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Abstract: Channel estimation problem is one of the key technical issues for broadband multiple-input–multiple-output (MIMO)
signal transmission. To estimate the MIMO channel, a standard least mean square (LMS) algorithm was often applied to adaptive
channel estimation because of its low complexity and stability. The sparsity of the broadband MIMO channel can be exploited to
further improve the estimation performance. This observation motivates us to consider adaptive sparse channel estimation
(ASCE) methods using sparse LMS (ASCE-LMS) algorithms. However, conventional ASCE methods have two main
drawbacks: (i) sensitivity to random scaling of training signal and (ii) poor estimation performance in low signal-to-noise
ratio (SNR) regime. The former drawback is tackled by proposing novel ASCE-NLMS algorithms. ASCE-NLMS mitigates
interference of random scale of training signal and therefore it improves its algorithm stability. It is well-known that stable
sparse normalised least-mean fourth (NLMF) algorithms can achieve better estimation performance than sparse NLMS
algorithms. Therefore the authors propose an improved ASCE method using sparse NLMF algorithms (ASCE-NLMF) to
improve the estimation performance in low SNR regime. Simulation results show that the proposed ASCE methods are
shown to achieve better performance than conventional methods, that is, ASCE-LMS by computer simulations. Also, the
stability of the proposed methods is confirmed by theoretical analysis.
1 Introduction

To achieve high spectral efficiency, broadband
multiple-input–multiple-output (MIMO) signal transmission
is one of the mainstream techniques in the next generation
cellular communications systems [1–3]. The MIMO
technology utilises multiple antennas to increase the
transmission rate by spatial multiplexing or improve the
reliability of communication by spatial diversity [4]. A
typical example is employing a very large number of
antennas at base station to make highly reliable data
communication possible with very low transmit power in a
frequency-selective fading channel [5]. The accurate
estimation of channel impulse response (CIR) is a crucial
and challenging issue in coherent modulation and its
accuracy has a significant impact on the overall
performance of communication system. Therefore
inaccurate channel state information (CSI) deteriorates the
aforementioned benefits. Since broadband signal propagates
over frequency-selective fading channel, one of the critical
challenges of MIMO communications is accurate CSI
estimation. The basic channel estimation problem is to
estimate the multiple channels seen by each receive
antenna. Besides, in a high mobility environment, the
MIMO channel is subject to time-variant fading (i.e.
doubly-selective fading).
In last decades, a number of channel estimation methods

were proposed for MIMO-orthogonal frequency division
multiplexing (OFDM) systems [6–14], which are grouped
into two categories.
The first category encompasses the linear channel estimation

methods, for example, least squares (LS) algorithm, which are
based on the assumption of dense CIRs [15]. The performance
of linear methods depends only on the size of MIMO channel.
Note that narrowband MIMO channels are often modelled as
dense channel model because of two main reasons: signal
transmission over frequency-flat fading (short delay spread)
and low-speed analog-to-digital converter (ADC) sampling
rate at the receiver [16]. As the number of channel taps
sampled is very small and most of taps are non-zero. In
contrast to the narrowband MIMO channel, broadband
MIMO channel is often modelled as sparse channel model
[17–19] because of two main reasons: signal transmission
over frequency-selective fading (long delay spread) and
high-speed ADC sampling at the receiver [16]. As the
number of channel taps sampled is very large and also
high-speed ADC sampling generates much more channel
taps than low-speed ADC sampling even in the same time
delay-spread. However, most of channel taps are zeros or
below the noise floor and only very few channel taps are
non-zero. For a better understanding of the difference
between dense channel model and sparse one, a typical
example of two channel models is shown in Fig. 1. The
linear channel estimation methods are known to be relatively
simple to implement because of their low computation
complexity [4–9].
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Fig. 1 Two typical channel model assumptions: dense and sparse
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The second category encompasses the sparse channel
estimation methods which use compressive sensing (CS)
[20–22]. Optimal sparse channel estimation often requires
its training signal to satisfy restrictive isometry property
(RIP) [23]. However, designing the RIP-satisfied training
signal is a non-polynomial (NP) hard problem [24]. The
alternative suboptimal sparse channel estimation methods
[12–14] have been proposed by utilising several empirical
training matrices, for example, random Gaussian matrix,
which satisfy RIP with a high probability [23]. However,
there exist several stable estimation methods at the cost of
extra high computational burden, especially in time-variant
MIMO systems. For example, sparse channel estimation
method using Dantzig selector was proposed for
doubly-selective fading MIMO systems [13]. This method
requires linear programming and hence it incurs high
computational complexity. To reduce complexity, sparse
channel estimation methods using greedy iterative
algorithms were proposed in [12, 14]. However, their
computational complexity depends on the number of
non-zero taps of MIMO channel.
Unfortunately, the aforementioned methods can neither

estimate the channel adaptively nor track the time-variant
channel effectively according to system requirements. To
estimate time-variant channel, adaptive sparse channel
estimation (ASCE) methods using sparse least mean square
(ASCE-LMS) algorithms were proposed in [25]. However,
conventional ASCE-LMS methods have two main
drawbacks: (i) sensitivity to random scale of training signal
and (ii) instability in low signal-to-noise ratio (SNR)
regime. To tackle the first drawback, in this paper, we first
propose a kind of novel ASCE methods using normalised
LMS (ASCE-NLMS) filtering algorithms for estimating
broadband MIMO channels. In addition, since normalised
least mean fourth (NLMF) filtering algorithm outperforms
the well-known NLMS [26] by achieving a better balance
between complexity and estimation accuracy. Likewise, we
propose another kind of ASCE methods using sparse
NLMF (ASCE-NLMF) filtering algorithms [27] to achieve
much better estimation performance than ASCE-NLMS. In
our previous research [28], a stable sparse NLMF algorithm
was proposed, which achieves a better estimation
performance than sparse NLMS algorithm [29] in
IET Commun., 2014, Vol. 8, Iss. 7, pp. 1032–1040
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single-input–single-output channel. Furthermore, simulation
results were only considered to confirm the effectiveness of
our proposed algorithms in [29]. Different from previous
works, in this paper, we propose stable adaptive filtering
algorithms for estimation MIMO channels and validate their
effectiveness via theoretical analysis and computer
simulation. The lower bounds which depend on the number
of non-zero channel taps and the number of antennas are
derived. Then, the superiority of the proposed algorithms is
verified by computer simulations in terms of mean-square
error (MSE) and bit error rate (BER).
The remainder of this paper is organised as follows. A

MIMO-OFDM system model is described and problem
formulation is given in Section 2. In Section 3, sparse
NLMS and sparse NLMF algorithms are introduced and
ASCE in MIMO-OFDM system is highlighted. Selected
computer simulation results are given in Section 4. Section
5 closes the paper by summarising the main results and
drawing some conclusions.

Notations: Throughout the paper, matrices and vectors are
represented by boldface upper case letters and boldface
lower case letters, respectively; the superscripts (·)T, (·)H

and (·)−1 denote the transpose, the Hermitian transpose, and
inverse operators, respectively; h‖ ‖0 is the ℓ0-norm operator
that counts the number of non-zero taps in h and h‖ ‖p
stands for the ℓp-norm operator which is computed by
h‖ ‖p= (

∑
i |hi|p)1/p, where p∈ (0, 2] is considered in this

paper; E{·} denotes the expectation operator.

2 System model and problem formulation

We consider a time-variant MIMO-OFDM system. Let us
denote the number of transmit antennas by Nt, the number
of subcarriers by K, and the maximum delay of the channel
by N. Frequency-domain signal vector at time t,

�xnt (t) = �xnt (t, 0), �xnt (t, 1), . . . , �xnt (t, K − 1)
[ ]T

, nt = 1, 2,

…, Nt is fed to inverse discrete Fourier transform (IDFT) at
the ntth antenna. Here we assume that the transmit power is
E{||�xnt ||

2
2} = KEs and Es is the average symbol power. The

resultant vector xnt (t) W FH�xnt (t) is padded with cyclic
prefix (CP) of length LCP ≥ (N − 1) to avoid inter-block
interference, where F is a K ×K DFT matrix with entries
[F]kq = 1/Ke−j2πkq/K, k, q = 0, 1, …, K − 1. The signal is
received by antenna after propagating the
frequency-selective fading channel. To simplify the problem
of ASCE for MIMO-OFDM systems, without loss of
generality, only one receive antenna is considered in the
following discussion, that is, nr = 1. It is straightforward to
extend to the multiple receive antenna case. Let us drop the
time index t. The received signal y after CP removal and
stacked input signal vector x = [xT1 , x

T
2 , . . . , x

T
Nt
]T are

related to each other as

y =
∑Nt

nt=1

hTntxnt + z = hTx+ z (1)

where z � CN (0, s2
n) is an additive noise Gaussian variable.

The MIMO channel vector h is written as

h = [hT1 hT2 · · · hTNt
]T (2)

where hnt (nt = 1, 2, . . . , Nt) is assumed to be an
1033
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Fig. 3 Geometrical interpretation of standard LMS and sparse
LMS algorithm

a Case with many solutions without sparse penalty (λslp = 0)
b Case with unique solution with sparse penalty (λslp > 0)
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equal N-length sparse channel vector from the ntth transmit
antenna to the receive antenna. Each channel vector hnt is
assumed to be only supported by T dominant channel taps.
A typical example of sparse multipath channel with N = 16,
which is supported by T = 3 dominant channel taps, is
depicted in Fig. 2. The ASCE is performed in an iterative
fashion as illustrated in Fig. 2. Let us consider the nth
channel estimation update. Following the system model in
(1), the corresponding channel estimation error e(n) is
defined as

e(n) := y− ỹ(n) = y− h̃
T
(n)x (3)

where h̃(n) denotes an estimate of MIMO channel h at the nth
update and ỹ(n) is the output signal. The goal of ASCE is to
estimate the MIMO channel vector h using error signal e(n)
and input training signal x. Traditional ASCE methods
using LMS (ASCE-LMS) algorithms were proposed to
exploit channel sparsity. Specifically, the cost function of
ASCE-LMS methods is formulated as [29]

Ls(n) =
1

2
e2(n)+ lslp h̃(n)

∥∥ ∥∥
p (4)

where 0≤ p < 1 and λslp≥ 0 denotes the sparse regulation
parameter which trades off the MSE and sparsity of h̃(n).
Fig. 3 shows a geometrical interpretation of (4). Sparse
structure of channel vector h̃(n) could be exploited when
λslp > 0 and it reduces to standard LMS algorithm when
λslp = 0. It is worth mentioning that exploiting sparsity
depends on the cost function in a sense that whether or not
there exists a convex point (unique solution) between
solution plane (many solutions) and sparse penalty function.
In Fig. 3a, there is no unique solution as the ℓ2-norm
constraint cannot find the convex point in the solution
plane. On the other hand, in Fig. 3b, unique solution is
obtained by ℓ1-norm constraint function. Without loss of
generality, corresponding update equation of ASCE-LMS
Fig. 2 Diagram of adaptive MIMO channel estimation method
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methods is written as

h̃(n+ 1) = h̃(n)− ms
∂Ls(n)

∂h̃(n)

= h̃(n)+ mse(n)x− rslp
h̃(n)

∥∥ ∥∥1−p

p sgn h̃(n)
( )

1+ h̃(n)
∣∣ ∣∣1−p

(5)

where rslp = mslslp and ms [ (0, g−1
max) is the step size of

LMS gradient descend; where ε is a positive parameter to
ensure bound of last term in (5); and γmax is the maximum
eigenvalue of the covariance matrix R = E{xxH}.

3 Estimating MIMO channels using adaptive
filtering algorithms

3.1 ASCE-NLMS methods

In this subsection, we introduce two ASCE methods using
sparse NLMS filtering algorithms, which are termed as
ASCE-NLMS. To exploit channel sparsity, two different
sparse penalties (i.e. ℓp-norm and ℓ0-norm) are considered
for cost functions. Basically, sparse penalties can compel
the small channel coefficients to zero with high probability
[19] so that the ASCE-NLMS exploits chanenl sparsity.
Firstly, we introduce ASCE using ℓp-norm NLMS

(ASCE-LP-NLMS) filtering algorithm. Based on (4) and
(5), update equation of ASCE-LP-NLMS is given by

h̃(n+ 1) = h̃(n)+ ms
e(n)x

x‖ ‖22
− rslp

h̃(n)
∥∥ ∥∥1−p

p sgn h̃(n)
( )

1+ h̃(n)
∣∣ ∣∣1−p (6)

Setting p = 0, it is degenerates into the ℓ0-norm NLMS
(L0-NLMS) [29] and the cost function of ASCE-L0-NLMS
becomes

Lsl0(n) =
1

2
e2(n)+ lsl0 h̃(n)

∥∥ ∥∥
0 (7)

where λsl0 is a regularisation parameter to balance the
estimation error and sparse penalty. Since solving the
ℓ0-norm minimisation is an NP-hard problem [24], we
replace the ℓ0-norm with an approximate continuous
IET Commun., 2014, Vol. 8, Iss. 7, pp. 1032–1040
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Fig. 4 Step-size μf(n) is adaptive variable to ensure NLMF-based
algorithms global stable μf∈ {0.5, 1.0, 1.5} and the square of
received signal error e2(n) ∈ (0.01, 104)
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function as [30]

h‖ ‖0≃
∑NtN−1

l=0

(1− e−b hl| |) (8)

According to the approximate function, L0-LMS cost
function can be revised as

Lsl0(n) =
1

2
e2(n)+ lsl0

∑NtN−1

l=0

(1− e−b hl| |) (9)

Then, the update equation of ASCE-L0-NLMS can be
derived as

h̃(n+ 1) = h̃(n)+ mse(n)x− rsl0bsgn h̃(n)
( )

e−b h̃(n)| | (10)

where ρsl0 = μsλsl0. It is worth mentioning that the exponential
function in (10) has high computational complexity. To
reduce the computational complexity, its first-order Taylor
series expansion is considered as [30]

e−b h| | ≃ 1− b h| |, when h| | ≤ 1/b
0, others

{
(11)

where h is any element of channel vector h. Finally, the
update equation of L0-NLMS filtering algorithm based
ASCE can be derived as

h̃(n+ 1) = h̃(n)+ e(n)x

x‖ ‖22
− rsl0Gl0 h̃(n)

( )
(12)

where Gl0(h̃(n)) is defined by

Gl0(h) = 2b2h− 2bsgn(h), when h| | ≤ 1/b
0, others

{
(13)

3.2 ASCE-NLMF methods

An improved ASCE-NLMF filtering algorithm is introduced
in this subsection. The proposed method is motivated by
the fact that standard LMF filtering algorithm can achieve
lower error performance bound than LMS [31]. Following
the pioneering work [31], a cost function Lf(n) of standard
LMF filtering algorithm is constructed as

Lf (n) =
1

4
e4(n) (14)

The update equation of ACE using LMF filtering algorithms
is given by

h̃(n+ 1) = h̃(n)− mf

∂Lf (n)

∂h̃(n)
= h̃(n)+ mf e

3(n)x (15)

where μf∈ (0, 2) is a gradient descend step-size controlling
convergence speed and steady-state performance. However,
the LMF filtering algorithm has several stability problems
that may put a limitation to its use in applications. The
stability of the LMF filtering algorithm depends highly on
several uncertain factors: initial setting of the adaptive filter
weights, input power of the adaptive filter, noise power and
unbounded regressors [27]. To improve the stability of the
IET Commun., 2014, Vol. 8, Iss. 7, pp. 1032–1040
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LMF algorithm, Eweda proposed a NLMF filtering
algorithm [27]. Then, the update equation of (ACE-NLMF)
filtering algorithm is given by

h̃(n+ 1) = h̃(n)+ mf
e3(n)x

x‖ ‖22 x‖ ‖22+e2(n)
( )

= h̃(n)+ mf (n)
e(n)x

x‖ ‖22

(16)

where mf (n) = mf e
2(n)/( x‖ ‖22+e2(n)) denotes a variable

step-size. For a better understanding the property of the
variable step-size, detailed discussion is given. Here, we
observe that when e2(n) ≫ x‖ ‖22, then μf(n)→ μf; when
e2(n) ≃ x‖ ‖22, then μf(n)→ μf/2; when e2(n) ≪ x‖ ‖22, then
μf→ 0. Hence, NLMF algorithm in (16) is stable which is
equivalent to NLMS algorithm in (6). The detail
interpretation about equivalence between them is given in
the Appendix. Assuming the statistical time is sufficiently
large so that x‖ ‖22= Ns2

x , variable step-size μf(n) can be
rewritten as

mf (n) =
mf

Ns2
x/e

2(n)+ 1
(17)

Above equation describes relationship between μf(n) and
square error of the received signal e2(n). Equation (17)
shows that μf(n) is an increasing function over e2(n) as
illustrated in Fig. 4. The variable step-size μf(n) decreases to
ensure stability of sparse NLMF as e2(n) decreases.
This behaviour also coincides with standard adaptive signal

processing theory [26]. Generally speaking, in the case of
large error, large step-size is preferred to accelerate the
gradient descend speed (convergence rate); in the case of
small error, small step-size is adopted to obtain accurate
estimation. Variable step-size used in our scheme can
balance well between channel estimation performance and
stability. According to the previous research in [29], if the
standard NLMS algorithm is stable, then its corresponding
ASCE method using sparse NLMS algorithm is also stable.
The main reason is that stability of NLMS has no direct
1035
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Table 1 Simulation parameters and their values

Parameters Values

number of transmit antennas Nt = 2
signal transmission scheme OFDM
channel fading random AWGN channel
gradient descend step-size: μs 0.5
gradient descend step-size: μf 1.5
regularisation parameter: λslp 2× 10−4s2

nlog(N/T )
regularisation parameter: λflp 2× 10−6s2

nlog(N/T )

regularisation parameter: λsl0 2× 10−3s2
nlog(N/T )

regularisation parameter: λfl0 2× 10−5s2
nlog(N/T )

Fig. 5 Performance comparison against iteration times

Fig. 6 Performance comparison against iteration times
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relation to sparse penalty strength. Indeed, its estimation
performance depends on sparse penalty functions. Without
loss of generality, if the standard NLMF algorithm is stable,
then its corresponding sparse NLMF algorithm is also
stable. The detail stability analysis of NLMF is given in the
Appendix. In the sequel, we propose several reliable
ASCE-NLMF approaches.
Different from ACE-NLMF [27] neglecting channel

structure information, we propose a ASCE method using
LP-NLMF (ASCE-LP-NLMS) filtering algorithm to exploit
sparsity in MIMO channel so that it can further obtain
performance gain. First, the cost function of ASCE-
LP-NLMF is constructed as

L flp(n) =
1

4
e4(n)+ l flp h̃(n)

∥∥ ∥∥
p (18)

where λflp is a regularisation parameter which trades off the
fourth-order mismatching estimation error and ℓp-norm
sparse penalty of h̃(n). The update equation of ASCE-
LP-NLMS can be derived as

h̃(n+ 1) = h̃(n)+ mf (n)
e(n)x

x‖ ‖22

− r flp

h̃(n)
∥∥ ∥∥1−p

p sgn h̃(n)
( )

1+ h̃(n)
∣∣ ∣∣1−p (19)

where ρflp = μfλflp depends on gradient descend step-size μf
and regularisation parameter λflp. Similarly, cost function of
ASCE method using L0-LMF algorithm is written as

L fl0(n) =
1

4
e4(n)+ l fl0 h̃(n)

∥∥ ∥∥
0 (20)

where λfl0 > 0 is a regularisation parameter which trades off
the fourth-order mismatching estimation error and
sparseness of MIMO channel. The corresponding updating
equation of ASCE method using L0-NLMF filtering
algorithm (ASCE-L0-NLMF) is given by

h̃(n+ 1) = h̃(n)+ mf (n)
e(n)x

x‖ ‖22
− b2gL0 h̃(n)

( )
(21)

where β2 = μfλfl0 and gL0(h̃(n)) is an approximate sparse
ℓ0-norm function which is defined in (15). The Cramér-Rao
lower bound (CRLB) of ASCE is derived in Section 4. By
utilising known channel position information, CRLB of
ASCE becomes CRLBsparse � O(T ).

4 Simulation results and discussions

In this section, we evaluate our proposed ASCE estimators.
The 1000 independent Monte Carlo runs is averaged for
evaluation. The length of channel vector hnt between each
transmit and receive antenna is set to N = 16 and the
number of dominant taps is set to T = 1 and 3. The
distribution of dominant channel taps follows Gaussian
distribution, which is subjected to E{||hnt ||

2
2} = 1, and their

positions are randomly selected within the length of hnt .
Received SNR is defined by ES/N0, where ES is the average
received power of symbol and N0 is the noise power. Here,
we set the SNR as 3, 6 and 9 dB. The step sizes and
regularisation parameters are listed in Table 1. The
estimation performance is evaluated by average MSE metric
1036
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which is defined as Average MSE{h̃(n)} =
E{||h− h̃(n)||22}, where h and h̃(n) are the actual MIMO
channel vector and its estimate at the nth update,
respectively. Note that the initial channel estimator h̃(0) = 0
is considered in computer simulation.
In the first example, the proposed methods are evaluated in

Fig. 5 (T = 1) and Fig. 6 (T = 3) at SNR = 3 dB. The step-size
of sparse NLMS algorithms and sparse NLMF algorithms are
set as μs = 0.5 [29] and μf = 1.5, respectively. As the two
IET Commun., 2014, Vol. 8, Iss. 7, pp. 1032–1040
doi: 10.1049/iet-com.2013.0665



Fig. 8 Performance comparison against iteration times
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figures show, ASCE-NLMS method achieves better
estimation performance than ACE-NLMS. Similarly,
ASCE-NLMF method also achieves better estimation
performance than ACE-NLMF method. We can also
observe that ASCE-NLMF method outperforms the ASCE-
NLMS method significantly but at the cost of higher
computational complexity (much more iteration times).
Relatively, the computational complexity of ASCE-NLMS
is very low [29].
In the second evaluation, the proposed methods are

evaluated at SNR regimes 6 and 9 dB as shown in Figs. 7
and 8, respectively. Once again, we can noted improvement
over conventional methods. Please note that computational
complexity of ASCE-NLMF method increases with SNR.
The main reason is that higher SNR provides smaller
received signal error square which reduces the variable
step-size μf(n) for adaptive updating.
In the third evaluation, in order to shed light on the entire

system performance in terms of error probability, numerical
simulation was adopted to evaluate the average BER in
Fig. 9. Indeed, the evaluation of average BER can be quite
cumbersome because it depends on the bit-to-symbol
mapping used [1]. To avoid the high computation, here, a
simple BER evaluation method via invertible exponential-
type approximations is adopted [32]. For the multilevel
phase shift keying (PSK) modulation and multilevel
quadrature amplitude modulation (QAM) schemes, their
average BERs can be computed by

BERM−PSK = a1e
−bgs sin

2 p/M( ) + a2e
−2bgs sin

2 p/M( ),
for M ≥ 4

(22)

and

BERM−QAM =2ka1e
−(1.5bgs/M−1) + (2ka2 − k2a21)e

−(3bgs/M−1)

− k2a22e
−(6bgs/M−1) − 2k2a1a2e

−(4.5bgs/M−1),

for k = (
���
M

√
− 1)/

���
M

√

(23)

respectively, where a1 = 0.3017, a2 = 0.438 and b = 1.0510
are the optimal curve-fitting coefficients; M is the multilevel
Fig. 7 Performance comparison against iteration times

Fig. 9 BER performance in different SNRs

a Multiple PSK modulations
b Multiple QAM modulations
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of modulation and γs is defined as

gs =
10SNR/10 1−MSE( )
10SNR/10MSE+ 1

(24)

Different signal modulation schemes, that is, multiple PSKs,
multiple QAMs, are considered. In addition, steady channel
estimators are considered as in the case of SNR = 6 dB and
number non-zero taps of each subchannel vector (e.g. hnt )
is 1. It is found that proposed sparse NLMF-type methods
outperforms sparse NLMS-type methods. According to
Fig. 9, this result could be predicted even if different
modulation schemes are used. Let us take the 16-PSK
modulation scheme, for example, as shown in Fig. 9a.
Since the steady channel estimators are obtained in low
SNR regime, that is, SNR = 6 dB, average BER can achieve
10−5 by using the proposed steady channel estimators.
Hence, the proposed methods are effective in various
modulation schemes based communication systems even in
the low SNR environment.
5 Conclusion and future works

In this paper, we proposed ASCE methods using sparse
NLMS and sparse NLMF algorithms for
frequency-selective fading MIMO-OFDM systems. Firstly,
system model was formulated. Secondly, cost functions of
the two proposed methods were constructed using different
sparse penalties, that is, ℓp-norm and ℓ0-norm. Simulation
results indicate that the proposed methods achieve a better
MSE performance than the standard ACE-NLMS method
without much increase in computational complexity.
Furthermore, the average BER performance of
ASCE-NLMS and ASCE-NLMF methods was evaluated
assuming different modulation schemes. The simulation
results also confirmed that the proposed ASCE-NLMF
methods are even better than ASCE-NLMS methods in
terms of MSE and BER metrics but have a higher amount
of computation complexity in terms of iteration times.
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8 Appendix

8.1 Comparisons between NLMS-type and
NLMF-type algorithms

To improve the stability of LMF, Eweda and Bershad in [27]
proposed a global stable NLMF algorithm with update
equation constructed by

h̃(n+ 1) = h̃(n)+ mf e
3(n)x

xHx xHx+ e2(n)
( ) (25)

where step-size μf should satisfy μf∈ (0, 2) to ensure the
proposed NLMF stability. Please note that the behaviour of
NLMF depends highly on the e2(n). If e2(n) ≫ xHx, then
the behaviour of NLMF is reduced to the behaviour of
standard NLMS, that is,

lim
e2(n)≫xH(t)x(t)

mf e
3(n)x

xHx xHx+ e2(n)
( ) = mf e(n)x

xHx
(26)

where e2(n) dominates in the (xHx + e2(n)). Likewise, if
e2(n) ≪ xHx, then the behaviour of NLMF is reduce to the
behaviour of traditional NLMS in (3), that is,

lim
e2(n)≪xHx

mf e
3(n)x

xHx xHx+ e2(n)
( ) = mf (n)e(n)x

xHx
(27)

where μf(n) = μfe
2(n)/xHx is a variable step-size of gradient

descend. As the e2(n) ≪ xHx, μf (n) = e2(n)/xHx→ 0. That
is to say, the variable step-size μf (n) can trade off stability
and convergence rate of proposed algorithm in each update.
Combining (26) and (27), the stability of NLMF-type
algorithms approaches to the well-known NLMS-type
algorithms. Note that this stable behaviour of NLMF
coincides with our proposed algorithm in [33]. In the case
of μf = μs = μ, it is worth mentioning that variable step-size
μf(n) of NLMF is always smaller than μs due to the fact that

mf (n) =
mf e

2(n)

x‖ ‖22 + e2(n)
= mf

x‖ ‖22/e2(n)+ 1
, m (28)

for any x‖ ‖22/e2(n) . 0. Hence, one can find that the
computational complexity of stable NLMF is always higher
than either LMF or NLMS. □
8.2 Lower bound of ASCE-NLMF channel
estimator

To derive the approximate CRLB of ASCE-NLMF channel
estimator h̃(n), assuming the position set Ω of non-zero
channel taps is known. First of all, we define the nth
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adaptive updating error vΩ(n) as

vV(n) = h̃V(n)− hV (29)

According to (3), ideal received signal error of non-zero
channel taps can be written as

eV(n) = y− y(n)

= y− h̃V(n)xV

= z− h̃V(n)xV

(30)

Then (n + 1)th updating channel error vΩ(n + 1) of optimal
sparse NLMF can be written as

vV(n+ 1) = vV(n)+
e2V (n)

xV
∥∥ ∥∥2

2+e2V (n)
· mf eV(n)xV

xV
∥∥ ∥∥2

2

≃ vV(n)+ g e2V (n)
( )mf eV(n)xV

xV
∥∥ ∥∥2

2

(31)

where xV
∥∥ ∥∥2

2= Ts2
x and T is the number of non-zero channel

taps of h̃(n). According to (31), the lower bound can be
achieved when e2V (n) ≪ xV

∥∥ ∥∥2
2, that is,

g(e2V (n)) ≃ e2V (n)/Ts2
x . Taking the expectation, we have

E g e2V (n)
( ){ } = E{e2V (n)}

Ts2
x

= E{z2}+ E{xHVxV}E{v
H
V(n)vV(n)}

Ts2
x

= s2
z

Ts2
x
+MSE(n) ≪ 1

(32)

where MSE(n) ≪ 1− s2
z/Ts

2
x . For simplification, we

consider xV
∥∥ ∥∥2

2= 1. Hence, the (n + 1)th adaptive updating
MSE performance of ASCE-NLMF channel estimator is
given by (see equation (33) at the bottom of the next page)
Since x and v(n) are independent, therefore, E{xTVvV(n)} = 0
and E{xTv(n)} = 0 according to [34, 35], we can obtain

E xTVvV(n)
[ ]2{ }

≃ s2
xE vTV(n)vV(n)

{ }
(34)

E xTV(t)vV(n)
[ ]2

xTV(t)xV(t)
{ }

≃ (T + 2)s4
xE vTV(n)vV(n)

{ }
(35)

E xTVvV(n)
[ ]4

xTVxV

{ }
≃ 3T + 12( )s6

xE
2 vTV(n)vV(n)
{ }

(36)

E xTVvV(n)
[ ]6

xTVxV

{ }
≃ 15T + 90( )s8

xE
3 vTV(n)vV(n)
{ }

(37)

E xTVxV
{ } ≃ Ts2

x (38)

For any random Gaussian-distribution noise z, according to
the paper [34], E{z4} = 3s4

z and E{z6} = 15s6
z . Then
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MSE(n + 1) in (33) is simplified to

MSE (n+ 1) ≃ 1− 6mf s
2
zs

2
x + 45(T + 2)m2

f s
4
zs

4
x

[ ]
MSE (n)

+ 135(T + 4)m2
f s

2
zs

6
x − 6mf s

4
x

[ ]
MSE2(n)

+ 15(T + 6)m2
f s

8
xMSE3(n)+ 15Tm2

f s
6
zs

2
x

(39)

Since nth adaptive update error MSE(n) is very small, using
high-order approximations limn→∞MSE2(n) = 0 and
limn→∞MSE3(n) = 0. Then, we can obtain

CRLBSparse

= lim
n
1MSE (n+ 1)

= 1− 6mf s
2
zs

2
x + 45(T + 2)m2

f s
4
zs

4
x

[ ]
CRLBSparse

+ 15Tm2
f s

6
zs

2
x

(40)

Based on (37), the CRLBSparse is derived by

CRLBSparse =
5Tmf s

4
z

2− 15 T + 2( )mf s
2
xs

2
z

(41)
MSE(n+ 1) = E vTV(n+ 1)vV(n+ 1)
{ }

= E vV(n)+ mf e
3
V(n)xV

[ ]T
vV(
[{

= E vV(n)+ mf z− vTV(n)xV
( )3[{

= E vTV(n)vV(n)
{ }− 2mf E xTVvV

[{

+ m2
f E xTVvV(n)

[ ]6
xTVxV

{ }
+ 1

+ 15m2
f E z4

{ }
E xTVvV(n)

[ ]2
xTV

{
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Please note that the CRLBSparse of ASCE-NLMF channel
estimator depends on the number of non-zero channel taps
T, noise variance s2

z , input signal variance s2
x and step-size

μf. It is well known that when the step-size μf→ 0,
CRLBSparse can be further derived by

CRLBSparse ≥ 2.5Tmf s
4
z Õ(T ) (42)

Note that limmf 
0 (2− 15(T + 2)mf s
2
xs

2
z ) = 2. Likewise,

when the CIR satisfies dense distribution then its
CRLBDense is derived by

CRLBDense ≥ 2.5Nmf s
4
z Õ(N ) (43)

Comparing (42) with (43), we can understand that the channel
estimator has a direct relation with the number of non-zero
channel taps. The two lower bounds can also explain well
why sparse methods can improve estimation performance
better than the traditional methods which neglect the
channel sparse structure.
n)+ mf e
3
V(n)xV

]}

xV(n)
]T

vV(n)+ mf z− vTV(n)xV
( )3

xV

[ ]}

(n)
]4}− 6mf E z2

{ }
E xTVvV(n)

[ ]2{ }

5m2
f E z2

{ }
E xTVvV(n)

[ ]4
xTVxV

{ }

xV

}
+ m2

f E z6
{ }

E xTVxV
{ }

(33)
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