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In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required
at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data
transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by
compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which
can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods
are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of
these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve
the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which
cannot only exploit the channel sparsity but alsomitigate the unexpected channel uncertainty without scarifying any computational
complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to
observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed
method can improve the estimation performance when comparing with conventional SCE methods.

1. Introduction

In broadbandwireless communication systems using orthog-
onal frequency division modulation (OFDM), frequency-
selective fading is incurred by the reflection, diffraction, and
scattering of the transmitted signals due to the buildings,
large moving vehicles, mountains, and so forth. Such fading
phenomenon distorts received signals and poses critical
challenges in the design of communication systems for high-
rate and high-mobility wireless communication applications.
Hence, accurate channel estimation becomes a fundamental
problem of such communication systems. In last several
years, various linear estimation methods have been proposed
based on the assumption of rich multipath channel model.
However, recently, a lot of physical channel measurements
verified that the channel taps exhibit sparse distribution [1–3]

due to the broadband signal transmission. A typical example
of sparse multipath channel is shown in Figure 1 where the
length is 100 while the number of nonzero taps is 5 only. Note
that different broadband transmission may incur different
channel structures in wireless communication systems as
shown in Table 1.

To improve the estimation performance, extra sparse
structure information can be exploited as prior information.
Thanks to the development of compressive sensing [4, 5],
many sparse channel estimation (CCE) methods have been
proposed for exploiting the channel sparsity. In [6], orthog-
onal matching pursuit (OMP) algorithm with application to
sparse multipath channel estimation in the OFDM systems
has been proposed. In [7, 8], sparse channel estimation
methods have been proposed using compressive sampling
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Table 1: Channel structures in different mobile communication systems.

Generations of mobile communication systems [21] 2G cellular 3G cellular 4G/5G cellular
(IS-95) (WCDMA) (LTE-Advanced∼)

Transmission bandwidth 1.23MHz 10MHz 20MHz∼100MHz
Time-delay spread (for example) 0.5 𝜇𝑠 0.5 𝜇𝑠 0.5 𝜇𝑠

Sampling channel length 1 10 20∼100
Number of nonzero taps 1 4 2∼10
Channel structure model Dense Approximate sparse Sparse
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Figure 1: A typical example of sparse multipath channel.

matching pursuit (CoSaMP) algorithm [9] in frequency-
selective and doubly-selective channel fading communica-
tion systems. In [10], to further reduce the computational
complexity, sparse channel estimation using smooth ℓ

0
-

norm (SL0) algorithm [11] has been proposed. Compared
to traditional linear methods, sparse channel estimation
methods have two obvious advantages: spectral efficiency
and lower performance bound. For one thing, improving
the spectral efficiency by utilizing less training sequence can
achieve the same estimation performance as linear methods.
For another, the lower performance bound can be obtained
by exploiting channel sparsity due to the fact that less active
channel freedom of degree is acquired [12].

Conventional sparse channel estimation methods have a
cardinal objective that try to probe the dominant channel
taps as accurate as possible, while these methods neglect the
posterior information report from additive noise received
signal. These proposed channel estimation methods are
termed as model selection or basis selection. Unfortunately,
their estimation performances are often degraded due to the
neglecting channel model uncertainty [13]. To mitigate the
unexpectedmodel uncertainty, Bayesian compressive sensing
(BCS) [14] and a slight improved Bayesian compressive sens-
ing using Laplace priors (BCS-LAP) [15] could be adopted for
estimating sparse channel.The estimation performance could
be improved effectively but at the cost of high computational
complexity when comparing with existing simple algorithms

(e.g., OMP [6] and SL0 [11]). Hence, it is impractical to
employ this algorithm in real communication systems.

Unlike these aforementioned methods, in this paper,
we propose an improved Bayesian sparse channel estima-
tion (BSCE) method while its computational complexity is
comparable with OMP and SL0. Our proposed Bayesian
channel method can be divided into two steps: position
detection of dominant channel taps and channel estimation
using minimum mean square error (MMSE). In general, our
proposedBayesian estimationmethodprovidesmodel uncer-
tainty which reveals uncertainty among multiple possible
position sets of dominant channel taps that are ambiguous
due to observation noise or correlation among columns in the
trainingmatrix. Furthermore, the complexity of the proposed
method is relatively lower due to its smaller search space
when compared to conventional methods. Simulation results
are given to verify two folds: performance and complex-
ity. Note that estimation performance is evaluated by two
metrics: mean-square-error (MSE) and bit-error rate (BER),
while computational complexity is measured coarsely by
CPU time of computer.

The remainder of this paper is organized as follows. An
OFDM system model is described and problem formulation
is given in Section 2. In Section 3, the BSCE method is
proposed in OFDM systems. Computer simulation results
are given in Section 4 in order to evaluate and compare per-
formance of the BSCE method with conventional methods.
Finally, we conclude the paper in Section 5.

Notation 1. Throughout the paper, matrices and vectors are
represented by boldface upper case letters (i.e., X) and
boldface lower case letters (i.e., x), respectively; the super-
scripts (⋅)

𝑇, (⋅)𝐻, (⋅)−1, and diag(⋅) denote the transpose, the
Hermitian transpose, and the inverse and diagonal operators,
respectively; 𝐸{⋅} denotes the expectation operator; ‖h‖

0
is

the ℓ

0
-norm operator that counts the number of nonzero

taps in h; and ‖h‖
𝑝
stands for the ℓ

𝑝
-norm operator which

is computed by ‖h‖
𝑝

= (Σ

𝑙
|ℎ

𝑙
|

𝑝
)

1/𝑝, where 𝑝 ∈ {1, 2} is
considered in this paper.

2. System Model and Problem Formulation

Consider a frequency-selective multipath channel whose
impulse response is given by

h =

𝐿−1

∑

𝑙=0

ℎ

𝑙
𝛿 (𝜏 − 𝜏

𝑙
) , (1)
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where 𝐿 is the number of multipaths and ℎ

𝑙
and 𝜏

𝑙
are the

(complex) channel gain and the delay spread, respectively, of
path 𝑙 at time 𝑡. Hence, the 𝐿-length discrete channel vector
can be written as h = [ℎ

0
, ℎ

1
, . . . , ℎ

𝐿−1
]

𝑇. Let the OFDM
system use size-𝑁 discrete Fourier transform (DFT), and
its number of pilot subcarriers is 𝑁

𝑝
. To avoid intersymbol

interference (ISI), we assume that the length 𝑁

𝑔
of the zero-

padding cyclic prefix (CP) in the OFDM symbols is larger
than maximum delay spread 𝜏max, where 𝜏max ≥ 𝜏

𝑙
, 𝑙 =

0, 1, . . . , 𝐿 − 1. Suppose that 𝑋(𝑖) denote 𝑖th subcarrier in an
OFDM symbol, where 𝑖 = 0, 1, . . . , 𝑁 − 1. If the coherence
time of the channel is much larger than the OFDM symbol
duration 𝑇, then the channel can be considered quasistatic
over an OFDM symbol. Let y be the vector of received signal
samples in one OFDM symbol after DFT; then

y = Xh + z = XFh + z = Xh + z, (2)

where X = diag{𝑋(0), 𝑋(1), . . . , 𝑋(𝑁 − 1)} denotes diagonal
subcarrier matrix, h is the channel frequency response (CFR)
in frequency-domain, and z is assumed to be additive white
Gaussian noise (AWGN) with variance 𝜎

2. F is an 𝑁 × 𝐿

partial DFT matrix with its 𝑘th row which is easily given
by 1/

√
𝑁[0, 𝑒

−𝑗2𝜋𝑘/𝑁
, . . . , 𝑒

−𝑗2𝜋𝑘(𝐿−1)/𝑁
] and X = XF =

[x
0
, . . . , x

𝑙
, . . . , x

𝐿−1
] denotes an 𝑁 × 𝐿 equivalent time-

domain signal matrix. In addition, h = [ℎ

0
, ℎ

1
, . . . , ℎ

𝐿−1
]

𝑇

denotes a 𝐿 × 1 time-domain channel vector. Since h = Fh,
hence, the frequency-domain channel impulse response h lies
in the time-delay spread domain.

Assume that a binary random vector g =

[𝑔

0
, 𝑔

1
, . . . , 𝑔

𝐿−1
]

𝑇 denotes a taps’ position indicator of
sparse channel vector h which is generated from a Gaussian
mixture density (GMD) function as

{h | g} ∼ CN (0,R (g)) , (3)

where the covariance matrix R(g) is determined by position
indicator g. For a better understanding, we take R(g) to
be diagonal element with [R(g)]

𝑙𝑙
= 𝜎

2

𝑙
= 𝜎

2

1
for 𝑙 =

0, 1, . . . , 𝐿−1, implying that {ℎ
𝑙
| 𝑔

𝑙
}

𝐿−1

𝑙=0
are independent with

Gaussian distribution {ℎ

𝑙
| 𝑔

𝑙
} ∼ CN(0, 𝜎

2

1
). Assume that

the position indices {𝑔
𝑙
}

𝐿−1

𝑙=0
are satisfiedBernoulli distribution

with probability 𝑝

1,𝑙
; then the probability of nonzero and zero

channel taps of channel vector h can be written as

ℎ

𝑙
̸= 0 ⇐󳨐 Pr {𝑔

𝑙
= 1} = 𝑝

1,𝑙
,

ℎ

𝑙
= 0 ⇐󳨐 Pr {𝑔

𝑙
= 0} = 1 − 𝑝

1,𝑙
,

(4)

for 𝑙 = 0, 1, . . . , 𝐿 − 1. According to (4), one can easily find
‖h‖
0

= ‖g‖
1
. In real communication systems, broadband

channels are often described by sparsemodels [16, 17]. Hence,
we choose 𝜎

2

0
= var{ℎ

0
| 𝑔

0
} = 0 and 𝑝

1
= ∑

𝐿−1

𝑙=0
𝑝

1,𝑙
≪

1, so that h has relatively few dominant channel taps. In
other words, sparseness of channel vector h depends on the
probability 𝑝

1
as shown in Figure 2. Smaller probability 𝑝

1

implies sparser channel vector h and vice versa.
The research objective of this paper is to estimate the

sparse channel vector h using received signal vector y and
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Figure 2: Sparseness of channel vector h depends on the probability
𝑝

1
.

training signal matrix X. Hence, the system model can be
assumed to satisfy distribution as

[

y
h] | g ∼ CN(0, [ C (g) XR (g)

R (g)X𝑇 R (g) ])

= CN(0, [ C (g) 𝜎

2

1
XI
𝐿

𝜎

2

1
I
𝐿
X𝑇 𝜎

2

1
I
𝐿

]) ,

(5)

where C(g) := XR(g)X𝑇 + 𝜎

2

𝑛
I
𝑁

= 𝜎

2

1
XI
𝐿
X𝑇 + 𝜎

2I
𝑁

is
the covariance matrix of {y | g}. That is, {y | g} ∼

CN(0, 𝜎2
1
XI
𝐿
X𝑇 + 𝜎

2I
𝐿
).

3. Compressive Sensing Based Bayesian Sparse
Channel Estimation

In this section, compressive sensing based Bayesian sparse
channel estimation is proposed in two steps: (1) detect the
position set of dominant channel taps and (2) then estimate
sparse channel ̃h using MMSE algorithm. Obviously, how to
find the dominant channel taps’ position is a key technique
with low-complexity Bayesian method for estimating sparse
channels.

3.1. PositionDetection onDominant Channel Taps. According
to the well-known Bayesian rules, the posterior of position
indicator g can be written as

𝑃 (g | y) =

𝑃 (y | g) 𝑃 (g)
∑g󸀠∈𝐺 𝑃 (y | g󸀠) 𝑃 (g󸀠)

, (6)

where 𝐺 = {0, 1}

𝐿 denotes all of possible position index
sets of channel taps as shown in Figure 3. Equation (6)
implies that estimating {𝑃(g | y)}g∈𝐺 reduces to estimating
{𝑃(y | g)𝑃(g)}g∈𝐺. Due to the extremely computational com-
plexity in (6), the huge size of 𝐺 makes it impractical to
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compute 𝑃(g | y) or {𝑃(y | g󸀠)𝑃(g󸀠)} for all g󸀠 ∈ 𝐺 in the case
of high-dimensional broadband channels. By considering
sparse structure in channels, only posteriors of dominant
taps’ position are needed for sparse channel estimation.
Assuming that the set𝐺

∗
is responsible for position indicator

of dominant channel taps, then the search space in 𝐺

∗

rather than 𝐺 can be quite small and therefore practical to
compute. Hence, the posteriors of dominant channel taps can
be approximated by

𝑃 (g | y) ≈

𝑃 (y | g) 𝑃 (g)
∑g󸀠∈𝐺

∗

𝑃 (y | g󸀠) 𝑃 (g󸀠)
, (7)

for dominant channel set𝐺
∗
. Hence, exploiting the dominant

channel taps set 𝐺
∗
reduces to the search for g ∈ 𝐺

∗
which

only computes the dominant values of 𝑃(y | g)𝑃(g) in (7).
First of all, the probability density function (PDF) 𝑃(y | g)
for position indicator g ∈ 𝐺

∗
can be written as

𝑃 (y | g) =

1

√
(2𝜋)

𝐿 det (C (g))
exp(−

1

2

y𝑇C−1 (g) y) . (8)

By transforming it in log-domain for convenience, then
the position indicator (PI) PI(g, y) can be given by

PI (g, y) ≜ ln𝑃 (y | g) 𝑃 (g) = ln𝑃 (y | g) + ln𝑃 (g)

= ln𝑃 (y | g) +

󵄩

󵄩

󵄩

󵄩

g󵄩󵄩󵄩
󵄩0
ln𝑝

1
+ (𝐿 −

󵄩

󵄩

󵄩

󵄩

g󵄩󵄩󵄩
󵄩0

) ln (1 − 𝑝

1
)

= −

𝐿

2

ln 2𝜋 −

1

2

lndet (C (g)) −

1

2

y𝑇C−1 (g) y

+

󵄩

󵄩

󵄩

󵄩

g󵄩󵄩󵄩
󵄩0
ln

𝑝

1

1 − 𝑝

1

+ 𝐿 ln (1 − 𝑝

1
) ,

(9)

which is ametric of position indicator g. According to PI(g, y)
in (9), one can easily find that the position indicator depends
on received signal, channel length, position indicator, and
probability of nonzero taps. Due to the positive exponent
relationship 𝑃(g | y) = 𝑒

PI(g,y), PI(g, y) in (9) can also
be considered as a measure function of 𝑃(g | y) on
dominant channel taps. However, it is still unfeasible to
get the position information of channel in practical system
without considering channel estimation. According to [18],
the mathematical expectation of PI(g, y) can be given by

𝐸 {PI (g, y)} = 2𝑁 + 𝐿𝑝

1
(1 − 𝑝

1
)

× (ln[(

𝜎

2

1

𝜎

2
+ 1)

(1 − 𝑝

1
)

𝑝

1

])

2

.

(10)

For a given pair {g󸀠, y}, PI(g󸀠, y) can be used to compare
the mean 𝐸{PI(g󸀠, y)} and standard deviation√var{PI(g󸀠, y)}
in order to get a rough evaluation of (g󸀠, y).

To reduce the search space in position set, we resort to an
efficient method [13] to determine 𝐺

∗
as follows. The basic

idea is that the position set g of unknown channel yielding
the dominant values of 𝑃(g | y) is equivalent to the high
probability of PI(g, y). The search starts with g = 0 and the
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Figure 3: Graph illustration for all of possible position index sets of
channel taps.

initial position set is set as 𝐺(0). If we change each element in
g, then it yields 𝐿 position indicators. Consider all of position
indicators in a set and refer it to 𝐺

(1). The metrics PI(g, y)
for the 𝐿 PI vectors in 𝐺

(1) are then computed by (9), and
elements of 𝐺

(1) with the 𝐷 largest value of the dominant
channel tap are collected in 𝐺

(1)

∗
. For each possible dominant

taps’ set in𝐺

(1)

∗
, all positions of a second nonzero tap are then

considered, yielding ∑

𝐷

𝑖=1
(𝐿 − 𝑖) = 𝐿𝐷 − 𝐷(𝐷 + 1)/2 unique

binary vectors to store in 𝐺

(2). The PI(g, y) for all possible
vectors in 𝐺

(2) are then computed, and the elements of 𝐺(2)

with the 𝐷 largest value are collected in 𝐺

(2)

∗
. Then for each

candidate vector in 𝐺

(2)

∗
, all possibilities of a third dominant

channel tap are considered, and those with the 𝐷 largest
channel taps are stored in 𝐺

(3)

∗
. The process continues until

𝐺

(S)
∗

is computed, where 𝑆 can be chosen tomake Pr(‖h‖
0
> 𝑆)

sufficiently small to exploit all of channel sparsity. Note that
𝐺

(S)
∗

constitutes the algorithm’s final estimate of 𝐺
∗
and later

we denote ̂

𝐺

∗
as the final estimate. For better understanding

of the PI update of dominant channel taps, an intuitive
example is given in Figure 4, where the length of position
indicator g is set as 𝐿 = 5; the number of largest value of PI is
chosen as 𝐷 = 1, and the maximum number of nonzero taps
is set as 𝑆 = 3.

For use with the aforementioned Bayesian matching
pursuit (BMP) algorithm, we consider a fast metric update
which computes the change in PI(⋅) that results from the
activation of a position of nonzero tap. More precisely, if
we denote by g

𝑙
the vector identical to g except for the 𝑙th

coefficient, which is active in g
𝑙
but inactive in g (i.e., [g

𝑙
]

𝑙
= 1

and [g]
𝑙
= 0), then it is defined as

𝑑

𝑙
(g) ≜ PI (g

𝑙
, y) − PI (g, y) , (11)

to track the change of active positions. Note that PI(g, y) at
the initial step is set as

PI (0, y) = −

𝐿

2

ln 2𝜋 −

𝑁

2

ln𝜎

2

1
−

1

2𝜎

2

󵄩

󵄩

󵄩

󵄩

y󵄩󵄩󵄩
󵄩

2

2
+ 𝐿 ln (1 − 𝑝

1
) ,

(12)
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Figure 4: An intuitive example of position set selection on dom-
inant channel taps, where the green circle denotes zero while the
other colored circles denote one.
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2

1
I
𝐿
. To obtain the fast PI

update, we start with the property that, for any 𝑙 and g,

C (g
𝑙
) = C (g) + 𝜎

2

1
x
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𝑙
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for which the matrix inversion lemma implies

C−1 (g
𝑙
) = C−1 (g) − 𝜎

2

1
𝛽

𝑙
b
𝑙
b𝑇
𝑙
, (14)

C−1 (g) =

1

𝜎

2
I
𝑁

− 𝜎

2

1

𝑝

∑

𝑖=1

𝛽

(𝑖)b(𝑖)(b(𝑖))
𝑇

(15)

b
𝑙
≜ C−1 (g) x

𝑙
=

1

𝜎

2
x
𝑛
− 𝜎

2

1

𝑝

∑

𝑖=1

𝛽

(𝑖)b(𝑖)(b(𝑖))
𝑇

x
𝑙
, (16)
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where b
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𝑙
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:= (1 + 𝜎

2

1
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b
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Figure 10: Average BER performance versus SNR when 𝑝

1
= 0.1

and 𝑁 = 30.

multiplication is used [13]. According to previous analysis, we
can get

y𝑇C−1 (g
𝑙
) y = y𝑇 (C−1 (g) − 𝜎

2

1
𝛽

𝑙
b
𝑙
b𝑇
𝑙
) y

= y𝑇C−1 (g) y − 𝜎

2

1
𝛽

𝑙
(y𝑇b
𝑙
)

2

,

(17)

lndet (C (g
𝑙
)) = lndet (C (g) + 𝜎

2

1
x
𝑙
x𝑇
𝑙
)

= ln [(1 + 𝜎

2

1
x𝑇
𝑙
C−1 (g) x

𝑙
) det (C (g))]

= lndet (C (g)) − ln𝛽

𝑙
,

(18)

󵄩

󵄩

󵄩

󵄩

g
𝑙

󵄩

󵄩

󵄩

󵄩0
ln

𝑝

1

1 − 𝑝

1

= (

󵄩

󵄩

󵄩

󵄩

g󵄩󵄩󵄩
󵄩0

+ 1) ln
𝑝

1

1 − 𝑝

1

=

󵄩

󵄩

󵄩

󵄩

g󵄩󵄩󵄩
󵄩0
ln

𝑝

1

1 − 𝑝

1

+ ln
𝑝

1

1 − 𝑝

1

,

(19)

which, combined with (5), yield

PI (g
𝑙
, y) = PI (g, y) +

1

2

ln𝛽

𝑙
+

𝜎

2

1

2

𝛽

𝑙
(y𝑇b
𝑙
)

2

+ ln
𝑝

1

1 − 𝑝

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑑
𝑙(
g
)

.

(20)

In summary, 𝑑
𝑙
(g) in (18) quantifies the change in PI(⋅)

due to the activation of the 𝑙th position of g.
Please note that the cost of computing {𝛽

𝑙
}

𝐿−1

𝑙=0
via b
𝑙
:=

C−1(g)x
𝑙
and 𝛽

𝑙
:= (1 + 𝜎

2

1
x𝑇
𝑙
b
𝑙
)

−1 is O(𝐿𝑁

2
), if standard

matrix multiplication is used. As we described, the complex-
ity of this operation can bemade linear in𝑁 by exploiting the
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structure of C−1(g). Say that t = [𝑡

1
, 𝑡

2
, . . . , 𝑡

𝑝
]

𝑇 contains the
indices of active elements in g. Then from (14), we can get

C−1 (g) =

1

𝜎

2
I
𝑁

− 𝜎

2

1

𝑝

∑

𝑖=1

𝛽

(𝑖)b(𝑖)b(𝑖)𝑇x
𝑙⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=𝑐
(𝑖)

𝑙

(21)

when activating the 𝑙th position in g. The key observation
is that the coefficients {𝑐

(𝑖)

𝑙
}

𝐿−1

𝑙=0
need only to be computed

once, that is, when index 𝑡

𝑖
is active. Furthermore, {𝑐(𝑖)

𝑙
}

𝐿−1

𝑙=0

only need to be computed for surviving indices 𝑡
𝑖
. According
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when 𝑝
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to previous analysis in (20), the number of multiplications
required by the algorithm is O(LNPD) [13]. Moreover, the
complexity of the proposed algorithm could be reduced if the
smaller 𝐷 is adopted.

3.2. MMSE for Estimating Values of Dominant Channel Taps.
By utilizing the dominant taps’ posteriors, the sparse channel
can be estimated readily by MMSE algorithm as

̃h = 𝐸 {h | y}

= ∑

g∈𝐺
𝑃 (g | y) 𝐸 {h | y, g}

≈ ∑

g∈𝐺
∗

𝑃 (g | y) 𝐸 {h | y, g} .

(22)

According to the above introduction, compressive sens-
ing based Bayesian sparse channel estimation could be
implement by (20)–(22) with high estimation performance
and low complexity.

4. Computer Simulations

In this section, the proposed BSCE estimator adopts 1000
independent Monte Carlo runs for averaging. The length of
channel vector h is set as 𝑁 = 100. Values of dominant
channel taps follow Gaussian distribution and their positions
are randomly allocated within the length of h which is
subjected to 𝐸{‖h‖2

2
= 1}. The received signal-to-noise ratio

(SNR) is defined as 10 log(𝐸
𝑏
/𝜎

2

𝑛
), where 𝐸

𝑏
= 1.

The proposed method is compared to five conventional
sparse channel estimation methods using algorithms OMP
[19], CoSaMP [9], BCS [14], BCS-LAP [15], and SL0 [20]. It
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Table 2: Simulation parameters.

Transmitter

Data modulation BPSK
Number of subcarriers 𝑁

𝑑
= 256

Number of pilot symbols 𝑁 ∈ {20, 30, 40}

Length of CP 𝑁

𝑔
= 16

Pilot sequence Random Gaussian sequence

Channel
model

Fading Frequency-selective block
Number of channel taps 𝐿 = 100

Prob. of nonzero taps 𝑝 ∈ {0.1, 0.2}

Power delay profile Random Gaussian

Receiver Channel estimation BSCE
Data detection Zero forcing

was worth noting that these simulation parameters were cho-
sen in accordancewith detailed communication environment
in this paper. The stopping error criteria threshold is set as
10

−4 for all algorithms inMonte Carlo computer simulations.
The initial noise variance for BSC and BSC-LAP is set as
var(y)/10, where var(y) = (1/(𝑁−1)∑

𝑁

𝑛=1
(𝑦

𝑛
−𝑦))

1/2 denotes
standard derivation and 𝑦 = 1/𝑁∑

𝑁

𝑛=1
𝑦

𝑖
. In addition, the

Laplace prior for BCS-LAP is computed automatically which
was suggested in [15]. The parameters of FBMP algorithm
were initialized as 𝜆

1
= 0.01, 𝜇

1
= 0, 𝜎2 = 0.05, and 𝜎

2

1
= 2.

Computer simulation parameters are listed in Table 2.

4.1. MSE versus SNR. The estimation performance is evalu-
ated by average mean square error (MSE) standard which is
defined as

MSE {

̃h} = 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

h −

̃h󵄩󵄩󵄩
󵄩

󵄩

2

2
,

(23)

where 𝐸{⋅} denotes expectation operator and h and ̂h are
the actual channel vector and its channel estimator, respec-
tively. In Figures 5, 6, 7, and 8, we compare the average
MSE performance of the proposed channel estimator with
traditional sparse channel estimators with respect to different
channel sparseness, 𝑝

1
= 0.1 and 𝑝

1
= 0.2. As the

four figures show, our proposed method can achieve better
estimation performance than conventional methods. The
lower bound is given by least square (LS) method (oracle)
which utilized the channel position information. In this
figure, it is easily found that the proposed method obtained
lowerMSEperformance than conventionalmethods. In other
words, if the proposed estimator is applied in data detection,
smaller BER performance can be achieved when comparing
with conventional methods.

4.2. BER versus SNR. By using the above channel estimators,
signal transmission performances are evaluated as shown in
Figures 9, 10, 11, and 12. From the four figures, average BER
performance curves are depicted with respect to SNR for
binary phase shift keying (BPSK) data. We can see that the
BER performance of the proposed method is more close to
lower bound which is given by ideal channel estimator whose
nonzero taps’ positions are known. Here, only low signal
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modulation was considered for BER evaluation. It is very
easy to predict that our proposedmethod could improve BER
performance in case of high signal modulation.

4.3. Complexity Evaluation. To compare the computational
complexity of the proposed method with other methods,
CPU time is adopted for evaluation standard as shown in
Figures 13, 14, 15, and 16. It is worthmentioning that although
the CPU time is not an exact measure of complexity, it can
give us a rough estimation of computational complexity. Our
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simulations are performed in MATLAB 2012 environment
using a 2.90GHz Intel i7 processor with 8GB of memory and
under Microsoft Windows 8 (64 bit) operating system. For
comprehensive comparing between our proposed method
and other methods in different length of training signal
and different channel sparsity, we simulate their comparison
results in Figures 13–16. As the four figures shown, the
complexity of the proposedmethod is close to OMP and SL0-
based methods and lower than CoSaMP, BCS, and BCS-LAP
based methods. It is well known that the complexity of OMP
and SL0 is very low on sparse channel estimation [10, 22].
Hence, comparing with traditional methods, our proposed
method can achieve better estimation performance and low
complexity.

5. Conclusion

Traditional sparse channel estimation methods are vulnera-
ble to noise and column coherence interference in training
matrix. Their primary aim is an attempt to exploit sparse
structure information without a report of posterior channel
uncertainty. To improve the estimation performance, fast
Bayesian matching pursuit algorithm with application to
sparse channel estimation has not only exploited the channel
sparsity but alsomitigated the unexpected inferences in train-
ing matrix. In addition, the proposed method has revealed
potential ambiguity among multiple channel estimators that
are ambiguous due to observation of noise or correlation
among columns in the training signal. Computer simula-
tion results have showed that proposed method improved
the estimation performance with comparable computational
complexity when comparing with traditional methods.
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