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Abstract—Cluster-sparse multipath channels, i.e., non-zero taps
occurring in clusters, exist frequently in many communication
systems, e.g., underwater acoustic (UWA), ultra-wide band (UWB),
and multiple-antenna communication systems. Conventional sparse
channel estimation methods often ignore the additional structure in
the problem formulation. In this paper, we propose an improved
compressive channel estimation (CCE) method using block orthogonal
matching pursuit algorithm (BOMP) based on the cluster-sparse
channel model. Making explicit use of the concept of cluster-sparsity
can yield better estimation performance than the conventional sparse
channel estimation methods. Compressive sensing utilizes cluster-
sparse information to improve the estimation performance by further
mitigating the coherence in training signal matrix. Finally, we present
the simulation results to confirm the performance of the proposed
method based on cluster-sparse.

1. INTRODUCTION

In wireless broadband communication systems, frequency-selective
fading is generally induced by the reflection, diffraction and scattering
of the transmitted signals due to the buildings, large moving vehicles,
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mountains, etc.. Such fading phenomenon distorts received signals
and poses critical challenges in the design of communication systems
for high-rate and high-mobility wireless communication applications.
High-rate data symbols, after transmitting through multipath channel,
often spread into neighboring symbol periods, and cause serious inter-
symbol interference (ISI) at the receiver side. The frequency-selective
fading significantly affects communication system performance. High-
rate data transmission over multipath channel often gives rise to a
large number of propagation parameters in different signal space.
However, exact knowledge of these parameters is not critical for reliable
communication of data over the multipath channel. Rather, we are
only interested in characterizing the interaction between the physical
propagation environment and the transmitter/receiver signal space.
Hence, channel estimation techniques try to capture this relationship.
The conventional sparse channel model assumes that nonzero taps
are distributed randomly in a channel vector h [1, 2]. However, in
many propagation environments, there exist several big obstacles,
e.g., buildings and hilly-terrains environment, which give rise to
cluster-structure in multipath channel [3, 4]. Hence, accurate channel
estimation becomes a fundamental problem of such communication
systems.

Hence, accurate channel estimation becomes a fundamental
problem of such communication systems. In last several years, various
linear estimation methods have been proposed based on the assumption
of rich multipath channel model which is shown in Fig. 1. However,
recently, a lot of physical channel measurements verified the channel
taps exhibit sparse distribution which is shown in Fig. 2. Hence,
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Figure 1. Rich multipath fading
channel model.
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Figure 2. Sparse-based multi-
path fading channel model.
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Figure 3. Cluster-sparse multipath fading channel model.

CCE methods have been proposed by exploiting the channel sparsity.
Compared to traditional linear methods, CCE has the following
advantages: First, by utilizing shorter training sequence, we still
attain the same estimation performance. Hence, CCE can improve the
spectral efficiency. Second, by exploiting channel sparsity, less channel
freedom of degree is acquired and hence the lower bound of estimator is
obtained [1]. Recent years, sparse-based channel estimation methods
have been proposed [1, 5–7]. Many real-world channels of practical
interest, such as in underwater acoustic communication [8], terrestrial
signals transmission of high definition television (HDTV) [9] and
residential ultra wideband (UWB) systems [10–12], tend to have sparse
or approximately sparse impulse responses which is shown in Fig. 3,
and conventional linear channel estimation methods such as the least-
squares method fail to capitalize on the anticipated sparsity.

In contrast to the existing works in the sparse approximation
and compressive sensing literature on sparse channel estimation and
based on our previous works [13–15], in this work, we proposed
a compressive cluster-sparse channel estimation method using block
orthogonal matching pursuit algorithm (BOMP). Accurately, the
proposed algorithm serves only for cluster sparse signal recovers in
noiseless case [16, 17]. And the BOMP algorithm based on sensing
dictionary has been proposed [14]. All of the proposed methods
are based on the noiseless case. And also our proposed method
differs from the pioneering work on the noise sparse signal recovery
using orthogonal matching pursuit algorithm (OMP) [18–21]. The
main difference is that OMP-based recovery method neglects cluster-
structure in the signal while BOMP-based method can exploit the
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cluster-structure information well. Hereby, more accurate estimation
performance can be obtained. We compare the OMP-based sparse
channel estimation performance by computer simulations in Section 4
in this paper. Due to on real channel estimation, noise interference is
unavoidable and robust channel estimator is required. In this paper, we
propose a cluster-sparse channel estimation method using the modified
BOMP for noise-interference and fading channels.

Throughout the paper, we denote vectors by boldface lowercase
letters, e.g., x, and matrices by boldface uppercase letters, e.g., X =
[x1,x2, . . . ,xN ], the N × N identity matrix is written as IN . For a
given matrix X, XT , XH , and X† denote its transpose, conjugate
transpose, trace, and pseudo inverse, respectively. 〈xi,xj〉 denotes
vector inner product operation between xi and xj . For a given vector
h, its Euclidean norm is ‖h‖2 =

√
hHh, `1-norm is denoted by

‖x‖1 =
∑

i |hi|, ‖x‖∞ = maxi |hi| is the `∞-norm which finds the
maximum entry in the vector, ‖x‖0 counts the number of nonzero taps
and ‖h‖C,0 denotes its cluster sparse measurement.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Assuming that the multipath channel comprises L paths, the channel
impulse response, h, can be expressed as [22, 23]

h =
∑L−1

l=0
hlδ(τ − τl), (1)

where hl and τl are the complex-valued path gain with E[
∑L−1

l=0 |hl|2] =
1 (E[·] denotes the expectation operation) and the symbol-spaced time
delay of the l-th path, respectively. In Eq. (1), we assumed that
the channel satisfies sparse distribution, i.e., most of channel taps hl,
l = 0, 1, . . . , L− 1, are zero or approximately zero. The channel vector
h is K-sparsity if

‖h‖0 = K ¿ L, (2)
where ‖·‖0 denotes `0 operation which counts the number of nonzero
coefficient in a vector. The training signal x is denoted by x
with normalized E[|x|2] = 1. The corresponding complex baseband
transmitted signal and channel output are related as

y(t) =
∑L−1

l=0
hlx(t− τl) + v(t). (3)

Eq. (3) can be written using the matrix form as
y = Xh + n, (4)

where y is the N + L − 1 dimensional complex measurement signal
vector, X is the (N + L − 1) × L complex circultant training signal
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matrix with first row [xT ,01×(L−1)]T and h is given in Eq. (1). As
discussed in cluster-sparse model [14, 16, 17], the nonzero taps of h
appear in clusters rather than being arbitrarily spread over the vector.
We assume that the vector h ∈ CL×1 is a concatenation of C blocks
and each block has d channel taps. Hence, the cluster-sparse multipath
channel h can be rewritten as

h = [h1, . . . , hd︸ ︷︷ ︸
hT [1]

, hd+1, . . . , h2d︸ ︷︷ ︸
hT [2]

, . . . , hL−d+1, . . . , hL]︸ ︷︷ ︸
hT [c]

T (5)

where L = Cd. Due to the unavoidable noise and channel multipath
fading, based on the proposed method of block-sparse measurement in
noiseless case, we extend the previous work to the case of presence of
noise in this paper. As a result the sparsity measure of vector h is
defined as

‖h‖cluster,0 =
C∑

c=1

I(‖h[c]‖2 > ξ), (6)

where

I(‖h[c]‖2 ≥ ξ) =
{

1, ‖h[c]‖2 ≥ ξ
0, ‖h[c]‖2 < ξ

, c = 1, 2, . . . C (7)

denotes the indicator function. For a cluster channel h, that is to say,
the number K of cluster is very small, i.e., K ≤ C. If a cluster is over
the given noise floor ξ and then we count the cluster. In other words,
each cluster has several taps over the noise floor ξ. Hence, we can
easily show that a K-cluster sparse channel h is defined as a channel
vector that satisfies ‖h‖cluster,0 ≤ K. It is worth noting that K-cluster
sparse and T -sparse of a channel h satisfies K ≤ T . In the next part,
our aim is that how to exploit the K-cluster structure information and
to accurate estimate the channel taps in each cluster.

3. COMPRESSIVE ESTIMATION OF CLUSTER-SPARSE
CHANNEL

Before discussing the compressive estimation for cluster-sparse channel,
we review several fundamental theories in compressive sensing [24, 25].
At first, we introduce a mutual incoherent property (MIP) [26, 27]
for training signal matrix X. Due to the cluster-sparse property of
the unknown recovered signal, we analyze the block MIP (BMIP) on
training signal matrix X rather than MIP. From the matrix theory
perspective, we can verify the BMIP less than MIP in a training signal
matrix X and hence a more accurate channel estimator is obtained.
Because the looser MIP is acquired on compressive channel estimation,
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hence, we can obtain a more accurate sparse channel estimator by using
the same training signal matrix (TSM).

3.1. MIP and BMIP of TSM

According to Eq. (6), we rewrite the (complex) training signal matrix
X in a block-structure style as

X = [x1, . . . .,xd︸ ︷︷ ︸
X[1]

,xq+1, . . . ,x2d︸ ︷︷ ︸
X[2]

, . . . ,xL−q+1, . . . ,xN︸ ︷︷ ︸
X[c]

], (8)

where each block x[c] = [ xc,1 . . . xc,d ] is an (N + L − 1) × d
submatrix. Conventionally, the MIP [26, 27] of the training signal
matrix X is defined by

µ := max
(i,j)6=(k,l)

∣∣〈x(i,j)x(k,l)

〉∣∣ , (9)

and each of its columns has unit norm. We define the BMIP of training
signal matrix X as

µB = max
`,r 6=`

1
d
ρ
(
XH [`]X[r]

)
. (10)

where ρ(XH [`]X[r]) denotes the spectral norm of training matrix
XH [`]X[r]. Note that XH [`]X[r] is the (`, r)th d × d block of the
N × N matrix XHX. It is easy to see that definition in Eq. (11) is
invariant to the choice of orthogonal basis X[`] for R (X[`]). This is
because

ρ
(
XH [`]X[r]

)
= ρ

(
XH

` XH[`]X[r]Xr

)
. (11)

Comparing Eq. (10) with Eq. (11), we can easily show that 0 ≤ µB ≤
µ ≤ 1. The detailed proof can be found in [16]. When d = 1 in X, µB
reduces to the conventional MIP according to

µ = max
`,r 6=`

∣∣xH
` xr

∣∣ . (12)

Our goal is to provide accurate recovery conditions on the training
matrix X ensuring that the cluster-sparse channel vector h can
be reconstructed from measurements of the form (1) through
computationally efficient algorithms. We extend the conventional
mutual incoherence measurement to cluster by defining block-
coherence. A sufficient condition for BOMP to robust reconstruct h
is

ρc

(
X†

0X
c
0

)
< 1, (13)
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where
ρc(X) = max

j

∑

i

ρ(X[i, j]) (14)

where ρ(X) denotes the spectral norm of training matrix X and returns
the largest singular value of X, X0 denotes the matrix whose blocks
correspond to the clusters of h, Xc

0 denotes the complementary of X0

in X, and X[i, j] is the (i, j)th block of X [16]. Eldar et al. proved
that any block of K-sparse vector h can be recovered from Eq. (1)
using BOMP if

Kc <
1
2

(
1

µB
+ c− (c− 1)

η

µB

)
, (15)

where
η = max

l
max
i,j 6=i

∣∣xH
i xj

∣∣ , xi, xj ∈ X[l], (16)

is termed as sub-coherence in a block sub-matrix [16]. If c = 1, the
cluster sparse structure of channel will reduce to sparse. Hence, the
requirement of cluster-sparse signal recovery in Eq. (15) will coincide
with OMP-based sparse signal recovery condition [18, 28, 29] given as

Kc <
1
2

(
1

µB
+ c

)
. (17)

We can find that accurate recovery condition of BOMP is looser than
OMP. Hence, by using the same training signal matrix on channel
estimation, BOMP-based channel estimation can obtain more accurate
channel estimator.

3.2. Compressive Channel Estimation

Compressive estimation of cluster-sparse channel using BOMP
algorithm is similar to conventional OMP, and can serve as a low
computationally attractive alternative to convex optimization method.
The algorithm begins by initializing the residual as r0 = y. At the k-th
step, BOMP selects the block that is the best coherent to the current
residual according to

ik = arg max
i

∥∥∥XH [i]rk−1

∥∥∥
2

(18)

and rk−1 is the residual.

i` = arg min
i

∥∥∥XH [i]r`−1

∥∥∥
2
. (19)
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Once the block index i` is chosen, we find the optimal coefficients
by computing h`[i] as the channel estimator to

h`[i] = arg min
i`

∥∥∥y −
∑

i∈Ω

X[i]h`[i]
∥∥∥

2

2
. (20)

Here Ω is the set of chosen indices ij , 1 ≤ j ≤ `. The residual is then
updated as

r` = y −
∑

i∈Ω

X[i]h`[i]. (21)

BOMP-based compressive channel estimation can be summarized as:
(1) Initialization: Let the estimation residual error r0 = y, the iteration
counter k = 1 and the taps index set Ω0 be the empty set.
(2) Cluster-position sensing step: Find the block index ik by solving
the optimization (3). Then, Ωk = Ωk−1 ∪ {ik}.
(3) Updating the residual: rk = (Ikp − XΩk

X†
Ωk

)y, where Ikp is the
identity matrix of size kp×kp, is a set of blocks XΩk

= [X[i1], . . . ,X[ik]]
and (·)† denotes the pseudo-inverse.
(4) Algorithm iteration: Set k = k+1, and return to step (2) if k ≤ K.

4. SIMULATION RESULTS

In this section, the average mean square error (average MSE)
performance of the proposed estimator will be evaluated by computer
simulations. For the purpose of comparison, the MSE performance
of other existing channel estimation methods such as LS, OMP, and
CoSaMP algorithms will also be evaluated. In addition, the lower

Table 1. Simulation parameters.

Estimation methods

Linear method: LS
Compressive methods: OMP [28]
CoSaMP [5]
Proposed method in this paper

channel fading Frequency-selective block fading
Channel length 100

Cluster-sparse channel Number of cluster-sparse: 2
Total number of nonzero taps: 10

SNR 0–30 dB
Length of training signal N = 20–80
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bound (known position of dominant channel taps) of channel vector is
also calculated as a reference. The parameters used in the computer
simulation are listed in Table 1. To illustrate the performance of
the proposed algorithm, Fig. 4 shows the average estimation error,
employing different methods. The average MSE function is defined by

average MSE(∆h) =
1
M

M∑

m=1

∥∥∥h−ĥm

∥∥∥
2

2
, (22)

where M is the number of Monte Carlo runs, ĥ denotes the channel
estimator. We adopt M = 10000 Monte Carlo runs for averaging.
In this computer simulation, we generate the cluster-sparse randomly,
i.e., the position of cluster is random; channel taps satisfy random
Gaussian distribution with CN (0, 1) in a cluster, and the channel
vector h is normalized ‖h‖2

2 = 1. Fig. 4 shows that the compressive
channel estimators (OMP, CoSaMP and BOMP) are better than
the linear channel estimator (LS). In addition to the compressive
channel estimation by BOMP, the proposed method further exploits
cluster-sparse structure information and hence the proposed estimator
performs better than conventional sparse estimators which are based on
the OMP and CoSaMP algorithms. The main reason is that proposed
method considers the BMIP rather than MIP in the training signal
matrix X. From CS [24, 25] perspective, µB is smaller than µ in X.
As a result, it will acquire more accurate channel estimator due to
mitigating more coherent interference in X. At the second place, we
consider compressive channel estimation according to signal-to-noise
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ratio (SNR) which is defined as

SNR = 10 log
(
P

/
σ2

n

)
. (23)

It is shown in Fig. 5 that compressive methods (OMP, CoSaMP and
proposed) are better than least square (LS)-based linear method.
As the length of training signal increases, more accurate channel
estimators are obtained. However, LS-based linear channel estimator
does not have distinct improvement which is caused by undetermined
system. If we use a sufficiently long training signal at the cost of
reducing the bandwidth efficiency, lower bound of LS-based linear
channel estimator is still obtained. From Fig. 5, we can also find
that the proposed method (cluster-sparse based) obtain more accurate
channel estimate than sparse-based conventional compressive methods
(OMP and CoSaMP).

5. CONCLUSION

In this paper, we proposed a compressive channel estimation method
for cluster-sparse multipath broadband communication systems. By
utilizing the proposed method, we captured potential cluster-structure
of multipath channel comparing with conventional sparse channel
estimators which are based on a simple sparse structure assumption.
We derived the theoretic performance of the proposed estimator
higher than previous channel estimator without exploiting the cluster
structure information. Computer simulation results also confirmed
the proposed method efficiency. Hence, we predict that the proposed
method will have an application in wireless communication, especially
in practical UWA and UWB communication systems.
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