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Abstract

Nonlinear sparse sensing (NSS) techniques have been adoptedlifmingecompressive
sensing in many applications such as radar imaging. Unlike ti& MSthis paper, we
propose an adaptive sparse sensing (ASS) approach using thghtedezero-attracting
normalized least mean fourth (RZA-NLMF) algorithm which depeodsseveral given
parameters, i.e., reweighted factor, regularization parametemigiatistep size. First, based
on the independent assumption, Cramer-Rao lower bound (CRLB) is derivied te
performance comparisons. In addition, reweighted factor selectethooh is proposed for
achieving robust estimation performance. Finally, to verify tgerahm, Monte Carlo-based
computer simulations are given to show that the ASS achieveslmtteh mean square error
(MSE) performance than the NSS.
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1 Introduction

Compressive sensing (CS) [1,2] has been attracting high attentompressive radar/sonar
sensing [3,4] due to its many applications such as civilian, milieand biomedical. The

main task of CS problems can be divided into three aspects asdollbysparse signal
learning: The basic model suggests that natural signals camorbpactly expressed, or
efficiently approximated, as a linear combination of prespeciftech ssignals, where the
linear coefficients are sparse as shown in Figure 1 (i.e., aiasiem zero). (2) Random
measurement matrix design: It is important to make a sensitigcwaich allows recovery



of as many entries of unknown signal as possible by using asméasurements as possible.
Hence, sensing matrix should satisfy the conditions of incohemmiteaestricted isometry

property (RIP) [5]. Fortunately, some special matrices (e.gus&an matrix and Fourier
matrix) have been reported that they are satisfying RIRigh probability. (3) Sparse

reconstruction algorithms: Based on the previous two steps, npErgesreconstruction

algorithms have been proposed to find the suboptimal sparse solution.

Figure 1 A typical example of sparse structuresignal.

It is well known that the CS provides a robust framework that edaoce the number of
measurements required to estimate a sparse signal. Many aordperse sensing (NSS)
algorithms and their variants have been proposed to deal with CS probleegsmainly fall
into two basic categories: convex relaxation (basis pursuit de-(BRDN) [6]) and greedy
pursuit (orthogonal matching pursuit (OMP) [7]). The above NSS-baSecth&hods have
either high complexity or low performance, especially in the oa$®w signal-to-noise ratio
(SNR) regime. Indeed, it was very hard to adapt trade-off leetWwegh complexity and good
performance.

In this paper, we propose an adaptive sparse sensing (ASS) methgdhgsireweighted
zero-attracting normalized mean fourth error algorithm (RZAVNR. [8] to solve the CS
problems. Different from NSS methods, each observation and correspaedisigg signal
vector will be implemented by the RZA-NLMF algorithm to redomst the sparse signal
during the process of adaptive filtering. According to the concretpirements, the
complexity of the proposed ASS method could be adaptively reduced wghonticing
much recovery performance. The effectiveness of our proposed methlamhfirmed via
computer simulation when comparing with NSS.

The remainder of the paper is organized as follows. The basprab&m is introduced and
the typical NSS method is presented in Section 2. In Section 3usi8$ the RZA-NLMF
algorithm is proposed for solving CS problems and its derivation prasdsighlighted.
Computer simulations are given in Section 4 in order to evaluateamnpare performances
of the proposed ASS method. Finally, our contributions are summarized in Section 5.

2 Nonlinear sparse sensing

Assume that a finite-length discrete signal vestsr[s;, s,,--, s\] ' can be sparse represented
in a signal domai, that is,

s:idih =Dh, 1)

whereh = [hy, hy,--+, hy] T is the unknowrK-sparse coefficient vectoK (« N) andD is anN x

N orthogonal basis matrix withd{ i = 1, 2;--, N} as its columns. Take a random
measurement signal matri%, and then the received signal vegyor [y1, -+, Ym,-, Ym]' can
be written as



y=Ws+ z
=WDh+ z (2)
=Xh+ z

whereX = WD denotes # x N random sensing matrix as

XI Xll cee )(]n cee X,'IN

X = X-rrn = Xml an XmN (3)

X-II\-/I XMl an XVIN_

andz = [z, Zn-, Zv]' iS an additive white Gaussian noise (AWGN) witlstdbution
CN(O,UﬁI M ) wherely denotes aM x M identity matrix. From the perspective of CS, the

sensing matrix satisfies the restricted isometry property (RiPdverwhelming probability
[5] so that the sparse sigriatan be reconstructed correctly by NSS methods, BRPN [6]
and OMP [7]. Take the BPDN as an example to ilatstthe NSS realization approach. Since
the sensing matriX satisfies RIP of ordeK with positive parametefc € (0, 1), i.e., X €
RIP(K, o) if

(1-8)h; < Xh3<(1+4,)h3 (4)

holds for allh having no more thal nonzero coefficients, then the unknown sparseovéct
can be reconstructed by BPDN as

hess = arg Iim{%y—th +/1h1}, (5)

h

wherel denotes a regularization parameter which balatheemean square error (MSE) term
and sparsity oh. If the mutual interference of sensing matixan be completely removed,
then the theoretical Cramer-Rao lower bound (CRaBhe NSS can be derived as [9,10]

~ ~ 2
CRLB[hnss} = E[h nss_ h2] = KNO-n . (6)

3 Adaptive sparse sensing

We reconsider the above system model (2) with tdpethe adaptive sensing case. At the
observation side, thath observed signak, can be written as

form=1, 2;--, M. The objective of ASS is to adaptively estimate timknown sparse vector
h using the sensing signal vectrr, and the observed signglh. Different from NSS



approaches, we proposed an alternative ASS methiog) the RZA-NLMF algorithm as

shown in Figure 2. Assume that,(n)=x7 h(n) is an estimated observed signal which

depends on signal estimatb(n) and hence theth observed signal error &s(n) = ym -

ym(n). Notice thatey(n) is in correspondence with timgh iterative error when using timth
sensing signal vectot,, andm = modf,M). Notice that modf denotes a modulo function,
for example, mod(5,3) = 2 and mod(5,2) = 1. Fifsdlh the cost function of the RZA-NLMF
algorithm is constructed as

Figure2 RZA-NLMF algorithm for ASS.

6(r) =5 (N A3 lodre] ). ®

wherelass> 0 is a regularization parameter which tradegladfsensing error and coefficient
vector sparsitys > 0 denotes a reweighted factor which enhancesxfioit the signal
sparsity at each iteration. A figure example tovghbe relationship between reweighted
factors and sparse constraint strength is givdfigare 3. According to the cost function (8),
the corresponding update equation can be derived as

Figure 3 Sparse constraint strength comparison using different reweights.
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where p = uisdle is a parameter which depends on initial step gize regularization

parameter, and threshold. In the second term of (9), if the coefficient meaigdes ofh(n)

are smaller than 4,/then these small coefficients will be replacedzbros in high probability
[11]. Here, it is worth noting that,s{n) is a variable step size:

Hen ()
s\ = 2 27 1 10
)= e 4o
which depends on three factors: initial step gizeinput signak,, and update iterative error
en(n). Sinceuiss is a given initial step size ang, is a random scaling input signal, hencgs
in Equation 10 can also be rewritten as



/JiSS

w0 e

(11)

which is a variable step size (VSS) that is adapivchange as square sensing eg(n); a
smaller error incurs a smaller step size to enswestability of the gradient descent while a
larger error yields a larger step size to accedeté convergence speed of this algorithm
[12]. According to the update equation in (9), pusposed ASS method can be concluded in
Algorithm 1.

Algorithm 1 ASSusing the RZA-NLMF algorithm for solving CS problems

Input: Random sensing matriX, observation signal vectd .

Output: h .

(1) Initialize h(0) =0 , n=1, set step sizé'iss, reweighted facto€, regularization parametet .

(2) Send dat&» andY» to the RZA-NLMF filter, where” = mod@ .M )+1

(3) While stop conditior“ﬁ(n 1) _ﬁ(n)"z <¢ or ™ = Mmax where€ >0 is a given error tolerance afhax is
a given maximum iteration number.

(4) Determine the input signdl» and observation signd» .

(5) Calculate errof» (") ase, (n) =y, —z h(n).

(6) Update D) = A0 + i n)e, ()2, Jle. s+ psan(i @) /(1+¢]f 6.))

(7) Iteration number increases by onen+1
(8) End while

As for the trademark of the performance comparisethe CRLB of the proposed ASS

method is derived in the subsequent. The signal &rdefined as/(n):=h(n)-h, ande(n)

can be written ag(n) = zn — V'(N)xm. T simply derive the CRLB, four assumptions are
considered in the subsequent analysis: (1) thetisfmal X, and noisez,, are mutually

independent, (2) each roxy, of the signal matriXX is random independent with zero mean
and random Gaussian variangéy, (3) noisez, is random independent with zero mean and

variances,?, (4) h(n) is independent oK. Assume that theth adaptive receive err@n) is

sufficiently small so thaén2(n) < Xm; hence,uass=uisgzn(n)/xm. According to (9), thaith
update signal errar(n + 1) can be written as

Mg ()X psgr(r]( n)j

%o 1+elh(n)

v(n+1)=v(n) : (12)

wheree,*(n) can be expanded as



&.(7=(2-v" (4%,
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Substituting (13) into (12)(n + 1) can be further represented as
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Hence, the steady-state mean square error (MSH)ecderived as
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Based on the abovementioned independent assumptiohisieal Gaussian noise assumption
[13], we can get the following approximations:

e2]= € 2= § 2]-o 1)
E[ 7,]=307, (17)



E[zf;]:15a§, (18)
E[X;Xm} = No?. (19)

Due to the independence betwern a v(n), {v'(n)x,} satisfies zero-mean Gaussian
distribution, that is, E[vI(n)x,] = O [13]. Hence, we can also get the following
approximations:

E_(VT(n)xm)z\v(n) =a?5V (Qv(9], (20)
E| (v (n)x) Iv(n) |=30 ELv (9 v( 9] (21)
e[ (v (n)x,,)" V(1) [=150° IV (v( 9] (22)

By neglecting the random fluctuations il(n)v(n) and using approximation equation
v (n)v(n) = E[v'(n)v(n)] = b(n), substitute (16) to (22) into (15) which can beified as

2 4 2
b(n+1) = {14. 27IUiSSJnN 6:Uiss.0-n:| b( n)

_ 2 2 .2
|:27:u|ssa-n 21uissag- + 1&5? bz(n) (23)
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wherel1(n) is incurred by the last term of (12) and it ipeessed by
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Since the adaptive update square ebfaj is too small (i.e.p(n) «< 1), hence, higher than
two-order errors are considered zero, b&n) = 0 andb®(n) = 0. The MSE can be derived
from (23) as

l+¢

(24)

__ 5u0n  Ng(e)
b(OO) B 9/,4550'50'2 - 202 27:u|§sa-n4_ a'{isp-nZ. (25)




Assume that ideal reconstruction vectttnr(n) can be obtained, then one can get

n-oo

- ~T -
limh(n), =h, and Iimnmsgr{h (n)j sgrEh( b]j: k, whereK denotes the number of

nonzero coefficients ih. Hence,[(«) in (25) can be derived as

@) = lim g(n)

n- oo

{M—zp}E (H(n)_hj Sg{r}( r)j ‘E Sgr(;(rﬁ Sgﬁﬁ( b]j
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Finally, the CRLB of the proposed ASS can be olatdias
- 5u. o’ 0°NK
RLB hass = = i5s_N - .
C [ ] b(OO) 9/,4330-50-2 - 202 27luiisa-n4_ Q'Iisg-n2 (27)

4 Computer ssimulations

In this section, the proposed ASS approach usiadribA-NLMF algorithm is evaluated. For
achieving average performance, 1,000 independemtéiGarlo runs are adopted. For easy
evaluation of the effectiveness of the proposedaagh, signal representation domains
assumed as an identity mattixx y and unknown signa is set as sparse directly. Sensing
matrix is equivalent to random measurement maitex,X = W. For ensuring thaX satisfies
RIP, W is set as a random Gaussian matrix [5]. Then sspeawefficient vecton equals tcs.
The details of the simulation parameters are listedable 1. Notice that each nonzero

coefficient ofh follows random Gaussian distribution &N(O,az) and their positions are

randomly allocated within the signal lengthtoivhich is subject t&{||h|p% = 1, whereE{}
denotes the expectation operator. The output sigrabise ratio (SNR) is defined as 20 log
(Edor’), whereEs = 1 is the unit transmission power. All of thepsizes and regularization
parameters are listed in Table 1. The estimatiofopeance is evaluated by average mean
square error (MSE) which is defined by

Table 1 Simulation parameters

Parameters Values
Signal length N =40
Measurement length M =20




Sensing matrix Random Gaussian distribution

Number of nonzero coefficients Ke{2,6, 10}
Distribution of nonzero coefficients Random Gaussia
Signal-to-noise ratio (SNR) (0 dB, 12 dB)
Initial step sizeu;s: 15
Regularization parametet: 5x 10°
Reweighted factor 2,000

Average MSI{h (n)] = E{h ~h( n)z] (28)

where h and h(n) are the actual channel vector and nth iterative adaptive channel

estimator, respectively. According to our previeusk [8], the regularization parameter for
RZA-NLMF is set asl = 5 x 10° so that it can exploit signal sparsity robustlincg the
RZA-NLMF-based ASS method depends highly on theerghted factor, hence, we first
select the reasonable factoby virtue of the Monte Carlo method. Later, we pame the
proposed method with two typical NSS ones, i.e DRF6] and OMP [7].

4.1 Reweighted factor selection

Since the RZA-NLMF algorithm depends highly on reyied factor, hence, selection of the
robust reweighted factor for different noise enmiments and different signal sparsities is a
typical important step for the RZA-NLMF algorithmt is well known that{;-norm
normalized least mean fourth (LO-NLMF) for CS cahiave optimal solution, but it is a NP-
hard problem in practical applications such aseneisvironment [2]. One can find that RZA-
NLMF reduces to LO-NLMF when the reweighted facapproaches to infinity. Due to the
noise interference, we should select the suitaseighted factor which not only can exploit
signal sparsity but also can mitigate noise interfee effectively. Hence, the reweighted
factor of RZA-NLMF is selected empirically. By meaof the Monte Carlo method, the
performance curves of the proposed ASS methoddifidrent reweighted factoese {2, 20,
200, 2,000, 20,000} with respect to different nunsbaf nonzero coefficients € {2, 6, 10}
and different SNR regimes (5 and 10 dB) are degiate Figures 4, 5, 6, 7. Under the
simulation setup considered, RZA-NLMF using 2,000 can achieve robust performance in
different cases as shown in Figures 4, 5, 6, 7mRtee four figures, one can find that sparser
signal requires larger reweighted factor but no enttran 20,000 in this system. This is
concise with the fact that stronger sparse pemaityonly exploits more sparse information
but also mitigates more noise interference.

Figure4 RZA-NLMF performance versusreweighted factors (K = 2 and SNR =5 dB).
Figure5 RZA-NLMF performance versusreweighted factors (K = 2 and SNR = 10 dB).
Figure6 RZA-NLMF performance versusreweighted factors (K = 6 and SNR = 10 dB).

Figure 7 RZA-NLMF performance versus reweighted factors (K = 10 and SNR = 10
dB).




4.2 Performance comparisons with NSS

Two experiments of ASS are verified in performagoeparisons with conventional NSS
methods (e.g., BPDN [6] and OMP [7]). In the fiesperiment, the ASS method is evaluated
in the case of SNR = 10 dB as shown in Figure 8tl@mone hand, according to this figure,
we can find that the proposed ASS method usindRBA-NLMF algorithm achieves much
lower MSE performance than NSS methods and eveh i CRLB. The existing big
performance gap between ASS and NSS is becausai$ig$RZA-NLMF not only exploits
the signal sparsity but also mitigates the noiserierence using high-order error statistics for
adaptive error updating. On the other hand, weatsm find that ASS depends on the signal
sparseness. That is to say, for sparser signal, &85 exploit more signal structure
information as for prior information and vice vergathe second experiment, the number of
nonzero coefficients is fixed @ = 2 as shown in Figure 9. It is easy to find tbat
proposed ASS is much better than conventional NS8eaSNR increases.

Figure 8 Perfor mance comparisons ver sus signal sparsity.

Figure 9 Performance comparisons ver sus SNR.

5 Conclusions

In this paper, we proposed an ASS method usingrit-NLMF algorithm for dealing with
CS problems. First, we selected the reweightecbfaahd regularization parameter for the
proposed algorithm by virtue of the Monte Carlo Inoet Later, based on the update equation
of RZA-NLMF, the CRLB of ASS was also derived based random independent
assumptions. Finally, several representative sitiama have been given to show that the
proposed method achieves much better MSE perforentdnan NSS with respect to different
signal sparsities, especially in the case of loviRSBgime.

Since the empirical reweighted factor was selefiie@®ZA-NLMF in the noise environment,
in the future work, we will develop the learningvedghted factor for RZA-NLMF in the case
of a noiseless environment. It is expected that REMF using learning reweighted factor

can achieve much better recovery performance witlsaerificing much computational
complexity.
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