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Abstract

Sparse channels exist in many broadband wireless communication systems. To exploit the channel sparsity,
invariable step-size zero-attracting normalized least mean square (ISS-ZA-NLMS) algorithm was applied in adaptive
sparse channel estimation (ASCE). However, ISS-ZA-NLMS cannot achieve a good trade-off between the convergence
rate, the computational cost, and the performance. In this paper, we propose a variable step-size ZA-NLMS (VSS-ZA-NLMS)
algorithm to improve the ASCE. The performance of the proposed method is theoretically analyzed and verified by
numerical simulations in terms of mean square deviation (MSD) and bit error rate (BER) metrics.
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1 Introduction
Broadband transmission is one of the key techniques in
wireless communication systems [1-3]. To realize reli-
able broadband communication, one challenge is accur-
ate channel estimation in order to mitigate inter-symbol
interference (ISI). Conventional normalized least mean
square (ISS-NLMS) algorithm using invariable step size
was considered as one of the effective methods for chan-
nel estimation due to its easy implementation [4]. How-
ever, ISS-NLMS does not take the channel characteristic
into consideration and cannot take the advantage of the
inherent channel prior information. During the last few
years, more and more channel measurements have vali-
dated and indicated that broadband channels are most
likely to have sparse or cluster-sparse structures [5-7], as
shown in Figure 1 as an example. In particular, channel
sparsity in different mobile communication systems are
summarized in Table 1. Inspired by least absolute
shrinkage and selection operator (LASSO) algorithm [8],
an ℓ1-norm sparse constraint function can be used to
take the advantage of channel sparsity in adaptive sparse
channel estimation (ASCE); zero-attracting ISS-NLMS
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(ZA-ISS-NLMS) has been proposed for ASCE [9,10] to
improve the estimation performance.
It is well known that step size is a critical parameter

which determines the estimation performance, conver-
gence rate, and computational cost. However, ISS-NLMS
and ZA-ISS-NLMS adopt a fixed step size, and as a re-
sult, they are unable to achieve a good balance between
steady-state estimation performance and convergence
speed. Different from ISS-NLMS [4], variable step-size
NLMS (VSS-NLMS) was first proposed to improve the
estimation performance [11] without sacrificing the con-
vergence speed. Variable step size is controlled by the in-
stantaneous square error of each iteration, i.e., lower
error will decrease the step size and vice versa. To the
best of our knowledge, the application of sparse VSS-
NLMS to simultaneously exploit the channel sparsity
and control the step size has not been reported in the
literature.
In this paper, we propose a zero-attracting VSS-NLMS

(ZA-VSS-NLMS) algorithm for sparse channel estima-
tion. The main contribution of this paper is to propose
the ZA-VSS-NLMS using VSS rather than ISS for esti-
mating spare channels. In addition, the step size of the
proposed algorithm is updated in each iteration accord-
ing to the error information. In the following, conven-
tional ZA-ISS-NLMS is introduced and its drawback is
analyzed at first. ZA-VSS-NLMS is then proposed using
pen Access article distributed under the terms of the Creative Commons
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Figure 1 Two kinds of channel structures: dense and sparse.
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an adaptive step size to achieve a lower steady-state esti-
mation error. To derive the adaptive step size, different
from the traditional VSS-NLMS algorithm in [11], two
practical problems are considered: sparse channel model
and tractable independent assumptions [12]. At last, nu-
merical simulations are carried out to evaluate the pro-
posed algorithm in terms of two metrics: mean square
deviation (MSD) and bit error rate (BER).
The remainder of this paper is organized as follows. A

system model is described and ZA-ISS-NLMS algorithm is
introduced in Section 2. In Section 3, ZA-VSS-NLMS
algorithm is proposed. Numerical results are presented in
Section 4 to evaluate the performance of the proposed
ASCE method. Finally, we conclude the paper in Section 5.

2 ZA-ISS-NLMS algorithm
Consider a frequency-selective fading wireless communi-
cation system where FIR sparse channel vector h = [h0,
h1, …, hN −1]

T has length N and it is supported only by
K nonzero channel taps. Assume that an input training
Table 1 Channel structures in different mobile
communication systems

Generations
of mobile
communication
systems

2G cellular
(IS-95)

3G cellular
(WCDMA)

4G/5G cellular
(LTE-Advanced~)

Transmission bandwidth 1.23 MHz 10 MHz 20 ~ 100 MHz

Time delay spread
(assume)

0.4 μs 0.4 μs 0.4 μs

Sampling channel
length

1 8 16 ~ 80

Number of nonzero taps 1 4 6

Channel model Dense Approximate
sparse

Sparse
signal x(t) is used to probe the unknown sparse channel.
At receiver, equivalent-baseband observed signal y(t) at
time t is given by:

y tð Þ ¼ hTx tð Þ þ z tð Þ; ð1Þ
where x(t) = [x(t), x(t −1), …, x(t −N +1)]T denotes the
vector of training signal x(t); z(t) is the additive white
Gaussian noise (AWGN), which is assumed to be inde-
pendent to x(t); (⋅)T denotes the vector transpose oper-
ation. The objective of ASCE is to adaptively estimate
the unknown sparse channel vector h using the training
signal vector x(t) and the observed signal y(t). According
to Equation 1, instantaneous error e(n) is defined as,

e nð Þ ¼ y tð Þ−y nð Þ
¼ h−~h nð Þ� �T

x tð Þ þ z tð Þ
¼ vT nð Þx tð Þ þ z tð Þ;

ð2Þ

where v nð Þ ¼ h−~h nð Þ denotes the channel estimation
error in the n-th iteration. In the sequel, one can apply
ZA-ISS-LMS algorithm to exploit channel sparsity in
time domain. First of all, cost function of ZA-ISS-LMS
is given by:

G nð Þ ¼ 1
2
e2 nð Þ þ λ ~h nð Þ�� ��

1; ð3Þ

where λ is the regularization parameter to balance the
updating square error e2(n) and sparse penalty of the

n-th updated channel estimator ~h nð Þ; ⋅k k1 denotes

ℓ1-norm operation, e.g., hk k1 ¼
XN−1

l¼0
hlj j . The update

equation of ZA-ISS-LMS at time t is:

~h nþ 1ð Þ ¼ ~h nð Þ−μ ∂G nð Þ
∂~h nð Þ

¼ ~h nð Þ þ μe nð Þx tð Þ−ρ sgn ~h nð Þ� �
;

ð4Þ

where μ is the ISS which determines the convergence
speed; ρ = μλ is a parameter which depends on the step-
size μ and the regularization parameter λ; and sgn(⋅) is a
component-wise function which is defined by:

sgn hð Þ ¼
1; h > 0
0; h ¼ 0
−1; h < 0

:

(
ð5Þ

Observing the update Equation 4, its second term at-
tracts small-value channel coefficients to zero in high
probability. In other words, most of the small-value
channel coefficients can be replaced by zero. This will
speed up the convergence and mitigate the noise on zero
positions as well. However, the performance of the ZA-
ISS-LMS is often degraded by random scaling of training
signals. To avoid the randomness as well as to improve
the estimation performance, we proposed an improved
algorithm (i.e., ZA-ISS-NLMS) in our previous works in
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[9] and [10]. The update equation of ZA-ISS-NLMS [9]
was proposed as follows

~h nþ 1ð Þ ¼ ~h nð Þ þ μ
e nð Þx tð Þ
xT tð Þx tð Þ−ρsgn

~h nð Þ� �
: ð6Þ

The ZA-ISS-NLMS algorithm in Equation 6 adopts
one step size and its convergence speed is fixed as
shown in Figure 2a. As a result, one drawback of ZA-
ISS-NLMS is the lack of ability to trade off between the
estimation performance and convergence speed.

3 Proposed algorithm
Recall that the ZA-ISS-NLMS algorithm in Equation 6
does not utilize VSS. It is well known that the step size is a
critical parameter which determines the estimation per-
formance, convergence speed, and computational cost.
Inspirited by the VSS-NLMS algorithm in [11], VSS is in-
troduced to make the step size adaptive to the estimation
error to further improve the estimation performance.
Based on the previous research [10] and [11], ZA-VSS-
NLMS algorithm has the following update equation,

~h nþ 1ð Þ ¼ ~h nð Þ þ μ nþ 1ð Þ e nð Þx tð Þ
xT tð Þx tð Þ−ρsgn

~h nð Þ� �
;

ð7Þ

where μ(n +1) is the VSS which is calculated from the
estimation error and the variance of the additive noise.
Comparing Equation 7 with Equation 4, it can be found
that the step size is different, i.e., step size in Equation 4 is
invariant while step size in Equation 7 is adaptively variant.
There are two facts about μ(n) and ρ that should be no-
ticed: 1) the variant step-size μ(n) is adopted to speed up
the convergence speed in the case of large estimation error,
while to ensure the stability in the case of small estimation
error; 2) the parameter ρ, which depends on the initial step-
size μ and regularization parameter λ, is utilized to exploit
channel sparsity effectively. Otherwise, variant parameter
Figure 2 Illustrations of gradient descend and zero attracting of (a) Z
ρ(n) = μ(n)λ may cause extracomputational complexity and
ineffectiveness use of the channel sparsity.
Optimal step-size μo(n +1) for the (n +1)-th iteration

is derived based on the following assumptions:

(A1): Input vector x(t) and the additive noise z(t) are
mutually independent at time t.
(A2): Input vector x(t) is a stationary sequence of
independent zero mean Gaussian random variables
with a finite variance σ2x:
(A3): z(t) is an independent zero mean random
variables with variance σ2z :
(A4): ~h nð Þ is independent of x(t).

These assumptions provide a mathematically tractable
analysis in the subsequent proposed algorithm. The pro-
posed algorithm in Equation 7 can be rewritten in terms
of the estimation error vector v(n) as follows:

v nþ 1ð Þ ¼ v nð Þ−μ nþ 1ð Þ e nð Þx tð Þ
xT tð Þx tð Þ þ ρ sgn ~h nð Þ� �

;

ð8Þ

Taking the expectation on the MSD of ~h nð Þ, it can be
written as:

E v nþ 1ð Þk k22
� � ¼ E v nð Þk k22

� �þ μ2 nþ 1ð ÞE e2 nð Þ=xT tð Þx tð Þ� �
þρ2E sgn ~h nð Þ� �� �T

sgn ~h nð Þ� �n o
−2μ nþ 1ð ÞE e nð ÞvT nð Þx tð Þ=xT tð Þx tð Þ� �
þ2ρE vT nð Þ sgn ~h nð Þ� �� �
−2μ nþ 1ð ÞρEfe nð ÞxT tð Þ sgn ~h nð Þ� �

xT tð Þx tð Þg≜D0−D μð Þ;
ð9Þ

Based on the assumptions (A1)-(A4), we can get the
following results:

E vT nð Þ sgn ~h nð Þ� �� � ¼ 0; ð10Þ

E e nð ÞxT tð Þ sgn ~h nð Þ� �
=xT tð Þx tð Þ� � ¼ 0; ð11Þ
A-ISS-NLMS and (b) ZA-VSS-NLMS.
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Figure 3 ISS is invariable but VSS is variable in different
estimation errors.

Table 2 Simulation parameters

Parameters Values

Transmission bandwidth W =40 MHz

Delay spread τ =0.8 μs

Channel length N =64

Number of nonzero coefficients K =2 and 6

Distribution of nonzero coefficient random Gaussian CN 0; 1ð Þ
Threshold parameter for VSS-

NLMS
C ¼

6:0� 10−6; for SNR ¼ 5 dB
3:0� 10−6; forSNR ¼ 10 dB
2:0� 10−6; forSNR ¼ 20 dB

8<
:

Received SNR Es/N0 0 ~ 40 dB

Step size μ = 0.5 and μmax = 2

Regularization parameter ρ ¼ 0:0015 σ2n
Modulation schemes 8 PSK, 16 PSK, 16 QAM, and 64

QAM
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D0 ¼ E v nð Þk k22
� �þ ρ2E sgn ~h nð Þ� �� �T

sgn ~h nð Þ� �n o
;

ð12Þ

D μð Þ ¼ 2μ nþ 1ð ÞE e nð ÞvT nð Þx tð Þ=xT tð Þx tð Þ� �
−μ2 nþ 1ð ÞE e2 nð Þ=xT tð Þx tð Þ� �

:

ð13Þ

According to Equation 9, MSD depends on parameters
μ and ρ. However, the optimal value of ρ cannot be dir-
ectly obtained since it is determined by channel sparsity
and the additive noise. In order to find the optimal step-
size μo(n +1), empirical parameter ρ is used to make a fair
comparison with the traditional method in Equation 6.
When ρ is fixed in Equation 7, finding μ(n +1) becomes
a convex problem so that it can maximize D(μ(n +1)),
given by

μo nþ 1ð Þ ¼ arg max
μo nþ1ð Þ

D μ nþ 1ð Þð Þ: ð14Þ

In other words, to find the optimal step-size μo(n +1)
is equivalent to finding the largest gradient descend from
the n-th iteration to the (n +1)-th iteration. By solving
the convex problem in Equation 14, the (n +1)-th opti-
mal step-size μo(n +1) is obtained by:

μo nþ 1ð Þ ¼ E e nð ÞvT nð Þx tð Þ=xT tð Þx tð Þ� �
E e2 nð ÞvT nð Þx tð Þ=xT tð Þx tð Þf g

¼ E pT
o nþ 1ð Þp nþ 1ð Þ� �

E pTo nþ 1ð Þpo nþ 1ð Þ� �þ σ2zTr E 1=xT tð Þx tð Þ½ �f g ;

ð15Þ
where po(n +1) ≜ x(t)xT(t)v(n)/xT(t)x(t). Obviously, the
optimal step size is determined by p(n +1) and the noise
variance σ2z . Unfortunately however, the optimal vector
po(n +1) depends on the unknown channel vector h and
it is not available during adaptive updating process.
Based on the assumption (A1), it can be found that:

E x tð Þe nð Þ=xT tð Þx tð Þ� � ¼ Efx tð ÞðxT tð Þv nð Þ
þ z tð ÞÞ=xT tð Þx tð Þg

¼ E x tð ÞxT tð Þv nð Þ=xT tð Þx tð Þ� �
:

ð16Þ
According to Equation 16, an alternative approximate

vector p(n +1) by time averaging is given as follows,

p nþ 1ð Þ ¼ βp nð Þ þ 1−βð Þ x tð Þe nð Þ
xT tð Þx tð Þ ; ð17Þ

where β ∈ [0, 1) is the smoothing factor to control the
value of VSS and the estimation error. Note that the
VSS will reduce to ISS when β = 0. Therefore, approxi-
mate step-size μ(n +1) for ZA-VSS-NLMS is given by:
μ nþ 1ð Þ ¼ μmax
pT nþ 1ð Þp nþ 1ð Þ

pT nþ 1ð Þp nþ 1ð Þ þ C
; ð18Þ

where C is a positive threshold parameter satisfying C∼
O 1=SNRð Þ, where SNR is the received signal noise ratio
(SNR). To better understand the proposed algorithm in
Equation 7, Figure 2 is used to illustrate the two functions:
zero attracting (for sparse constraint) and VSS (for conver-
gence speed). According to Equation 18, the range of VSS
is given by μ(n +1) ∈ (0, μmax), where μmax is the maximal
step size. To ensure the stability of the adaptive algorithm,
the maximal step size is usually set to be less than 2 [4].
Based on Equation 18, step-size μ for ZA-ISS-NLMS is in-
variable but the step-size μ(n +1) for ZA-VSS-NLMS is
variable as depicted in Figure 3, where the maximal step-
size μmax and step-size μ are set as μ = μmax ∈ {0.5, 1, 1.5}.
From this figure, it can be found that the value of VSS
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μ (n +1) will decrease as the estimation error decreases and
vice versa; on the other hand, ISS is invariant. Speci-
fically, in the case of small step size, high performance
can be achieved since small step size ensures the sta-
bility of the algorithm; while in the case of large step
size, low computation complexity can be achieved since
large step size increases the convergence speed. That is
to say, as the updating error decreases, ZA-VSS-NLMS
reduces its step size adaptively to ensure the algorithm
stability as well as to achieve better steady-state estima-
tion performance.
4 Numerical simulations
To testify the effectiveness of the proposed method, two
metrics are adopted, i.e., MSD and BER. Channel
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Figure 5 Average MSD performance versus received iterative
times (n).
estimators ~h nð Þ are evaluated by the average MSD which
is defined as:

Average MSD ~h nð Þ� � ¼ E h−~h nð Þ�� ��2
2

n o
; ð19Þ

where h and ~h nð Þ are the channel vector and its n-th
iterative adaptive channel estimator, respectively. ‖·‖2

is the Euclidean norm operator and hk k22 ¼
XN

i¼1
hij j

2
.

System performance is evaluated in terms of BER which
adopts different data modulation schemes. The results
are averaged over 1,000 independent Monte Carlo (MC)
runs. The length of channel vector h is set to be N = 64
and its number of dominant taps is set to be K = 2 and
6, respectively. Each dominant channel tap follows ran-
dom Gaussian distribution CN 0; σ2h

� �
and subjects to a
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Figure 7 Average MSD performance versus received iterative
times (n).
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total power constraint E hk k22 ¼ 1
� �

and positions ran-
domly within the length of h. The received signal-to-noise
ratio (SNR) is defined as P0=σ2n , where P0 is the received
power of the pseudo-random noise (PN) sequence for
training. Numerical simulation parameters are listed in
Table 2.
Average MSD performance of the proposed method is

evaluated at first. K = 2 and 6 are used and the results are
shown in Figures 4, 5, 6, 7, 8, and 9 under three SNR
regimes, i.e. 5, 10, and 20 dB. The proposed algorithm,
ZA-ISS-NLMS, is compared with three existing methods,
i.e., ISS-NLMS [4], VSS-NLMS [11], and ZA-ISS-NLMS
[9,10]. It can be observed from Figures 4, 5, 6, 7, 8, and 9
that ZA-VSS-NLMS achieved both faster convergence speed
and better MSD performance than ZA-ISS-NLMS. The
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Figure 9 Average MSD performance versus received iterative
times (n).
reason is that VSS-based gradient descend of the proposed
algorithm makes a good trade-off between the convergence
speed and the MSD performance. In addition, to achieve
better steady-state estimation performance, regularization
parameter methods for ZA-NLMS-type algorithms are
adopted [13,14] and set to be ρ ¼ 0:0015 σ2n . In different
SNR regimes, ZA-VSS-NLMS always achieves a better es-
timation performance than ZA-ISS-NLMS. Furthermore,
since ZA-VSS-NLMS takes the advantage of the channel
sparsity as well, it obtains a better estimation performance
than VSS-NLMS, especially in the extreme sparse channel
case (e.g., K = 2).
In the next, BER performance using the proposed chan-

nel estimator is evaluated. The channel is assumed to be a
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Figure 11 Average BER performance versus received
SNR (QAM).
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steady-state sparse channel with number of nonzero taps
K = 2 and SNR = 5 dB. Received SNR is defined by Es/N0,
where Es is the received signal power and N0 is the noise
power. Numerical result is shown in Figures 10 and 11. In
Figure 10, multilevel phase shift keying (PSK) modula-
tion, i.e., 8 and 16 PSK are used for data modulation. In
Figure 11, multilevel quadrature amplitude modulation
(QAM), i.e., 16 and 64 QAM, are used for data modulation.
It is observed that the proposed algorithm can achieve a
much better BER performance than ISS-NLMS and VSS-
NLMS. Although there is no significant performance gain
between our proposed algorithm and ISS-ZA-NLMS,
fast convergence rate can be achieved by the proposed
algorithm.
Therefore, it has been confirmed that the proposed algo-

rithm can achieve the advantages of good performance and
fast convergence speed.

5 Conclusions
Step size is a key parameter for NLMS-based adaptive fil-
tering algorithms to balance the steady-state estimation
performance and convergence speed. Either ISS-NLMS or
ZA-ISS-NLMS cannot update their step size in the
process of adaptive error updating. In this paper, a ZA-
VSS-NLMS filtering algorithm was proposed for channel
estimation. Unlike the traditional algorithms, the proposed
algorithm utilizes VSS which can update the step size
adaptively according to the updating error. Therefore, the
proposed method can achieve a better steady-state per-
formance while keeping a comparable convergence speed
when compared with the existing methods. Simulation re-
sults have been presented to confirm the effectiveness of
the proposed method in terms of MSD and BER metrics.
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