
pN/P

P
=> Y XBempmha

p=1n=(p—1)N/P

form = 1,2, ..., M,, where ‘mod’ and B(m, p) = [(m + p —2) mod M + 1] denote modulo oper-
ation and permutation function, respectively. According to Equations (7)—(10), we can obtain the
following equation

¢ =®h+y, (11)

where ¢ = [r!,r!]T denotes equivalent received signal vector, ® = [X |, X;|T denotes overall
training matrix, and y = [zg, zZ] T is additive noise. Note that the sub-Nyquist sampling training

matrix X g and the extracted training matrix X, can be written equivalently as follows:

X1 X120 Xi(N—-1)  XIN
X21 X22 ottt X2(N-1) X2N
X, = . ) , (12)
XM1 XM2 - XM(N-1) XMN
[ X1 X22 e X(N=D(N—-1) XN
Xe=| Xm1 XBemp2 - XBempW-D]  XBem.p)N] |- (13)
| XM.1 X[B(Me.p)2] 0 X[B(Me.p)(N-1)]  X[B(Me,p)N]

3. HIGH-RESOLUTION COMPRESSIVE CHANNEL ESTIMATION

We formulate the sub-Nyquist rate sampling-based sparse channel estimation as a CS problem
[17, 18]. To ensure the robust high-resolution compressive channel estimation for the system, at
first, we analyze the sub-Nyquist sampling matrix X that must satisfy restricted isometry property
(RIP) [22].
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Definition 1

Assume that X g is a submatrix of X by extracting its columns with their indexes in the set
Q C{1,2,..., N}. Then the K-restricted isometry constant (RIC) §x € (0, 1) is the smallest number
satisfying the following inequality

Xh|?
1o < IXAl gy (14)
E

for all subsets 2 of support less than or equal to K (i.e., supp{2} < K) and all channel vectors &
with probability higher than 1 — Coe €™, where Cp = 2 (126") X and C; = §%/16 — 83, /48,
respectively [23].

For convenience, the preceding definition will be shortened as X € RIP(K, k). It is worth noting
that the probability of satisfying RIP is decided by the sampling observation length M. Larger M
can ensure X to satisfy RIP with higher probability, and vice versa. On the basis of the basic theory
on RIP [17], if the training matrix X satisfies the RIP with higher probability, a more accurate
channel estimator can be obtained by using sparse recovery algorithms, for example, CoSaMP [19].
However, increasing M on channel estimation implies that the ADC sampling speed should be
improved. To avoid high-speed ADC sampling, we fix the inherent sampling length M and extract
novel training length M, from the initial sub-Nyquist sampling matrx X . On the basis of
Definition 1 of the RIP, we derive X s and the extracted sub-Nyquist matrix ®, which satisfy RIP
with different probabilities. As X is an M x N initial sub-Nyquist matrix, the probability of X

satisfying RIP is Py = 1 — Cope~C'M for any subset Q C {1,2,..., N} and supp{Q} < K.

Theorem 1
If X5 € RIP(K, §g) with the probability Py, then ® € RIP(K, §x) with probability P, = Ps.

Proof
As the ® is an (M + M,) x N matrix and M, < M, there exist at least | M + M, | /2— M, unused
rows, which can be added to the set of rows in X ;. Hence, we can obtain

P, = Pr{® € RIP(K, §)}
>1— Coe{_cl[M+(LM+M€J/2_M8)]} (15)

= 1 —C()E‘_C]M = PS,

which proves the theorem. O

As the equivalent training matrix ® satisfies RIP with high probability, hence CS algorithms
(e.g., CoSaMP) can be utilized in a channel estimation problem. Compressive channel estimation
methods have been intensively studied in recent years. To make comparison with our previously
proposed method [20], a high-resolution compressive channel estimation is implemented by the
CoSaMP algorithm [19]. The details of our proposed method are introduced as follows:

Given the received signal vector y, equivalent training matrix ¢, the number of dominant channel
taps is set to K. The proposed method is composed of four steps:

Initialization. Set the dominant taps index set 2o = @, the residual estimation error r¢y = ¢, and
put the initial iteration counter as i = 1.

Identification. Select a column subset £2; of @ that is most correlated with the residual:
Q; =argmax | (r;—;, ®)|,and Q; = Q;_; U Q;. (16)

Using the least-square (LS) method to calculate a channel estimator as Qs =
argmin ||r — ®h||,, select K maximum dominant taps denoted by hrs. The
positions of the selected dominant taps are denoted by €2 s.

Merging. The positions of dominant taps are merged by 2; = Qg U Q;.
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Estimation. = Compute the best coefficient to approximate the channel vector with chosen

columns,
h; = argmin ”(p—%iﬁuz. (17)
Pruning. Select the €2; largest channel taps of &; and set
harg, =0. (18)
Iteration. Update the estimation error:
ri=¢—®qh;, (19)

increase the iteration counter i. Repeat (16)—(19) until a stopping criterion is
satisfied and then set A = h;.

4. NUMERICAL SIMULATIONS

In this section, we will compare the performance of the proposed estimators with 10,000 indepen-
dent Monte Carlo runs for averaging. The length of sparse multipath channel % is set as N = 96,
and its number of dominant channel taps is set as K. We consider two kinds of distributions on all
dominant channel taps that their values are generated from 1/ K-uniform distribution and random
Gaussian distribution, respectively. The positions of dominant channel taps are randomly allocated
within the length of & and is subjected to E {||k3} = 1. The initial X is an equivalent M x N
partial Toeplitz matrix. The initial length of training sequence is set as M = 32, and the extract
training length is M,. The number of parallel low-speed ADCs is set as P = 8. The received SNR
is defined as 101og (E/0?), where E is received power. Here, we set the SNR values as 10, 15, and
20 dB in the following numerical simulations.

The estimation performance is evaluated by two criteria: successful recovery of dominant channel
taps and average mean square error (Average MSE). The average MSE of channel estimators h is
defined by

E {1k — k)3

Average MSE(I;) = I ,

(20)

where h and h denote the original channel vector and its estimator, respectively. In the numerical
results, the lower bound of the channel estimator is based on a high-speed sampling ADC, utilizing
different equivalent random partial Toeplitz matrices X with training length M + M, (long training
sequence), which is calculated. Unlike the lower bound, in the traditional method, a low-speed sam-
pling ADC is used, and its equivalent training matrix is X ;. The proposed method uses the same
matrix X ¢ with training length M (short training sequence) and its extracted training matrix X,.

In Figures 5 and 6, we compare the successful recovery probability of dominant channel taps as a
function of extracted training signal length from O to 56. Here, the number of dominant channel taps
is set as K = 4. From the two figures, it is observed that our proposed method is very close to the
optimal performance bound, and the successful recovery increases as the extracted training length
increases; whereas the traditional method is invariant, and the performance is very poor. In addi-
tion, the two figures also showed that the channel taps are related to their distribution, for example,
uniform distributed channel taps are reconstructed easier than random distributed Gaussian taps.
Furthermore, the average MSE of different methods are also depicted in Figures 7 and 8. From the
two figures, it is observed that the estimation performance of our proposed method is better than
that of the traditional method and close to the lower bound.

Next, the relationship between the proposed method and channel sparsity is considered, and
SNR = 15 dB is used. Here, we consider the uniform and Gaussian distribution of dominant taps
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Figure 5. Successful recovery probability of the dominant channel taps versus the extracted training length,
where the dominant channel taps satisfy the uniform distribution.
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Figure 12. Average MSE performance versus the extracted training length, where the dominant channel taps
satisfy the Gaussian distribution.

on a compressive channel estimation. Assume that the number of channel length is the same, while
the number of dominant taps are 2, 4, 6, and 8, respectively. Figures 9 and 10 depict their successful
recovery probability of dominant channel taps versus different extracted training lengths. From
the two figures, we can find that our proposed method can achieve a higher recovery probability
than that of the traditional method. As the extracted training length increases, the successful recov-
ery probability of the dominant taps becomes higher by our proposed method without sacrificing
spectral resource. Likewise, we also compare their average MSE with different extracted training
length as shown in Figures 11 and 12, respectively. From the two figures, it is observed that our pro-
posed method can always approach their lower bounds for any channel sparsity. Hence, the proposed
method is stable for the sparse channel with different numbers of dominant channel taps. According
to the numerical simulations, the effectiveness of the proposed sub-Nyquist sampling rate of the
ADC-based method has been verified.

5. CONCLUSION

In this paper, we have investigated a high-resolution compressive channel estimation based on the
sub-Nyquist rate sampling ADC. We formulated the channel estimation as a CS problem. In the
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sequence, a high-resolution compressive channel estimation method has been proposed for sparse
multipath broadband communication systems. A comparison with the traditional sparse channel
estimation methods has shown that our proposed method has two advantages: (i) can achieve
high-resolution channel estimation and even much better estimation performance and (ii) can save
communication cost. In a future work, we will study a multi-antenna high-resolution compressive
channel estimation based on a sub-Nyquist sampling ADC.
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