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Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output
(MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO
channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel
estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation
performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because
ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-
NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems.
Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-
NLMS algorithms and sparseVSS-NLMSones is explained and their lower bounds are also derived. At last, to verify the effectiveness
of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS
algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error
rate (BER) metrics.

1. Introduction

High-rate data broadband transmission over multiple-input
multiple-output (MIMO) channel has become one of the
mainstream techniques for the next generation communi-
cation systems [1]. The major motivation is due to the fact
that MIMO technology, as shown in Figure 1, is a way of
using multiple antennas to simultaneously transmit multiple
streams of data in wireless communications [2] and hence
it can bring considerable improvements such as data rate,
reliability, and energy efficiency. In fact, coherent receivers
require accurate channel state information (CSI) since the
received signals are distorted by multipath fading transmis-
sion. The accurate estimation of channel impulse response
(CIR) is a crucial aspect and challenging issue in coherent

modulation and its accuracy has a significant impact on the
overall performance of the communication system.

During last decades, there exist many channel estimation
methods which were proposed for MIMO systems [3–11].
All these methods are categorized into two groups. The
first group contains the linear channel estimation methods,
for example, least squares (LS) algorithm, based on the
assumption of dense CIRs. By applying these approaches,
the performance of linear methods depends only on the size
of MIMO channel. Note that narrowband MIMO channel
may be modeled as dense channel model because of its
very short time delay spread. Accurately, broadband MIMO
channel is often modeled as sparse channel model [12–14].
A typical example of sparse channel is shown in Figure 2.
It is well known that linear channel estimation methods are
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Figure 1: Signal transmission over MIMO channel.
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Figure 2: A typical example of sparse multipath channel.

relatively simple to implement due to their low computational
complexity [3–8]. Unfortunately, their main drawback is the
failure to exploit the inherent channel sparsity. The second
group is the sparse channel estimation methods which use
compressive sensing (CS) theory [15, 16]. Interested authors
are recommended to refer to [17]. Basically, optimal sparse
channel estimation often requires that its training signal
satisfies restrictive isometry property (RIP) [18] in high
probability. However, designing the RIP-satisfied training
signal is a nonpolynomial (NP) hard problem [19]. Also,
there exist some proposed methods which are stable with the
cost of extra computational burden, especially in time-variant
MIMO systems. For example, sparse channel estimation
method using Dantzig selector was proposed for double-
selective fading MIMO systems [10]. Indeed, the proposed
method needs to be solved by linear programming which
incurs high computational complexity. To reduce the com-
putational cost, sparse channel estimation methods using
greedy iterative algorithms were also proposed in [9, 11]. But
their complexity still depends on the number of nonzero taps
of MIMO channel.

Adaptive 
algorithm

x

x1 y1

xN𝑡 yN𝑟

h1N𝑡

h11

hN𝑟1

hN𝑟N𝑡

h̃N𝑟:

h̃1:

eN𝑟 e1· · ·

...

...

...

...

...

...

...

∑

∑

+
−

+
−

Figure 3: Adaptive algorithm for estimating MIMO channels.

Unfortunately, the mentioned proposed methods do not
have adaptive estimation capability. Adaptive sparse channel
estimation (ASCE) methods using sparse invariable step-size
(ISS) least mean square algorithms (ISS-LMS) were pro-
posed in [20] for single-input single-output (SISO) channels.
However, conventional ISS-LMS methods have two main
drawbacks: (1) sensitive to random scale of training signal and
(2) unstable in low signal-to-noise ratio (SNR) regime.

To overcome the two harmful factors on channel estima-
tion and extend their applications to estimate MIMO chan-
nels, sparse ISS normalized least mean square (ISS-NLMS)
algorithms, for example, zero-attracting ISS-NLMS (ZA-ISS-
NLMS) and reweight ZA-ISS-NLMS (RZA-ISS-NLMS), were
proposed in [21]. It is well known that step-size is a critical
parameter which controls the estimation performance, con-
vergence rate, and computational cost. Different from con-
ventional sparse ISS-NLMS algorithms [21], zero-attracting
variable step-size NLMS (ZA-VSS-NLMS) algorithm was
proposed for ASCE to improve estimation performance in
sparse multipath single-input single-output (SISO) systems
[22]. Unlike the previous works, this paper proposes two
sparse VSS-NLMS algorithms for estimating sparse MIMO
channels.Themain contribution of this paper is summarized
as follows. First, we derive the lower bound of proposed
MIMO channel estimator for introducing the research moti-
vation. Second, we extend the proposed VSS-ZA-NLMS for
estimating SISO channels in [22] to MIMO channels. Third,
a reweighted ZA-VSS-NLMS (RZA-VSS-NLMS) is proposed
to further improve the estimation performance of MIMO
channels. In addition, we explain the reason why sparse
VSS-NLMS algorithms can achieve better performance than
conventional sparse ISS-NLMS ones. Finally, Monte Carlo
based computer simulations are conducted to confirm the
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Figure 4: MISO channel estimation at 𝑛
𝑟
th antenna of the receiver.

0

0.2

0.4

0.6

0.8

1

St
ep

-s
iz

e 
fo

r g
ra

di
en

t d
es

ce
nt

Estimation error

Signal length: N = 16
Smoothing factor: 𝛽 = 0.999
reshold parameter:
C = 0.0001

10−5 10−4 10−3 10−2 10−1 100

ISS (𝜇 = 0.5)

ISS (𝜇 = 1.0)

VSS (𝜇 max = 0.5)

VSS (𝜇 max = 1.0)

Figure 5: ISS and VSS versus updating estimation error.

effectiveness of our proposed algorithms via two metrics: bit
error rate (BER) and mean square error (MSE).

The remainder of this paper is organized as follows. A
baseband MIMO system model is described and problem
formulation is presented in Section 2. In Section 3, sparse
ISS-NLMS algorithms are overviewed. In Section 4, sparse
VSS-NLMS algorithms are proposed and a figure example
is also given to explain the difference between ISS and
VSS based algorithms. Simulation results are presented in

Section 5 in order to assess the proposed methods. Finally,
we conclude the paper in Section 6.

Notations. Capital bold letters and small bold letters denote
matrices and row/column vectors, respectively. The discrete
FOURIER transform (DFT) matrix is denoted by F with
entries [F]

𝑘𝑛
= 1/𝐾e−𝑗2𝜋𝑘𝑞/𝐾, 𝑘, 𝑞 = 0, 1, . . . , 𝐾 − 1; (⋅)𝑇,

(⋅)
𝐻, (⋅)−1and | ⋅ | denote the transpose, conjugate transpose,

matrix inversion, and absolute operations, respectively; 𝐸{⋅}
denotes the expectation operator; assume any vector h =

[ℎ
0
, . . . , ℎ

𝑙
, . . . , ℎ

𝐿−1
]
𝑇; ‖h‖

1
and ‖h‖

2
denote ℓ

1
-norm, that

is, ‖h‖
1
= ∑
𝑙
|ℎ
𝑙
|, and ℓ

2
-norm, that is, ‖h‖

2
= (∑
𝑙
|ℎ
𝑙
|
2

)

1/2;
sgn(h) is a component-wise function which is defined as
sgn(ℎ) = 1 for ℎ > 0, sgn(ℎ) = 0 for ℎ = 0, and sgn(ℎ) = 1
for ℎ < 0, where ℎ denotes any component in vector h; ̃h
represents the channel estimator of h.

2. System Model

A frequency-selective fading MIMO communication sys-
tem using OFDM modulation scheme is considered in
Figure 3. Initially, frequency domain signal vector x

𝑛
𝑡

(𝑡) =

[𝑥
𝑛
𝑡

(𝑡, 0), . . . , 𝑥
𝑛
𝑡

(𝑡, 𝐾 − 1)]
𝑇, 𝑛
𝑡
= 1, 2, . . . , 𝑁

𝑡
, is fed to

inverse discrete Fourier transform (IDFT) at the 𝑛
𝑡
th antenna,

where 𝐾 is the number of subcarriers and 𝑁
𝑡
is the number

of transmit antennas. Assume that the transmit power is
normalized as 𝐸{‖x

𝑛
𝑡

(𝑡)‖
2

2

} = 1. The resultant vector x
𝑛
𝑡

(𝑡) ≜

F𝐻x
𝑛
𝑡

(𝑡) is padded with cyclic prefix (CP) of length 𝐿CP ≥

(𝐾 − 1) to avoid interblock interference (IBI). After CP
removal, the received signal vector at the 𝑛

𝑟
th antenna for

time 𝑡 is written as𝑦
𝑛
𝑟

(𝑡), where 𝑛
𝑟
= 1, 2, . . . , 𝑁

𝑟
. As shown in
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Figure 4, the received signal vector y and input signal vector
x(𝑡) are related by

𝑦
𝑛
𝑟

(𝑡) =

𝑁
𝑡

∑

𝑛
𝑡
=1

h𝑇
𝑛
𝑟
𝑛
𝑡

x
𝑛
𝑡

(𝑡) + 𝑧
𝑛
𝑟

(𝑡)

= h𝑇
𝑛
𝑟
:
x (𝑡) + 𝑧

𝑛
𝑟

(𝑡) ,

(1)

where x(𝑡) = [x𝑇
1
(𝑡), x𝑇
2
(𝑡), . . . , x𝑇

𝑁
𝑡

(𝑡)]

𝑇 collects all of the input
signal vectors from different antennas at the transmitter,
𝑧
𝑛
𝑟

(𝑡) is an additive white Gaussian noise (AWGN) variable
with distribution CN(0, 𝜎2

𝑛
), and 𝑛

𝑟
th received multiple-

input single-output (MISO) channel vector h
𝑛
𝑟
:
is written as

h
𝑛
𝑟
:
:=
[

[

[

ℎ
𝑛
𝑟
1,0
, . . . , ℎ

𝑛
𝑟
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]

]

]

𝑇

(2)

and thematrix-vector formof systemmodel (1) is alsowritten
as

y = Hx + z, (3)

where received signal vector y, noise vector z, and channel
matrixH can be represented, respectively, as follows:

y = [𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑁
𝑟
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,

(4)

where h
𝑛
𝑟
𝑛
𝑡

, 𝑛
𝑟
= 1, 2, . . . , 𝑁

𝑡
, is assumed to be equal 𝐿-

length sparse channel vector from receiver to 𝑛
𝑡
th antenna.

In addition, we also assume that each channel vector h
𝑛
𝑟
𝑛
𝑡

is
only supported by 𝑇 dominant channel taps.

3. Overview of Sparse ISS-NLMS Algorithms

According to the system model in (1), the 𝑛
𝑡
th updating

estimation error 𝑒
𝑛
𝑟

(𝑛) can be written as

𝑒
𝑛
𝑟

(𝑛) = 𝑦
𝑛
𝑟

(𝑡) − 𝑦
𝑛
𝑟

(𝑛)

= 𝑦
𝑛
𝑟

(𝑡) −
̃h𝑇
𝑛
𝑟
:
(𝑛) x (𝑡) ,

(5)

where ̃h
𝑛
𝑟
:
(𝑛) denotes an MISO channel estimator of the h

𝑛
𝑟
:
;

e(𝑛) = [𝑒
1
(𝑛), 𝑒
1
(𝑛), . . . , 𝑒

𝑁
𝑟

(𝑛)]
𝑇 denotes receive error vector

at the 𝑛th adaptive update; and 𝑦
𝑛
𝑟

(𝑡) is the received signal at
the 𝑛
𝑟
th receive antenna.

3.1. ISS-ZA-NLMS. According to (5), the cost function of
ISS-ZA-LMS [23] at the 𝑛

𝑟
th antenna of the receiver can be

constructed as

𝐺ZA,𝑛
𝑟

(𝑛) =

1

2

𝑒
2

𝑛
𝑟

(𝑛) + 𝜆ZA
󵄩
󵄩
󵄩
󵄩
󵄩

̃h
𝑛
𝑟
:
(𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩1
, (6)

where 𝜆ZA is a regularization parameter to balance the square
estimation error 𝑒2

𝑛
𝑟

(𝑛) and sparse penalty of ̃h
𝑛
𝑟
:
(𝑛). Hence,

the corresponding update equation of ISS-ZA-LMS [23] for
MIMO channel estimation is derived as

̃h
𝑛
𝑟
:
(𝑛 + 1) =

̃h
𝑛
𝑟
:
(𝑛) − 𝜇

𝜕𝐺ZA,𝑛
𝑟

(𝑛)

𝜕
̃h
𝑛
𝑟
:
(𝑛)

=
̃h
𝑛
𝑟
:
(𝑛) + 𝜇𝑒

𝑛
𝑟

x (𝑡) − 𝛾ZA sgn (̃h𝑛
𝑟
:
(𝑛)) ,

(7)

for 𝑛
𝑟
= 1, 2, . . . , 𝑁

𝑟
, where 𝛾ZA = 𝜇𝜆ZA and 𝜇 is the ISS. To

mitigate random scaling of input signal x(𝑡), based on the ISS-
ZA-LMS algorithm in (7), the update equation of improved
ISS-ZA-NLMS [20, 23] was proposed as

̃h
𝑛
𝑟
:
(𝑛 + 1) =

̃h
𝑛
𝑟
:
(𝑛) +

𝜇𝑒
𝑛
𝑟

x (𝑡)
x𝑇 (𝑡) x (𝑡)

− 𝛾ZA sgn (̃h𝑛
𝑟
:
(𝑛)) . (8)

3.2. ISS-RZA-NLMS. It is well known that ISS-ZA-LMS
cannot distinguish between zero taps and nonzero taps as
it gives the same penalty to all the taps which are often
forced to be zero with the same probability; therefore, its
performance will degrade in less sparse systems. Motivated
by the reweighted ℓ

1
-normminimization recovery algorithm

[24], Chen et al. have proposed a heuristic approach to
reinforce the zero attractor which was termed as the ISS-
RZA-LMS [25]. The cost function of ISS-RZA-LMS is given
by

𝐺RZA,𝑛
𝑟

(𝑛) =

1

2

𝑒
2

𝑛
𝑟

(𝑛)

+ 𝜆RZA

𝑁
𝑡

∑

𝑛
𝑡
=1

𝐿−1

∑

𝑙=0

log (1 + 𝜀RZA
󵄨
󵄨
󵄨
󵄨
󵄨

̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨
) ,

(9)

where 𝜆RZA > 0 is the regularization parameter and
reweighted factor 𝜀RZA > 0 is the positive threshold. In
computer simulation, the threshold is set as 𝜀RZA = 20

which is also suggested in previous papers [26, 27]. The 𝑙th
coefficient ̃ℎ

𝑛
𝑟
,𝑙
(𝑛) of ISS-RZA-LMS channel estimator ̃h

𝑛
𝑟

(𝑛)

is then updated as

̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛 + 1) =

̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛) − 𝜇

𝜕𝐺RZA,𝑛
𝑟

𝜕
̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑖
(𝑛)

=
̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛) + 𝜇𝑒

𝑛
𝑟

𝑥 (𝑡 − 𝑙)

−

𝛾RZA sgn (̃ℎ𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛))

1 + 𝜀RZA
󵄨
󵄨
󵄨
󵄨
󵄨

̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

,

(10)
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for 𝑛
𝑟
= 1, 2, . . . , 𝑁

𝑟
, where 𝛾RZA = 𝜇𝜆RZA𝜀RZA. According to

(10), hence, ISS-RZA-NLMS [20, 23] was proposed as

̃h
𝑛
𝑟
:
(𝑛 + 1) =

̃h
𝑛
𝑟
:
(𝑛) +

𝜇𝑒
𝑛
𝑟

x (𝑡)
x𝑇 (𝑡) x (𝑡)

−𝛾RZA
sgn (̃h

𝑛
𝑟
:
(𝑛))

1 + 𝜀RZA
󵄨
󵄨
󵄨
󵄨
󵄨

̃h
𝑛
𝑟
:
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

.

(11)

Note that the sparse penalty term sgn(̃h
𝑛
𝑟
:
(𝑛))/(1 +

𝜀RZA|
̃h
𝑛
𝑟
:
(𝑛)|) in (11) replaces these channel coefficients

{
̃
ℎ
𝑛
𝑟
𝑛
𝑡
,𝑙
(𝑛), 𝑙 = 0, 1, . . . , 𝐿 − 1,𝑛

𝑡
= 1, 2, . . . , 𝑁

𝑡
} under the

threshold 1/𝜀RZA as zero.

3.3. Drawback of the Sparse ISS-LMS Algorithms. Comparing
the standard ISS-NLMS algorithm [28], sparse ISS-NLMS
algorithms have a common ability of exploiting channel
sparsity. Without the loss of generality, we derive the steady-
state mean square error (MSE) performance of the ISS-
ZA-NLMS [23] as for the typical example to illustrate the
drawbacks of the sparse ISS-NLMS algorithms. Assuming
that ̃HISS(𝑛) denotes the sparse MIMO channel estimator,
under the independence assumption, in [25], the steady-state
MSE of ISS-ZA-NLMS estimator ̃HISS(𝑛) was derived as

Δ ISS (∞) = lim
𝑛→∞

𝐸 {

󵄩
󵄩
󵄩
󵄩
󵄩
(H̃ISS (𝑛) −H) x (𝑡)󵄩󵄩󵄩󵄩

󵄩

2

2

}

= lim
𝑛→∞

𝐸{

𝑁
𝑟

∑

𝑛
𝑟
=1

󵄩
󵄩
󵄩
󵄩
󵄩
(
̃h
𝑛
𝑟
:
(𝑛) − h) x (𝑡)󵄩󵄩󵄩󵄩

󵄩

2

2

}

=

Tr [R(I − 𝜇R)−1] 𝜎2
𝑛
𝑁
𝑟

2 − Tr [R(I − 𝜇R)−1]

+

𝛾
1
𝜌ZA (𝜌ZA − 2𝛾2/𝛾1)

(2 − Tr [R(I − 𝜇R)−1]) 𝜇

≤

Tr [R(I − 𝜇R)−1] 𝜎2
𝑛
𝑁
𝑟

2 − Tr [R(I − 𝜇R)−1]

≤

𝜆max𝜎
2

𝑛
𝑁
𝑟

2 − 3𝜇𝜆max
,

(12)

where 𝛾
1
= 𝐸[sgn(̃h

𝑛
𝑟
:
(𝑛))(I − 𝜇R)−1 sgn(̃h

𝑛
𝑟
:
(𝑛))] > 0 and

𝛾
2
= 𝐸‖

̃h
𝑛
𝑟
:
(∞)‖
1

− ‖h
𝑛
𝑟
:
‖
1

. To exploit the channel sparsity,
𝜌ZA should be selected in the range (0, 2𝛾

2
/𝛾
1
] so that (𝜌ZA −

2𝛾
2
/𝛾
1
) ≤ 0. According to (12), the lower bound of Δ ISS(∞)

depends on the three factors: {𝜆max, 𝜎
2

𝑛
, 𝜇}. However, 𝜆max

and 𝜎2
𝑛
are determined by the input signal x(𝑡) and additive

noise 𝑧(𝑡), respectively. Only selecting the smaller step-size
can further achieve better MSE performance. However, if
small step-size 𝜇 is adopted, it will incur slow convergence
speed (i.e., high computation complexity) on overall adaptive
channel estimation. Hence, it is expected that large step-size
is used in the case of large MSE to accelerate the convergence

speed, while small step-size is used in the case of smaller
MSE to improve the steady-state MSE performance. Assume
̃H(𝑛) denotes the 𝑛th update MIMO channel estimator using
sparse VSS-NLMS algorithms. As 𝜇 → 0, the lower bound of
steady-state MSE of sparse VSS-NLMS algorithms is derived
as

ΔVSS (∞) = lim
𝑛→∞

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
(
̃H(𝑛) −H)x(𝑡)󵄩󵄩󵄩󵄩

󵄩

2

2

}

= lim
𝑛→∞

𝐸{

𝑁
𝑟

∑

𝑛
𝑟
=1

󵄩
󵄩
󵄩
󵄩
󵄩
(
̃h
𝑛
𝑟
:
(𝑛) − h)x(𝑡)󵄩󵄩󵄩󵄩

󵄩

2

2

}

≤ lim
𝜇→0

𝜆max𝜎
2

𝑛
𝑁
𝑟

2 − 3𝜇𝜆max

=

𝜆max𝜎
2

𝑛
𝑁
𝑟

2

≤ Δ ISS (∞) .

(13)

To simultaneously achieve higher convergence speed and
lower steady-stateMSE performance, we propose sparseVSS-
NLMS algorithms for estimatingMIMO channels in the next
section.

4. Proposed Sparse VSS-NLMS Algorithms for
Estimating MIMO Channels

Recall that the ISS-ZA-NLMS algorithm in (8) does not
make use of the VSS rather than ISS. Inspirited from the
VSS-NLMS algorithm which has been proposed in [29], to
improve estimation performance of MIMO channels, sparse
VSS-NLMS algorithms are proposed. Unlike the sparse ISS-
NLMS algorithm, sparse VSS-NLMS algorithms are time-
variant with respect to the accuracy of updating estimators.

4.1. VSS-ZA-NLMS. At time 𝑡, based on the previous research
on the ISS-ZA-NLMS and VSS-NLMS algorithms, VSS-ZA-
NLMS algorithm is proposed as follows:

̃h
𝑛
𝑟

(𝑛 + 1) =
̃h
𝑛
𝑟

(𝑛) + 𝜇
𝑛
𝑟

(𝑛)

𝑒ZA (𝑛) x (𝑡)
x𝑇 (𝑡) x (𝑡)

− 𝛾ZA sgn (̃h𝑛
𝑟

(𝑛)) ,

(14)

where 𝜇
𝑛
𝑟

(𝑛) is the VSS which is given by

𝜇
𝑛
𝑟

(𝑛) = 𝜇max ⋅
p𝑇
𝑛
𝑟

(𝑛) p
𝑛
𝑟

(𝑛)

p𝑇
𝑛
𝑟

(𝑛) p
𝑛
𝑟

(𝑛) + 𝐶

, (15)

where 𝐶 is a positive threshold parameter which is related
to received signal-to-noise ratio (SNR), 𝐶 ∼ O(1/SNR).
According to (15), the range of VSS is given as 𝜇

𝑛
𝑟

(𝑛) ∈

(0, 𝜇max), where 𝜇max is the maximal step-size of gradient
descent. Theoretically, the maximal step-size is less than 2 to
ensure the adaptive algorithm stability [28]. Please note that
p
𝑛
𝑟

(𝑛) in (15) is given by

p
𝑛
𝑟

(𝑛) = 𝛽p
𝑛
𝑟

(𝑛 − 1) + (1 − 𝛽)

x (𝑡) 𝑒
𝑛
𝑟

(𝑛)

x𝑇 (𝑡) x (𝑡)
, (16)
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where 𝛽 ∈ [0, 1) is a smoothing factor to trade off VSS and
estimation error.

4.2. VSS-RZA-NLMS. The 𝑙th channel coefficient ̃ℎ
𝑛
𝑟
,𝑙
(𝑛) of

̃h
𝑛
𝑟

(𝑛) is then updated by

̃
ℎ
𝑛
𝑟
,𝑙
(𝑛 + 1) =

̃
ℎ
𝑛
𝑟
,𝑙
(𝑛) + 𝜇 (𝑛)

𝑒
𝑛
𝑟

(𝑛) x (𝑡)
x𝑇 (𝑡) x (𝑡)

− 𝛾RZA
sgn (̃ℎ

𝑛
𝑟
,𝑙
(𝑛))

1 + 𝜀RZA
󵄨
󵄨
󵄨
󵄨
󵄨

̃
ℎ
𝑛
𝑟
,𝑙
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

.

(17)

Then, the matrix-vector form of (15) can also be expressed as

̃h
𝑛
𝑟

(𝑛 + 1) =
̃h
𝑛
𝑟

(𝑛) + 𝜇 (𝑛)

𝑒
𝑛
𝑟

(𝑛) x (𝑡)
x𝑇 (𝑡) x (𝑡)

− 𝛾RZA
sgn (̃h

𝑛
𝑟

(𝑛))

1 + 𝜀RZA
󵄨
󵄨
󵄨
󵄨
󵄨

̃h
𝑛
𝑟

(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

.

(18)

Please note that the second term in (16) attracts the channel
coefficients ̃ℎ

𝑛
𝑟
,𝑙
(𝑛), 𝑙 = 0, 1, . . . , 𝐿 − 1, whose magnitudes

are comparable to 1/𝜀RZA to zeros. For estimating MIMO
channels, two proposed sparse VSS-NLMS algorithms are
summarized in Algorithm 1.

Remark 1. To better understand the difference between ISS
and VSS, based on (8), (11), and (15), it is worth mentioning
that step-size 𝜇 for sparse ISS-NLMS algorithm is invariable
but the step-size 𝜇ZA(𝑛) for sparse VSS-NLMS algorithm is
variable as depicted in Figure 5, where the maximal step-
size and ISS are set as 𝜇max ∈ {0.5, 1.0} and 𝜇 ∈ {0.5, 1.0},
respectively. From the figure, one can easily find that ISS is
kept invariant. Unlike the ISS, VSS 𝜇(𝑛) decreases adaptively
as the estimation performance increases and vice versa. In
other words, sparse VSS-NLMS algorithms adopting VSS for
adaptive gradient descend; large step-size is adopted to speed
up convergence rate for reducing computational complexity;
small step-size is adopted to ensure algorithm stability in
the case of high-accuracy estimator for further improving
estimation performance.

5. Computer Simulations

To confirm the effectiveness of the proposed methods, two
metrics, that is, MSE and BER, are adopted for performance
evaluation. Channel estimators are evaluated by averageMSE
which is defined by

AverageMSE {̃H (𝑛)} = 𝐸 {󵄩󵄩󵄩󵄩
󵄩
H −

̃H (𝑛)󵄩󵄩󵄩󵄩
󵄩

2

2

} , (19)

and system performance is evaluated by the BER metric
which adopts different data modulation schemes, such as
phase shift keying (PSK) and quadrature amplitude modu-
lation (QAM). The results are averaged over 1000 indepen-
dent Monte-Carlo runs. The length of each channel vector
{h
𝑛
𝑟
𝑛
𝑡

, 𝑛
𝑟
= 1, 2, . . . , 𝑁

𝑟
, 𝑛
𝑡
= 1, 2, . . . , 𝑁

𝑡
} is set as equal length

Table 1: Simulation parameters.

Parameters Values
Number of transceivers (𝑁

𝑡
, 𝑁
𝑟
) (4, 4)

Channel length of each h
𝑛𝑟𝑛𝑡

𝐿 = 16

Number of nonzero coefficients 𝑇 ∈ {1, 4}

Distribution of nonzero
coefficient Random GaussianCN(0, 1)

Threshold parameter for
VSS-NLMS 𝐶 ∈ {10

−4

, 10
−5

}

Received SNR for channel
estimation {5 dB, 15 dB, 25 dB}

Received SNR 𝐸
0
/𝑁
0
for data

trans. 12 dB∼30 dB

Step-size 𝜇 = 0.2 and 𝜇max = 2

Regularization parameter for
ZA-NLMS

𝜌ZA = 0.0006𝜎
2

𝑛
for 𝑇 = 1

𝜌ZA = 0.0002𝜎
2

𝑛
for 𝑇 = 4

Regularization parameter for
RZA-NLMS

𝜌RZA = 0.006𝜎
2

𝑛
for 𝑇 = 1

𝜌RZA = 0.002𝜎
2

𝑛
for 𝑇 = 4

Modulation schemes QPSK, 8PSK, 16PSK, 16QAM,
64QAM, 128QAM

with 𝐿 = 16 and corresponding number of dominant taps is
set to 𝑇 ∈ {1, 4}. Each dominant channel tap follows random
Gaussian distribution as CN(0, 𝜎2h) and their positions are
randomly decided within the length of h

𝑛
𝑟
𝑛
𝑡

. In addition,
MISO channel vector h

𝑛
𝑟
:
is subject to 𝐸{‖h

𝑛
𝑟
:
‖
2

2

}=1. The
received SNR is defined as 𝑃

0
/𝜎
2

𝑛
, where 𝑃

0
is the power of

received signal. Computer simulation parameters are listed
in Table 1. Based on the research work in [30], it is worth
mentioning that threshold parameters of sparse VSS-NLMS
algorithms are adopted 𝐶 = 10

−4 for 5 dB and 𝐶 = 10
−5 for

10 dB and 20 dB, respectively.
In the first example, average MSE performance of pro-

posed methods is evaluated in the case of 𝑇 = 1 and 4 in
Figures 6, 7, 8, 9, 10, and 11 under three SNR regimes, that
is, 5 dB, 10 dB, and 20 dB. To confirm the effectiveness of
the proposed method, we compare it with previous methods,
that is, ISS-NLMS [28], VSS-NLMS [29], and sparse ISS-
NLMS [23, 25]. In addition, to achieve a better steady-state
estimation performance, regularization parameters for sparse
VSS-NLMS algorithms, that is, VSS-ZA-NLMS and VSS-
RZA-NLMS, are adopted from [27], which depend on the
number of nonzero taps of a channel. In the case of different
SNR regimes, for example, 5 dB, 10 dB, and 20 dB, as shown in
Figures 6, 7, 8, 9, 10, and 11, two proposed methods achieved
better estimation performance than sparse ISS-NLMS ones.

As it can be observed from Figures 5 and 6, since sparse
VSS-NLMS algorithms take advantage of the channel sparsity
as for prior information, hence they achieve better estimation
performance than standard VSS-NLMS algorithm, especially
in a very sparse channel case, for example, 𝑇 = 1. The
sparse VSS-NLMS algorithms can exploit much more sparse
information for sparser channel. It is obviously observed
that the performance gaps between proposed methods and
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Input (1) x(𝑡) and y(𝑡);
(2) 𝜇max = 1 and 𝐶;
(3) 𝛾ZA for VSS-ZA-NLMS;
(4) 𝛾RZA and 𝜀RZA for VSS-RZA-NLMS;

Output Channel estimator H̃.
Initialization 𝑛 ← 1;

p
𝑛𝑟
(0) ← 0;

̃h(0) ← 0.
While 󵄩

󵄩
󵄩
󵄩
󵄩
H̃(𝑛 + 1) − H̃(𝑛)󵄩󵄩󵄩󵄩

󵄩

2

2

≤ 10
−5 or 𝑛 ≥ 5000 Do

𝑛 ← 𝑛 + 1;
𝑛
𝑟
← mod(𝑛 − 1,𝑁

𝑟
) + 1;

̃h
𝑛𝑟
(𝑛) ←

̃h(𝑛
𝑟
; :);

𝑑
𝑛𝑟
(𝑛) ← 𝑦(𝑛

𝑟
);

𝑒
𝑛𝑟
(𝑛) ← 𝑑

𝑛𝑟
(𝑛) −

̃h𝑇
𝑛𝑟

x(𝑛);
p
𝑛𝑟
(𝑛) ← 𝛽p

𝑛𝑟
(𝑛 − 1) + (1 − 𝛽)x(𝑡)𝑒

𝑛𝑟
(𝑛)/x𝑇(𝑡)x(𝑡);

𝜇
𝑛𝑟
(𝑛) ← 𝜇max ⋅ p𝑇𝑛𝑟 (𝑛)p𝑛𝑟 (𝑛)/(p

𝑇

𝑛𝑟

(𝑛)p
𝑛𝑟
(𝑛) + 𝐶);

̃h
𝑛𝑟
(𝑛 + 1) ←

̃h
𝑛𝑟
(𝑛) + 𝜇

𝑛𝑟
(𝑛)𝑒ZA(𝑛)x(𝑡)/x𝑇(𝑡)x(𝑡) − 𝛾ZA sgn(̃h𝑛𝑟 (𝑛)) for VSS-ZA-NLMS in (14) or

̃h
𝑛𝑟
(𝑛 + 1) ←

̃h
𝑛𝑟
(𝑛) + 𝜇(𝑛)𝑒

𝑛𝑟
(𝑛)x(𝑡)/x𝑇(𝑡)x(𝑡) − 𝛾RZA sgn(̃h𝑛𝑟 (𝑛))/(1 + 𝜀RZA|̃h𝑛𝑟 (𝑛) |)

for VSS-RZA-NLMS in (18);
End H̃(𝑛

𝑟
; :) ←

̃h
𝑛𝑟
(𝑛 + 1)

Algorithm 1: Sparse VSS-NLMS algorithms for estimating MIMO channels.
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Figure 6: AverageMSE performance versus received iterations (𝑇 =
1).

previousmethods in Figure 6 (𝑇 = 1) are bigger than the gaps
in Figure 7 (𝑇 = 4).

In the second example, system performance using pro-
posed channel estimators is also evaluated with respect to
BER performance. Two kinds of signal modulation schemes,
that is, multiple PSK and multiple QAM, are considered.
Received SNR is defined by 𝐸

0
/𝑁
0
, where 𝐸

0
is the average
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Figure 7: AverageMSE performance versus received iterations (𝑇 =
4).

received power of symbol and 𝑁
0
is the noise power. In

Figure 12, multiple PSK schemes, that is, QPSK, 8PSK, and
16PSK, are considered for data modulation and system
performance was evaluated. One can find that there is no
big performance difference using QPSK and 8PSK due to
high transmission. If the higher-order data modulation is
adopted, much better BER performance will be achieved
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Figure 8: AverageMSE performance versus received iterations (𝑇 =
1).
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Figure 9: AverageMSE performance versus received iterations (𝑇 =
4).

when compared with previous methods, that is, ISS-NLMS,
VSS-NLMS, and sparse ISS-NLMS algorithms. In Figure 13,
multiple QAM schemes, that is, 16QAM, 64QAM, and
128QAM, are considered for data modulation. One can easily
find that the proposedmethod can achieve a better estimation
than previous methods. In addition, we also compare the
system performance with respect to different modulation
schemes, PSK andQAM. In Figure 14, 16PSK and 16QAM are

0 1000 2000 3000 4000 5000
Iterations

Av
er

ag
e 

M
SE

10−6

10−7

10−5

10−4

10−3

10−2

10−1

100

ISS-NLMS
VSS-NLMS
ISS-ZA-NLMS

VSS-ZA-VNLMS
ISS-RZA-NLMS
VSS-RZA-VNLMS

Nr = Nt = 4

SNR = 20 dB

 

 

Figure 10: Average MSE performance versus received iterations
(𝑇 = 1).

adopted as for a typical example of performance evaluation.
We can find that 16QAM based system performance is better
than 16PSK based system using the same channel estimators.

6. Conclusion

Traditional adaptiveMIMO channel estimationmethods uti-
lize sparse ISS-NLMS algorithms using ISS. One of the main
disadvantages of the traditional methods is the inability to
balance the convergence speed and the estimation accuracy.
In this paper, two sparse VSS-NLMS algorithms were pro-
posed for estimating MIMO channels. Unlike the traditional
sparse ISS-NLMS algorithms, the proposed algorithms uti-
lizedVSSwhich can change adaptively as the estimation error.
Simulation results were provided to confirm the effectiveness
of the proposed methods in three aspects: convergence
speed, estimation performance, and system performance.
First, convergence speed of the proposed methods using VSS
is faster than ISS-NLMS based methods due to the fact that
VSS for adaptive gradient descent ismore efficient than ISS. In
otherwords, VSS canwell balance that fast convergence speed
is dominant in the case of large estimation error while high
accuracy is dominant in the case of small estimation error.
Second, the proposed adaptive estimators can achieve better
MSE gain than previous methods in different SNR regimes
especially for sparser channels. At last, system performance
using the proposed channel estimators can also achieve better
BER performance than previous methods especially in high-
order modulation signal based systems.
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Figure 11: AverageMSEperformance versus received iterations (𝑇 =
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