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Abstract—In this paper, a green wireless communication system
in which base stations are powered by renewable energy sources is
considered. This system consists of a capacity-constrained renew-
able power supplier (RPS) and a base station (BS) that faces a pre-
dictable random connection demand from mobile user equipments
(UEs). In this model, the BS, which is powered via a combination
of a renewable power source and the conventional electric grid,
seeks to specify the renewable power inventory policy, i.e., the
power storage level. On the other hand, the RPS must strategi-
cally choose the energy amount that is supplied to the BS. An
M/M/1 make-to-stock queuing model is proposed to investigate
the decentralized decisions when the two parties optimize their
individual costs in a noncooperative manner. The problem is for-
mulated as a noncooperative game whose Nash equilibrium (NE)
strategies are characterized to identify the causes of inefficiency in
the decentralized operation. A set of simple linear contracts are
introduced to coordinate the system so as to achieve an optimal
system performance. The proposed approach is then extended to
a setting with one monopolistic RPS and N BSs that are privately
informed of their optimal energy inventory levels. In this scenario,
we show that the widely used proportional allocation mechanism is
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no longer socially optimal. To make the BSs truthfully report their
energy demand, an incentive compatible (IC) mechanism is pro-
posed for our model. Simulation results show that using the green
energy can present significant traditional energy savings for the BS
when the connection demand is not heavy. Moreover, the proposed
scheme provides valuable energy cost savings by allowing the BSs
to smartly use a combination of renewable and traditional energy,
even when the BS has a heavy traffic of connections. Also, the
results show that performance of the proposed IC mechanism will
be close to the social optimal when the green energy production
capacity increases.

Index Terms—Green communications, renewable power supply,
game theory, contract, mechanism design.

I. INTRODUCTION

ENERGY efficiency has emerged as a major research chal-
lenge in the next generation of wireless systems [1] to

reduce the carbon footprint and CO2 emission of wireless
networks. The electric bill has become a significant portion of
the operational expenditure of cellular operators, and the CO2

emission produced by wireless cellular networks are equiva-
lent to those from more than 8 million cars [2]. The largest
fraction of power consumption in wireless networks comes
from base stations (BSs), especially, when they are deployed
in large numbers [3]. With this premise, power saving in BSs
is particularly important for network operators. To reduce the
energy consumption of the BS, an online algorithm is used to
enable BSs to switch between on/off states according to traffic
characteristics [4]. At the same time, the role of renewable
energy generation will be a promising energy alternative for
future mobile networks. Understanding the interaction between
the random green power generations and the dynamics of the
energy consumption on wireless networks becomes a main
challenge facing future green communications design.

Manufacturers and network operators such as Ericsson,
Huawei, Vodafone and China Mobile have started developing
the BS with a renewable power source [5]–[7]. Relating to to
the operation of modern radio and data center networks, the
concepts such as demand response, supply load control, and the
model of the prosumer in the smart grid are explored in [8].
However, solar energy and wind energy are not controllable
generation resources like traditional generation resources such
as coal or natural gas. These resources are intermittent and can
have a random output. It is, hence, both desirable and challeng-
ing to design and optimize the green energy enabled mobile net-
works. The recent work in [9] lays out basic design principles
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and research challenges on optimizing the green energy
powered mobile networks, and points out that green energy
powered BSs should be properly designed and optimized to
cope with the dynamics of green power and mobile data traffic.

Considering the use of renewable energy sources, the authors
in [10] study throughput and value based wireless transmission
scheduling under time limits and energy constraints for wireless
network. The BSs’ transmission strategies that can be optimized
to reduce the energy demands without degrading the quality of
service of the network are investigated in [11]. The authors in [12]
propose a packet scheduling algorithm shaping the BS’s energy
demands to match the green power generation. To sustain traffic
demand of all users, green energy utilization is optimized by
balancing the traffic loads among the BSs [13]. The green energy
source aware user association schemes are examined in [14].
These research attempts mainly focus on adapting BSs’ trans-
mission strategies by using the green energy sources. However,
most of these works do not account for energy storage nor do
they investigate prospective energy storage strategies.

Since mobile traffic shows temporal dynamics, a BS’s energy
demands change over time. Instead of focusing on specific
techniques, the authors in [9] provide guidelines showing that
BSs could determine how much energy is utilized at the current
stage and how much energy is reserved for the future. The
authors in [15] propose to reduce the BS’s power consumption
at certain stages and reserve energy for the future to satisfy the
network’s outage constraint. The recent work in [16] provides
a stochastic programming formulation to minimize the BS’s
energy storage cost (i.e., the battery self-discharge cost) and
the cost of using the renewable energy and electric energy.
However, there are many issues that these works do not tackle
and remain to be addressed. For instance, the renewable source
and the BS generally belong to different operators. As a result,
to deploy renewable-powered BSs, it is important to under-
stand the interaction/competition between the renewable energy
supplier and the BS, especially considering the competition’s
impact on the QoS.

The main contribution of this paper is to propose a novel
noncooperative game model to investigate the optimized energy
allocation strategies of the renewable power supplier (RPS) and
the BS. On the one hand, the RPS incurs supply cost and the
possible QoS performance reducing cost. On the other hand, the
BS incurs energy reservation cost and also the QoS cost. They
will unilaterally choose their supply and reservation strategies,
respectively, to minimize their individual cost.We formulate the
problem as a noncooperative game between the RPS and the BS.

To solve the studied game, we propose an M/M/1 make-to-
stock queue model to analyze the competitive behavior between
the RPS and the BS. Different from the traditional queue, the
make-to-stock queue has a buffer of resource laying in between
the end user and the server. In our queue model, the RPS can be
viewed as a server. The order for energy storage replenishment
from the BS will be placed to the RPS server. We explicitly
characterize the NE strategies and present a set of simple
linear contracts to coordinate the system to optimize the overall
network performance and achieve an efficient point, under a
decentralized design. We then extend the result to a setting with
one monopolistic limited capacity RPS and N BSs. BSs are pri-

vately informed of their optimal energy inventory levels. If the
energy orders of a given BS exceed the available capacity, the
RPS allocates capacity using a publicly known allocation mech-
anism, i.e., a mapping from BS orders to capacity assignments.
Based on our model, an incentive compatible mechanism that
induces BSs truthfully report their energy demands is proposed.
In summary, we make the following contributions,

• We analyze the decentralized energy allocation optimiza-
tion for wireless networks with green the energy powered
BS. Using an M/M/1 make-to-stock queue model, we
investigate how the supply rate of RPS and the energy
storage/inventory level affect the QoS.

• We then model and analyze the interactions between the
RPS and a BS by using a noncooperative game. We prove
the existence and uniqueness of the equilibrium, and show
how various system parameters (i.e., the QoS reducing
cost and the cost splitting factor) affect the equilibrium
behavior.

• Based on the NE solution, we investigate how the BS
controls the use of the combination of renewable energy
and the traditional energy. We then explore the centralized
optimal system performance and propose a set of simple
linear contracts to overcome the inefficiency of the NE.

• We study the energy allocation mechanism design for
a system in which a limited capacity monopolistic RPS
provides energy to multiple BSs. We propose a truth-
inducing mechanism where BSs truthfully report their
optimal energy demand is a dominant equilibrium.

To the best of our knowledge, little work has been done
for developping decentralized algorithms that allow to capture
the renewable energy allocation strategies, particularly when
multiple BSs operate. One interesting open problem is to study
how the predictable traffics affect the BSs’ adaptive energy
management strategies and how the network performance is
affected by forecast renewable production capacity, as done in
this paper.

The rest of the paper is organized as follows. The system
model and the noncooperative game formulation are presented
in Section II. In Section III, we analyze the game and prove
the existence and uniqueness of the NE, and we propose a
linear contract to coordinate the system. Section IV examines
the renewable energy allocation mechanism design for a setting
with one limited capacity RPS and multiple BSs. We provide
numerical results and discussion in Section V. Section VI
concludes the paper.

II. SYSTEM MODEL

We start by describing, in detail, the different entities of the
studied system. The description of the competition for renew-
able power inventories and power supply capacity between a
BS and the RPS is then presented. The system model is shown
in Fig. 1.

A. System Components

1) Electric Grid and Renewable Power Supplier: In our
model, we use the term electric grid to refer to a controllable
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Fig. 1. The considered system in which the BS can use the controllable energy
from electrical grid and it can reserve unstable renewable energy for serving
UEs.

generation resource such as coal, natural gas, nuclear, or hydro.
Existing research works, i.e., [9], often make a similar assump-
tion to investigate the energy allocation from the controllable
electric grid or dynamic green energy source for BSs. The
power supplied from the electric grid has a price per unit of
quantity, per unit of time. We assume that in a certain pro-
duction period, the supplier output power is a random variable
with mean μ0 (unit of energy per unit of time).1 From the
BS’s perspective, the RPS’s production facility is modeled as
a single-server queue with service times that are exponentially
distributed with rate μ which is referred to as the renewable
energy supply rate. The RPS is responsible for choosing the
parameter μ (μ < μ0), which accounts for the fact that the RPS
has a finite capacity.

2) Renewable Energy Powered Base Station: We consider
a single base station part of a wireless system that is used to
provide mobile and wireless access. The energy consumptions
of the BS include the energy coming from different components
such as power amplifier, signal processing unit, antenna, and
cooling [18]. The static power consumption is constant when
the base station is active and does not have any radio trans-
missions. We assume that the static component, i.e., the power
consumption of the rectifiers, is served by the stationary con-
ventional energy source. For example, the work in [19] shows
that the rectifiers could consume 100 W for a microcell BS. In
contrast, the dynamic power consumption includes the digital
signal processing, the transceiver and the power amplifier and,
thus, it can fluctuate during time due to variations of the load on
the base station. The amount of power consumption depends on
the type of base stations [19]. In this paper, we take a typical
microcell base station as an example and use the data from
[16], i.e., the dynamic power consumption coefficient is 24 W
(Joule/s) per connection.

The connection demand of the wireless base station depends
on the usage condition, and can be predicted from the usage
history. Indeed, modeling the arrival of a new wireless call or
message arrivals in packet-data network as a Poisson arrival
process is extensively studied [20]–[22]. Moreover, research
works such as in [23] showed that traffic demands are highly
predictable. Although even for the queuing systems whose
arrival or service rates have general distributions, the heavy

1For example, the authors in [17] investigated an approach to estimate the
standard deviation of the change in output of solar energy over some time
interval (such as one minute), using data taken from some time period (such
as one year).

traffic condition will generate mean queue lengths that coincide
with M/M/1 queue results [24].

We model the connection demand as a homogeneous Poisson
process with rate λ. The incoming connections are assumed to
form a single waiting line that depends on the order of arrival,
i.e., the first-come first-served discipline. We assume that the
BS consumes a unit transmission energy, E, for each connec-
tion in the downlink. Each connection generates a revenue per
unit time to the BS.

To serve the connections by using the intermittent renewable
energy, the BS should charge the green energy to an energy
storage unit. If the energy storage is less than a certain level, the
BS will replenish the green energy from the RPS. The BS will
pay a price P1 to the RPS for reserving each unit energy. The
BS’s power reservation strategy needs to be varied dynamically
and periodically as renewable production condition changes.
Hereinafter, we consider one such production period. Notice
for the ideal case that the BS can be supplied with enough
green power, there is no need to analyze green energy allocation
strategies and the QoS cost again.

The BS incurs a reservation cost for holding energy in the
storage unit. Such a reservation cost includes both physical and
financial components. For example, the stored energy can de-
crease even without consumption. Such a physical component
is referred to as the self-discharge phenomenon [16]. On the
other hand, the financial holding cost could be proportional to
the energy’s market price, i.e., the BS can sell the reserved en-
ergy to other consumers instead of holding it in the storage [25].
The future smart grid is able to integrate and exchange different
energy flows among various users through the on-gird physical
and cyber infrastructures [26]. Particularly, the cyber infras-
tructure which can perform energy trading consists of a large
number of communication and computing networks, wide-area
monitors, various sensors, and control functions together with
necessary information processing functions. Thus, the BS or
any other users that are on the grid will have the capability to
sell the reserved energy to other consumers instead of holding
it in the storage. Moreover, some electricity companies have
already offered initial energy buy-back programs [27].

Both the self-discharge cost and the financial holding cost
can be proportional to the average energy reservation level. As
a result, we use the term of c · Is per unit time to evaluate the
energy reservation cost, where Is is the average energy reserva-
tion level and c is the cost coefficient. Note that, increasing the
energy reservation results in less backlogged connections, but
yields a higher reservation cost.

B. Renewable Energy Supply-Inventory Game

When a connection enters the queue of the BS, it will be
provided access to the spectrum only if its energy requirement
amount is available in the storage. The energy consumption
of each connection is one unit, since we assume that each
connection lasts one time unit. If there is not enough energy
in storage, the UE has to wait until the BS reserves sufficient
energy. We say that such a connection experiences a backlogged
access. The BS should make a decision on the desired energy
reservation level s. If the energy storage is less than s units, the
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BS will place an order of one unit energy from the RPS.2 Such
a decision means that the BS should initially charge the energy
storage to s units. Otherwise, when game begins, the BS will
place energy replenishment orders irrespective of whether there
are connections, arrivals or not. Hence, the energy reservation
level is also referred to as energy inventory strategy.

The service process of a queuing system is characterized by
the distribution of the time to serve the arrival of the traffic
pertaining to a given customer. In this regard, the scheduling
process allows one to control the service that is allocated to
the traffic classes [29]. With regards to the RPS, its output is a
random variable and has the capability to generate an average
of μ0 units energy per unit time in a certain time duration. At
the same time, each arriving radio connection will consume
one unit energy. The supply rate μ of the RPS implies that an
average of μ (μ ≤ μ0) units energy can be scheduled to serve
the connections in unit time. Thus, the energy supply of the RPS
can be modeled as the service process of a queue. Moreover, a
stock can be introduced to improve the QoS, i.e., to reduce the
average queue length. If multiple connection requests arrive at
the same time, multiple energy orders will be placed to the RPS
at the same time. A standard queue system will serve the orders
according to a First-in-First-out principle.

The value of dynamic energy consumption is related to
the accessed connections. It can be determined by the arriv-
ing accessing requests and the information from the resource
scheduling process. Generally, the radio access request infor-
mation is transmitted over the public control channel by mobile
users [30]. Then, at the beginning of each unit time, the MAC
layer of the BS can obtain the instantaneous energy demand
value, and the energy supply requests can be placed to the
RPS accordingly. The key metric for a queuing system is the
stationary average queue length which is directly related to
the total QoS cost. Accordingly, we mainly investigate this
statistical metric instead of using the the instantaneous state of
the queuing system in our model.

If a connection that is at the head of the queue finishes the ac-
cess, the on-hand reservation decreases by one. Thus, an access
request is equivalent to an energy reservation request, and is
placed to the RPS at the time instant when a connection arrives
as well, i.e., at each epoch of the demand process. The back-
logged access might generate detrimental consequences on the
system. The QoS will be deteriorated, the UE will wait and thus
will have a higher delay. To model this QoS degradation, each
backlogged access will be assigned a cost b for the system. This
cost is split between the RPS and BS, with a fraction α ∈ [0, 1]
charged to the BS. The parameter α is exogenously specified in
our model. Its value will depend on a variety of factors, such as
the structures of the market and the UEs’ expectations.

We assume that the system state, the connection demand rate,
and the cost parameters are known by each agent. The BS and
the RPS select the renewable energy base reservation s and
the energy supply rate μ, respectively, to maximize their own

2As shown in in [28], the length of charging pulses ranging from milliseconds
to a second, are scaled to correlate with the electrochemical response times
in the batteries. Also, the charging efficiency which determines the percent of
energy lost during charge achieves to about 90%.

Fig. 2. The renewable energy supply-inventory game model in which the
energy supply-inventory strategies can be viewed as a kind of energy allocation
strategies.

profits. The competition between the BS and the RPS is shown
in Fig. 2. Let D define the average number of backlogged
accesses, and Is be the average energy storage level per unit
time. X(μ) represents the operation cost for the RPS with
power supply rate μ. Recall that c is the reservation cost factor.
Then, the average cost per unit time for the BS is given by:

Co(s, μ) = c · Is + αb ·D, (1)

and the average cost per unit time for RPS will be:

Cr(s, μ) = (1− α)b ·D +X(μ). (2)

Our goal is to study the scenario in which the RPS can sell its
energy to different entities (for example the BS and the grid).
This is captured in our model by considering the changes in the
load factor of the RPS. This load factor change will generate
the operation cost for the RPS and is represented by X(μ) in
the utility function.

In the next section, we will use an M/M/1 make-to-stock
queue to show how Is and D are determined by s and μ. Here,
we just describe the basic model and principles. Because the
unsatisfied connection request is backlogged, and we use an
average cost criterion, it follows that the agents’ revenues are
independent of their costs. For example, if the RPS supplies
energy to the BS at a fixed wholesale price w (per unit energy
in a time unit) and the average number of accesses is λ in one
unit time, then the average revenue of the RPS is w · λ per unit
of time which is irrelevant to its strategy μ.3

Thereafter, profit maximization and cost minimization lead
to the same solution. For convenience, we adopt a cost-
minimization framework. The RPS and the BS choose their
strategies (i.e., they must choose their strategy before observing
the other agent’s strategy) with the objective to optimize their
individual energy reservation-related costs. Given the model,
the problem is formulated as a noncooperative strategic game
[33] in which : 1) the players are the BS and the RPS, 2) the
strategy of the BS and the RPS are s and μ, respectively, and
3) the cost functions are given by the following equations (3)
and (4).

III. GAME AND EQUILIBRIUM ANALYSIS

To analyze this game, we first obtain the average costs for
the two players for any given pair of strategies (s, μ). We then

3If the UE departs and never returns, that potential revenue is lost. This will
lead to a totally different analysis, and be left for future work.
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Fig. 3. The proposed make-to-stock queue which has an energy storage laying
in between the end mobile user and the RPS.

prove that the game has a unique Nash equilibrium solution.
Finally, we compare the centralized optimal solution with the
Nash solution.

A. Cost Analysis

In an attempt to isolate and hence understand the impact of
energy inventory for the BS, we consider a queuing model with
an attached reservation: the mobile connection (traffic transmis-
sion) demands arrive at a rate of λ connection demands/unit
time and are served by the green energy in the storage; At the
time instant when a connection arrives, the BS place an energy
replenishment order to the RPS which satisfies the order with a
rate μ. In this regard, the radio access network request can be
viewed as being served at a rate of μ units energy/unit time.
Consequently, the energy replenishment operation at the BS
behaves as a single-server queue whose service rate is μ and
demand rate is λ. Such a queuing policy which is illustrated
in Fig. 3, constitutes the central theme of the subsequent cost
analysis.

Assuming one wireless connection consumes one unit energy
in one unit time is a common assumption in existing research
works [9], [16], [19]. Here, we clarify how to decide the unit en-
ergy and unit time. In wireless networks, the transmission time
interval (TTI, several milliseconds) is a parameter that refers
to the encapsulation of data from higher layers into frames
for transmission on the radio link layer, thus related to the
duration of a transmission on the radio link. For example, the
radio frame of an LTE system lasts 10 milliseconds [31]. Each
connection could account for a number of td TTIs. The dynamic
power consumption coefficient is E W (Joule/s) per connection.
Thus, each connection demand consumes td · TTI · E Joule in
unit time. In other words, the time unit is set to be td · TTI
and each user may generate several connection demands in a
certain time duration. The value of td · TTI can range from a
few milliseconds to a few seconds as it is related to QoS cost
coefficient, since the number of backlogged connections are
calculated over these time intervals. Without loss of generality,
in simulations, the time unit td · TTI is set to be 1 second. For
example, the energy unit can be 24 Joule.

Such a queuing policy which is illustrated in Fig. 3, consti-
tutes the central theme of the subsequent cost analysis. Let pj
be the probability that the BS has j connections in its queue
at steady state. Based on the classical birth-death process in
queuing theory [29], we have, for the statistical equilibrium,
pj = ρjp0, j = 1, 2, 3, . . . where p0 = 1− ρ, and the condition
for a stable queuing system is given by ρ = λ

μ < 1 where ρ

represents the load factor. Let Nq be the stationary number of
connections waiting at the queue. Then, Nq is geometrically
distributed with mean ρ

1−ρ .
To simplify our analysis, we assume that Nq is a continu-

ous random variable when Nq ≥ s, and replace the geometric
distribution with an exponential distribution with parameter
ν = 1−ρ

ρ = μ−λ
λ . This continuous-state approximation can be

justified by a heavy traffic approximation, i.e., the traffic of
arriving connections, and generates mean queue lengths that
coincide with M/M/1 results for all server utilization levels [24].
The heavy traffic approximation allows the incorporation of
general inter-arrival time and service time distributions.4 In
queueing theory, an M/M/1 queue represents the queuing sys-
tem having a single server, where arrivals are determined by
a Poisson process and job service times have an exponential
distribution. The average queue length depends on the load
factor, which is the ratio of the service demand rate and the
service supply rate. The heavy traffic condition means that the
queuing system has a large load factor, which corresponds to
the scenario that there is not enough green energy generation for
wireless networks. For example, future BSs may request green
energy from the small capacity energy supplier, i.e., the on-roof
home green energy equipments. Moreover, our formulation is
also suitable to model small base stations operating in rural
areas, which may not have continuous access to the green
energy supplier with a high capacity.

Hence, under such a condition, independent of the distribu-
tion of the RPS’s random output, we can use an exponential
distribution to analyze it. Although this continuous-state ap-
proximation may lead to slightly different quantitative results
(the approximation tends to underestimate the optimal discrete
energy reservation levels), it has no effect on obtaining an in-
sight into the system, which is the objective of our study. No-
tice, the make-to-stock queuing model is essentially a queuing
system which can be used to examine scenarios in which
customers arrive for a given service, wait if the service cannot
start immediately and leave after being served. The stock model
is just introduced to reduce the average waiting length. In other
words, the storable property of the energy can enable us to
design the storage strategies for using the green energy in the
queueing service system.

Next, we consider the average power supply cost of the RPS,
X(μ) in equation (2). Recall that the maximum power produc-
tion rate of the RPS is μ0. The RPS provides the power for the
BS as a production process that has exponentially distributed
inter-production times with rate μ. Then, the remaining supply
capacity of RPS can be modeled as a Possion process with rate
μ0 − μ. Thus, if there are power supply requests from other
entities (i.e., other base stations or home appliances) with rate
λ0, their load factor will be increased by:

�μ =
λ0

μ0 − μ
− λ0

μ0
=

λ0μ

μ0(μ0 − μ)
.

4Note that the number of servers is asymptotically negligible after normal-
ization. Moreover, in the non exponential case, ν would be divided by one-half
of the sum of the squared coefficients of variation of the inter-arrival and service
time distributions, (c2ia + c2is)/2.
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Then, X(μ) = cs�μ represents the operation cost for the
RPS. The average queue length depends on the load factor,
which is the ratio of the service demand rate and the service
supply rate. Thus, the load factor is crucial to a queuing system.
If the load factor approaches 1, then the average queue length
will go to infinity. As a result, the QoS of the queue system will
be totally destroyed. For a stationary energy source with infinite
capacity, it is reasonable to assume that it will not bear any QoS
cost after deployment. However, a random energy source has
a direct impact on the QoS, which may then impair the user’s
experience of the network operator. This will be detrimental to
the operator who may now decide to choose another energy
supplier. As a result, the original supplier will lose revenues.
In this regard, such an impact will be a major concern in green
energy markets. Hence, we consider that the RPS will also incur
certain QoS cost in the system.

Without loss of generality, we normalize the expected vari-
able cost per unit time by dividing it by the reservation cost
rate c. Toward this end, we normalize the cost parameters as
follows:

b̃ =
b

c
, c̃s =

cs
c

λ0

μ0
, c̃ =

c

c
= 1.

To ease the notation, hereinafter, we omit the s̃ from these
parameters. There is a one-to-one correspondence between ν
(we call it as normalized energy supply rate) and the RPS’s
decision variable μ. Hence, the steady-state expected normal-
ized variable cost per unit time for the RPS and BS can be
investigated in terms of the two decision variables s and ν.

Proposition 1: The BS’s average cost can be expressed by:

Co(s, ν) = s− 1− e−νs

ν
+ αb

e−νs

ν
, (3)

while the RPS’s average cost is:

Cr(s, ν) = (1− α)b
e−νs

ν
+ cs

ν + 1

ϕ− ν
, (4)

where ϕ = μo

λ − 1.
Proof: With continuous-state approximation, the ex-

pected energy reservation level of the BS can be expressed as,

Is = E
[
(s−N)+

]
=

∫ s

0

(s− x)νe−νxdx = s− 1− e−νs

ν
.

The expected backlogged users is,

D = E
[
(N − s)+

]
=

∫ ∞

s

(x− s)νe−νxdx =
e−νs

ν
. (5)

Substituting the above equations into (1) yields (3). Substituting
X(μ) and (5) into (2) yields (4). �

The backlogged cost and the reservation cost associated
with the queue model are illustrated in Fig. 4. The system
operates on a periodic basis, i.e., several hours during which the
energy generation capacity and connection demand rate can be
predicted. At the beginning of each period, the renewable power
production capacity and the access demand can be predicted
from the history record and atmospheric parameters which are
available from monitoring devices or sensors in the control and

Fig. 4. Illustration of renewable energy reservation cost and the backlogged
cost.

Fig. 5. Illustration of the operation of the system.

monitoring system of a smart grid [22]. Note that our model
assumes fixed energy prices and is a one-shot game. Thus, no
matter whether the RPS has a storage or not, it must satisfy
the energy requests from the BS rather than store the energy.
If the RPS decides to sell its electricity at a different time
while accounting for future QoS impacts and different energy
prices, a new repeated game model over a given time horizon
should be designed. This interesting extension is currently not
investigated here, and will be subject of future research.

The choice of a strategy s by the BS corresponds to placing
an energy replenish order to the RPS. Thus, at the beginning
of the game, the BS should have charged its energy storage to
an inventory of s energy units. The source of the charge can
be the electric gird or the RPS. When the game begins, the
RPS supplies the energy with the determined rate ν and the
BS serves the UEs with the renewable energy, thereby striking
a balance between reducing the energy bill and maintaining the
QoS. The operation of the system is shown in Fig. 5.

B. System Performance and Game Solution

In this subsection, we will characterize the Nash equilibrium
(NE) strategies [32] and identify the causes of inefficiency in
the decentralized operation. Toward this end, we first prove the
existence and uniqueness of the NE and then compare the Nash
solution with the centralized optimal solution. Subsequently,
we present a set of simple linear contracts to coordinate the
system. Finally, we discuss the adaptive power management of
the BS based on the NE solution.

1) The Nash Equilibrium of the Game: In a decentralized
game-theoretic formulation, the BS and the RPS select their in-
dividual strategies s and ν to minimize their own cost functions.
In other words, the BS will choose s to minimize Co(s, ν), as-
suming that the RPS chooses ν to minimize Cr(s, ν); likewise,
the RPS will simultaneously choose ν to minimize Cs(s, ν),
assuming the BS chooses s to minimize Co(s, ν). A pair of
strategies (s∗, ν∗) is an NE if neither the BS nor the RPS can
gain from a unilateral deviation from these strategies, i.e.,

s∗(ν) = argmin
x

Co(x, ν
∗),

ν∗(s) = argmin
x

Cr(x, s
∗). (6)
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There are two important issues regarding the determination
of the NE: existence and uniqueness. We will show that a NE
always exists in the game and the uniqueness of the equilibrium
is always guaranteed. First, let us define an auxiliary function in
terms of the BS’s backlogged share α, backlogged cost b, and
RPS’s supply cost cs:

f =

√
b− αb+ (b− αb) ln(1 + αb)

cs(1 + αb)
.

The backlogged cost split factor α ≤ 1, thus f is always a
real value. The function f is used to make the Nash solution
concise and will play a prominent role in our analysis.

Theorem 1: The proposed noncooperative game admits a
unique NE,

ν∗ =
fϕ√

1 + ϕ+ f
, s∗ =

(√
1 + ϕ+ f

)
ln(1 + αb)

fϕ
. (7)

Proof: s∗(ν) is the BS’s reaction curve representing the
optimal energy reservation level given a supply rate ν. As (3) is
concave in s, s∗(ν) is characterized by the first-order condition

νs∗(ν) = ln(1 + αb). (8)

Using a similar argument and (8), we find that the RPS’s
reaction curve ν∗(s) satisfies,

ν2

ν − ϕ
=

f

cs(1 + ϕ)
. (9)

The unique solution to equations (8) and (9) yields (7). �
From Theorem 1, the resulting equilibrium costs C∗

o and
C∗

r are,

C∗
o =Co(s

∗, ν∗) = s∗,

C∗
r =Cr(s

∗, ν∗) =
b− αb

(1 + αb)ν∗
+

s∗f

ln(1 + αb)
.

Since the existence of the N.E. is guaranteed, so the tradi-
tional best response dynamics [32] can be used to converge to
the NE. For the proposed game model, we have got the analysis
solution of the NE. Consequently, the RPS and the BS are able
to make a decision about the strategies at the beginning of
the game.

Because the function f is decreasing in α and is increasing
in b for b > 0, it follows that as α increases, the BS becomes
more concerned with backlogged UEs and increases his en-
ergy reservation level (f ↓→ s∗ ↑), while the RPS cares less
about backlogged users and builds less energy supply rate
ν∗ (f ↓→ ν∗ ↓).

2) Distributed Algorithm to Achieve the NE: Generally, for
the scenarios that the analysis solution of the NE cannot be
obtained, finding distributed algorithms to reach a NE is both
a challenging and important task. One popular algorithm is
the so-called best response dynamic which allows the players
to take turns choosing their best response (optimal strategy
at a current time) to the state of the game in the previous
period. If this process of iterative best responses converges, it
is guaranteed to reach an NE of the game [33]. Nevertheless,

the convergence of best response dynamics is only guaranteed
for certain classes of games, such as supermodular games [34].
To use the best response algorithm, we show that the proposed
game is supermodular by reversing the order on one of the
strategies. Recall that we use a cost minimization framework.
Thus, the supermodularity for our model is equivalent to the
requirement that the utility function is twice continuously dif-
ferentiable and ∂2Co(s,ν)

∂s,∂ν ≤ 0 and ∂2Cr(s,ν)
∂s,∂ν ≤ 0.

The second order derivatives are given as follows.

∂2Co(s, ν)

∂s, ∂ν
= se−νs + αbe−νs ≥ 0.

∂2Cr(s, ν)

∂s, ∂ν
=(1− α)be−νs ≥ 0.

As a result, this leads to a submodular game [34].
However, the proposed game can be converted into a super-

modular game when ν is ordered in the reverse order:

∂2Co(s, ν)

∂s, ∂(−ν)
≤ 0,

∂2Cr(s, ν)

∂s, ∂(−ν)
≤ 0.

Notice that we do not change neither the payoffs nor the
structure of the game, we only alter the ordering of the one
player’s strategy space. This approach only works in two-
player games, and the submodular games with more than two
players may exhibit dramatically different properties than the
supermodular ones [34]. Hence, for the proposed game, the
decreasing best responses which means that each player’s best
strategy response function is decreasing in other player’s strat-
egy, will converge to the NE point. Moreover, for submodular
games with finite strategies, the work in [35] has proposed
algorithms using the fictitious play to make the game dynamics
converge to a pure equilibrium point.

Remark 1: The value of α depends on a variety of factors,
such as the structure of the market, and the users’ expectations.
At one extreme, if the RPS has a monopolistic position in the
market with many competing BSs, α will be near 1 and the BS
has to sustain the backlogged costs. At the other extreme, the
RPS could be part of a competitive RPS market, and, thus, a
poor user service at the BS will mostly harm the RPS as the
cellular network can switch to another RPS. Then, α will be
near 0. Clearly, our model allows to capture all such scenarios.
In practice, the RPS’ will eventually pay a certain cost for a
delayed transmission due to the fact that delayed users might
lead the network operator to either switch to another RPS or
re-negotiate its contract with the RPS.

Remark 2: If the traffic load is served with a combination
of a renewable power source and the electric grid, we should
design the adaptive power management scheme for the BS to
control the purchase of energy generated from the renewable
source (with price P1) and energy from the electric grid (with
price P2). The conventional energy has a stationary source. So
that, there is no need to account for the energy storage for using
energy from the conventional source. Let λ̄ be the total arriving
rate of connections. Denote the arriving rate of connections
served by the renewable energy as λ, then the arriving rate of
connections powered by the electric grid is λ̄− λ. Define Cls
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as the cost of the BS that schedules the load to be served by
two kinds of energy sources. Based on the Nash equilibrium
solution, we get,

Cls =C∗
o + P1λ+ P2(λ̄− λ)

=
(
√
1 + ϕ+ f) ln(1 + αb)

fϕ
+ P1λ+ P2(λ̄− λ),

where ϕ = μo

λ − 1 and C∗
o is the BS’s cost at the NE. The

optimal management discipline can be got by the first order
derivation ∂Cls

∂λ = 0 or at the boundaries λ = 0 and λ = λ̄.
We assume that the energy price of the electric grid and

the energy price of the RPS are fixed during one operation
period. This is the case where the energy price is determined
by the government or a contract between the user and the
energy company [36]. For example, a green pricing utility
program in US department of energy shows that the green
energy from a certain supplier has a fixed price [36]. The fixed
prices setting can help us to understand the interaction between
the random green power generations and the dynamics of the
energy consumption of mobile networks, especially considering
the QoS impact and decentralized energy allocation strategies.
If a dynamic pricing scheme is introduced between multiple
users, then the energy supply rate, storage level, QoS cost
and prices should be examined at the same time. Currently,
this challenging but interesting issue is still an open problem.
Nonetheless, the developed model can serve as a building
block for more elaborate, dynamic pricing mechanisms in fu-
ture work.

3) Centralized Optimal Solution: Our performance bench-
mark for the decentralized system is the integrated/centralized
system, i.e., there is a single decision maker that simultane-
ously optimizes the energy reservation level s and the capacity
variable ν. This may be the case when both the RPS and the
BS belong to the same operator. The total average expected
normalized cost per unit time of the centralized system can then
be expressed as,

C(s, ν) =Co(s, ν) + Cr(s, ν)

= s− 1

ν
+ (1 + b)

e−νs

ν
+ cs

ν + 1

ϕ− ν
. (10)

We introduce an auxiliary variable, γ = ln(1 + b). The cen-
tralized solution is given in the following proposition.

Proposition 2: The optimal centralized solution is the unique
solution to the first-order conditions, and is given by

ν̄ =
ϕ
√
csγ√

csγ + cs
√
ϕ+ 1

, s̄ = γ

√
csγ + cs

√
ϕ+ 1

ϕ
√
csγ

. (11)

The resulting cost is

C(s̄, ν̄) =
1

ϕ

(
cs + γ + 2

√
csγ(1 + ϕ)

)
. (12)

Proof: The function C(s, ν) defined in equation (10) is
continuously differentiable and bounded below by 0 in B =
{(s, ν)|s ≥ 0, ν > 0}. Thus, a global minimum is either a local
interior minimum that satisfies the first-order conditions or an

element of the boundary of B. From the first-order conditions,
we get

{
∂C(s,ν)

∂s = 0,
∂C(s,ν)

∂ν = 0,
⇒

⎧⎪⎨
⎪⎩
sν = γ,

ν = ν̄,

s = s̄.

(13)

Substituting the above equations into equation (10) yields
equation (12). The only interior point that is a candidate for the
global minimum is (s̄, ν̄). In addition, the Hessian of C(s, ν) at
(s̄, ν̄) is given by,

H(s̄, ν̄) =

[
ν̄ s̄

s̄ γ(γ+2)
ν̄3 + 2cs(ϕ+1)

(ϕ−ν̄)3

]

From (11), we get ν̄ ≤ ϕ. Thus, ν̄ is a feasible value. Also,
γ = ln(1 + b) > 0, for b > 0, c > 0. Thus, the Hessian matrix
is positive definite and (s̄, ν̄) is the unique local minimum
in the interior of B. Now, we consider the boundary val-
ues: lim

ν→0
C(s, ν) → ∞ for s ≥ 0, lim

ν→ϕ
C(s, ν) → ∞ for s ≥ 0,

lim
s→∞

C(s, ν) → ∞. When s = 0, the boundary value is

C(0, ν) =
b

ν
+ cs

ν + 1

ϕ− ν
.

Obviously, C(0, ν) is a convex function of ν. The first order
derivation of C(0, ν) is

∂C(0, ν)

∂ν
= 0 ⇒ ν =

√
b√

cs(1 + ϕ) +
√
b
ϕ ≤ ϕ. (14)

The solution in above equation is also a feasible value. Then,
substituting this solution into C(0, ν), we get

C(0, ν) ≥ cs
ϕ

(
1 +

b

cs
+ 2

√
b

cs
(1 + ϕ)

)
.

Since b ≥ ln(1 + b), we derive C(0, ν) ≥ C(s̄, ν̄). Hence,
(s̄, ν̄) is the unique global minimum for C(s, ν). �

As expected, the optimal power supply rate for the BS
decreases with the supply cost cs and increases with the back-
logged cost b. Similarly, because supply rate and power reserva-
tion provide alternative means to avoid backlogged connection
requests, the optimal base-reservation level increases with the
supply cost and with the normalized backlogged cost. Finally,
we can observe that the cost-split factor α plays no role in this
central optimization, because the utility transfer between the BS
and the RPS does not affect the centralized cost.

Note that the centralized optimal solution assumes that the
BS and the RPS belong to the same operator. However, the
BS and the RPS may not have a common benefit such as
they belong to different operators [9]. In this sense, each one
will seek to selfishly optimize its individual cost and, in this
case, the NE can be considered as the solution in such a
decentralized system. It is clear that the decentralized operation
is less efficient in terms of the total system profit. In next
subsection, we will propose a contract-based approach which
can be used to improve the decentralized operation.
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4) Comparison of Solutions and Coordination via Con-
tracts: According to (7) and (13) , the first-order conditions are
sν = ln(1 + b) in the centralized solution and sν = ln(1 + αb)
in the Nash solution. Hence, the two solutions are not equal
when α < 1. And, as discussed earlier, the NE in the α = 1
case is an unstable system.

The magnitude of the inefficiency of a NE is typically
quantified by comparing the costs under the centralized and
Nash solutions. We compute the competition penalty,5 which
is defined as the percentage increase in variable cost of the NE
over the centralized solution,

Pα,cs =
C∗

r + C∗
o − C(s̄, ν̄)

C(s̄, ν̄)
=

C∗
r + C∗

o

C(s̄, ν̄)
− 1. (15)

It is clear that, in general, the decentralized operation is less
efficient in terms of the total system profit. A coordination
mechanism based on static transfer payments can be used to
improve the decentralized operation. In particular, the transfer
payment modifies the cost functions in (3) and (4) for the BS
and RPS, respectively, to

C̃o(s, ν) =Co(s, ν)− ε′(s, ν),

C̃r(s, ν) =Cr(s, ν) + ε′(s, ν).

The choice of ε′ that coordinates the system is not unique.
One possibility is to define the transfer in such a way that the
modified cost functions replicate a cost-sharing situation. That
is, we can set ε such that C̃r(s, ν) = εC, C̃o(s, ν) = (1− ε)C
where ε ∈ [0, 1] is a splitting factor and C is the centralized cost
function defined in equation (10). Such a cost sharing forces the
transfer payment to satisfy,

ε′(s, ν) = εCo(s, ν)− (1− ε)Cr(s, ν).

With such a payment transfer, the RPS and the BS have
aligned objectives and the centralized solution (v̄, s̄) is the
unique NE. The BS and RPS must be better off under the NE
with the transfer payments than under the NE without the
transfer payments, for example,

C∗
r ≥ εC, C∗

o ≥ (1− ε)C.

After algebraic manipulation, we get

ε ∈
[
C∗

r

C
− Pα,cs ,

C∗
r

C

]
∩ [0, 1].

From a practical perspective, a direct cost-sharing nego-
tiation based on total cost probably dominates the transfer-
payment approach because it does not require any special
accounting of cost (in terms of supply and backlogged costs).

Remark 3: A cooperative game may yield better results than
the pure non-cooperative result. In cooperative games, there are
various solution concepts, i.e., Nash bargaining solution, core,
Shapley value and so on. To enable the cooperative formulation,

5Note that this concept is different from the popular concept of price of
anarchy [33] which is defined as the ratio between the “worst equilibrium” and
the optimal “centralized” solution.

we should define the profit/energy cost saving that each single
player could generate. For example, we can define the single
player’s payoff as the utility it obtains in the non-cooperative
setting. Then, the cooperative solution (e.g., via a Shapley
value) will tell us how important each player is to the overall
cooperation, and what payoff he or she can reasonably expect.
Indeed, the non-cooperative game with contract coordination
also generates a system optimal solution, and thus the coordi-
nation can be viewed as transferable utilities in a cooperative
setting. In addition, cooperative games which mainly study the
interactions among coalitions of players a suitable framework
for handling dense networks and can be studied in future work.

IV. CAPACITY ALLOCATION GAME WITH MULTIPLE BSS

In this section, we consider a setting in which a single
monopolistic RPS sells energy to a set of N = {1 . . . , N}, N ≥
2 BSs. The RPS can produce no more than μ0 units during
the period. We consider that UEs of each BS cannot switch
to another BS. This is the case for which BSs are owned by
different operators.6 BSs are considered to have different arrival
rates due to a variety of reasons including geographic locations,
operator promotion plans, and pricing strategies. The RPS has
a monopoly over the energy market and is thus considered to
not bear backlogged cost and the load increasing cost, i.e.,
α = 1, cs = 0 in (4). We will investigate how RPS allocates
the limited energy capacity to BSs, and how induce the BSs to
truthfully report their optimal demand. Toward this end, we will
propose a noncooperative capacity allocation game and address
its dominant equilibrium.

First, we examine the cost function of a BS in considered
setting. Let Γ = {μ1, . . . , μN} be the energy supply rate vector
of the RPS, and si be the energy reservation strategy of BS
i. Then, the normalized energy supply rate of BS i is denoted
as νi and the backlogged cost of BS i is bi. As discussed in
Section 4.2.2, as α → 1, the RPS will set its energy supply rate
μ → 0 for a BS. To prevent this outcome in the monopolistic
market, we set that BS i is charged an incentive price p to the
RPS for the supply rate μi. Based on the M/M/1 make-to-stock
queuing analysis, the steady-state expected normalized cost per
unit time for BS i is,

C̄i(μi, si, λi)

= pμi + P1λi + P2(λ̄i − λi) + Ci
o(si, νi)|α=1,

= pμi + P1λi + P2(λ̄i − λi) + si −
1− (bi + 1)e−νisi

νi
,

where λi is the arrival rate of connections served with the
renewable energy of BS i, and λ̄i is the total arriving rate of
connections of BS i. Ci

o(si, νi)|α=1 is backlogged cost and
store self-discharge cost defined in (3).

6If the BSs are under a price competition in spectrum accessing market.
The energy allocation mechanism and the spectrum access scheme will affect
each other. As a result, the properties of allocation mechanisms would be
significantly different, and are not currently investigated here.
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Proposition 3: The global minimum of C̄i(μi, si, λi) is the
solution that satisfies,

μ̂i =

√
λi ln(1 + bi)

p
+ λi, ŝi =

√
pλi ln(1 + bi).

The resulting cost is

C̄min
i (μ̂i, ŝi, λi)=2

√
pλi ln(1+bi)+(p+P1)λi+P2(λ̄i−λi).

Proof: We introduce the following auxiliary function,

C ′
i(μi, si) = pμi + si −

1− (bi + 1)e−νisi

νi
.

The solution to the first-order conditions of C ′
i(μi, si)

∂C ′
i(μi, si, λi)

∂si
=0,⇒ siνi = ln(1 + bi),

∂C ′
i(μi, si, λi)

∂μ
=0,⇒

[
−(bi + 1)(siνi + 1)

e−siνi

ν2i
+

1

ν2i

]
1

λi

+ p = 0,

is given by ν̂i =
μ̂i−λi

λi
=

√
ln(1+bi)
(pλi)

, ŝi =
√

pλi ln(1 + bi).
Using a technique similar to Theorem 1, we can prove that
the Hessian matrix of C ′

i(si, νi) at (ŝi, ν̂i) is positive definite
and the boundary values can be excluded. Thus, the global
minimum of C ′

i(μi, si) is the unique solution to the first-order
conditions. And, the minimum cost is 2

√
pλi ln(1+bi)+pλi.

�
The individual BSs have private information regarding the

optimal energy demand, and will competitively submit their
orders to the RPS. The RPS allocate the energy supply rates
to the BSs according to an allocation mechanism. Define A =
{a ∈ RN : ai ≥ 0 and

∑N
i=1 ai ≤ μ0} as a set of allocations.

We call each a ∈ A as a feasible allocation. Let m be the
renewable energy supply rate vector that BSs order with each
element mi being the supply rate ordered by BS i ∈ N . Let
m−i be the vector of other BSs’ orders. Then, we have the
definition of an allocation mechanism.

Definition 1: An allocation mechanism is a function g that
assigns a feasible allocation to each vector of orders, g(m)∈A.
Then, gi(m) is BS i’s energy supply rate.

The RPS can never allocate to a BS more than the BS
orders, i.e., gi(m) ≤ mi. The RPS should choose an allocation
mechanism g and then broadcast the mechanism to all BSs.
All BSs will simultaneously submit their energy demand orders
to the RPS according to the allocation mechanism g. Based
on both the connection demand and the noticed allocation
mechanism, each BS i determines its ordered energy supply rate
mi. Due to the limited capacity of the RPS, BSs will compete
with each other to get their individual favorable energy supply.
For instance, BSs can report larger energy demands rather than
optimal values to get more allocations. Such a competition
leads to the formulation of a capacity allocation game in which
players are BSs, and the strategy of each player is its ordered
renewable energy supply rate mi. The cost function of BS i
are given by C̄i(μi, si, λi) with μi = gi(m). Then, we state the
following equilibrium definition.

Definition 2: Assume that all BSs truthfully reporting their
optimal demands, m∗. Then, reporting m∗ is a dominant equi-
librium of the capacity allocation game under mechanism g, if
and only if ∀m,

C̄i(gi (m
∗
i ,m−i), si, λi)≤ C̄i(gi(mi,m−i), si, λi), ∀ i ∈ N .

In a dominant equilibrium, each BS has an energy order that
minimizes its cost regardless of the energy orders of the other
BSs. A dominant equilibrium is a stronger notion of equilib-
rium than the Nash equilibrium (NE) in which each player is
assumed to know the equilibrium strategies of the other players,
and no player has anything to gain by changing only its own
strategy unilaterally [32]. In this regard, the NE definition of
the game can be obtained by replacing m−i with m∗

−i. We
are particularly interested in RPS’s allocation mechanism under
which the BSs report their optimal energy supply demands in a
dominant equilibrium.

More specifically, if BSs ordered exactly their needs, the RPS
could determine how much capacity it needs to allocate. Con-
versely, manipulation may generate undesirable consequences
for the system, i.e., preventing the RPS from determining which
BS is in reality needing the most energy. Some BSs with
high expected demands may receive too little and others with
low expected demand may receive too much. At the end, the
system ends up serving all BSs poorly. Note that, the allocation
mechanism design implies that all BSs will observe the same
price for green energy. Such a model allows to capture scenarios
in which having an auction mechanisms may be too complicate
or in which there is a single, unified price imposed by a utility
company or the government.

In what follows, we will study the mechanism design prop-
erties, and subsequently we will investigate the equilibrium
of the capacity allocation game. The two main challenges of
mechanism design are stability and efficiency. Two typical
criteria are generally applied to mechanism design: incentive
compatibility and optimality defined as follows:

Definition 3: An allocation mechanism g is said to be in-
centive compatible (IC) or truth-inducing if the case in which
all BSs place their orders truthfully at their optimal profits
constitutes an dominant equilibrium of g.

Definition 4: An allocation mechanism g is a Pareto al-
location mechanism if it maximizes the sum of BSs’ profits
assuming all BSs truthfully submit their optimal orders.

In general, Pareto optimality is a state of allocation of re-
sources in which it is impossible to make any one individual
better off without making at least one individual worse off.
Here, we use the definition of Pareto allocation mechanism
following [38]. Note, the social welfare maximization implies
Pareto optimality, whereas the versa does not hold. One of
the most popular allocation mechanism is the so-called propor-
tional allocation, for which: gi(m) = min{mi, μ0

mi∑N

j=1
mj

}.

In [38], it is shown that for a kind of utility functions, the pro-
portional allocation is actually a Pareto allocation mechanism.
Next, we show that the proportional allocation mechanism
is not a Pareto mechanism when the total renewable power
production capacity is less than total BSs’ orders.
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Lemma 1: If BSs have different connection arrival rates and
order truthfully their optimal energy supply rates m (μ0 <∑N

i mi), the proportional allocation is not a Pareto mechanism.
Proof: Based on Proposition 3, the optimization problem

of total BSs’ profits can be formulated as follows:

min
Γ∈A

N∑
i=1

[
2
√
pλi ln(1 + bi) + (p+ P1 − P2)λi + P2λ̄i

]
.

s.t. μi =

√
λi ln(1 + bi)

p
+ λi, (16)

N∑
i=1

μi ≤ μ0, λi ≤ λ̄i, μi ≥ 0.i ∈ N . (17)

The Larangian function of the original problem is,

L(ε, η, λ)=
N∑
i=1

[
2
√

pλi ln(1+bi) + (p+P1)λi+P2(λ̄i − λi)
]

+ ε

(
N∑
i=1

μi − μ0

)
+

N∑
i=1

[
ηi(λi − λ̄i)

]
.

where ε ≥ 0 and ηi ≥ 0, i = 1, 2, . . . , N .
The optimal solution λ∗

1, . . . , λ
∗
N satisfies the necessary

Karush-Kuhn-Tucker (KKT) conditions which are,

∂

∂λ∗
i

L(ε, η, λ∗) = 0, i = 1, . . . , N, (18)

ε

(
N∑
i=1

μ∗
i − μ0

)
=0,

N∑
i=1

μ∗
i − μ0 ≤ 0, (19)

ηi(λ
∗
i − λ̄i) = 0, λ∗

i − λ̄i ≤ 0, λ∗
i ≥ 0, i ∈ N . (20)

where μ∗
i is defined by (18) with λi = λ∗

i . By further developing
(20), we obtain,

√
λ∗
i =

(2p+ ε)
√

ln(1 + bi)

2
√
p(P2 − p− P1 − ε− ηi)

. (21)

Assume that the proportional allocation mechanism is a
Pareto mechanism, we then have μ∗

i = gi(m) = μ0
mi∑N

j=1
mj

<

λ̄i. Then, from (22), we get ηi = 0 ∀ i ∈ N . Thus, from equa-
tion (23), we derive λ∗

1 = λ∗
2 = . . . = λ∗

N which contradicts
with the proportional allocation. This completes the proof. �

If P2 ≤ P1 + p, all BSs will order a zero renewable energy
supply rate, thus we just consider the case in which P2 > P1 +

p. The solution to C̄min
i (si, νi, λi) = P2λ̄i is λ̂i =

4c ln(1+bi)
(P2−P1−p)2 .

The objective function of the optimization problem is a concave
function as shown in Fig. 6. Thus, the global minimum is
achieved at the boundary. In this respect, when all BSs have
an identical bi, i ∈ N , a simple Pareto mechanism discipline
can be designed as follows. Assuming that all BSs truthfully
report their demand, a larger demand will be satisfied with a
certain priority. If a BS receives an allocation that is less λ̂i, the
allocation will be rejected. The RPS then adjusts the allocation
for this BS to zero, and the BS will wait for the next allocation
period to announce its demand.

Fig. 6. An example to show the concavity of the objective function.

When the demand exceeds the capacity size, the BSs may
inflate orders so as to be allocated more than they need. Hence,
by increasing the order quantity, each BS is able to decrease the
allocation quantity for competitors. Next, we investigate how
to design a mechanism which can induce the BSs truthfully to
report their energy demand. We arrange the BS in decreasing
order of their order quantities, i.e., {m1 ≥ m2 ≥ . . . ≥ mN},
n̂ be the largest integer less than or equal to N such that
gn̂(m, n̂) ≤ mn̂. Then, 1

n̂ (μ0 −
∑N

n̂+1 mj) means that BSs
other than those whose indices are larger than n̂, will get an
uniform allocation. Notice n̂ is inherently determined by the
allocation mechanism, and is not specified by the RPS.

In this regard, we propose the adaptive uniform allocation
mechanism shown in Algorithm 1. Under such a mechanism,
initially, the BSs with orders less than a threshold index n̂
receive the same energy supply rate as their orders, and the rest
of the BSs receive mi. Then, the remainder of the capacity is
divided by the number of BSs indexed greater than n̂. If a BS
receives an allocation in less than λ̂i, it will reject the allocation.
The RPS adjusts the allocation for this BS to zero. Thus, it also
can be viewed as a take-or-leave choice for each BS. Note that
the uniform allocation mechanism always favors small BSs.

Algorithm 1 Proposed adaptive uniform allocation
mechanism.

RPS Performs:
1: Arrange the BS in decreasing order of their order quantities,

i.e., {m1 ≥ m2 ≥ . . . ≥ mN}. n̂ is the largest integer less
than or equal to N such that gn̂(m, n̂) ≤ mn̂ where,

gi(m, n̂) =

⎧⎪⎨
⎪⎩

1
n̂

(
μ0 −

N∑
n̂+1

mj

)
, i ≤ n̂,

mi, i > n̂,

(22)

BSs Perform:
2: if 0 < gi(m) ≤ μ̂i =

√
λ̂i

ln(1+b)
p + λ̂i, i ∈ N then

3: The BS i sends a message indexed i to the RPS;
4: end if

RPS Performs:
5: if the RPS receives a message i then
6: gi(m) = 0;
7: end if

Output: g(m), which is an energy supply rate allocation for
BSs.
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Theorem 2: If the RPS uses the proposed allocation mecha-
nism in Algorithm 1, it will minimize the cost for each BS to
report its optimal energy demand, regardless of the energy or-
ders of the other BSs, thereby reaching a dominant equilibrium.
Moreover, the proposed mechanism is truth-inducing.

Proof: Assume that all BSs truthfully report their optimal
demands, m∗. Then, we should prove that reporting m∗ is a
dominant equilibrium under the adaptive uniformly allocation
mechanism. We observe from Algorithm 1 that, by ordering
more than m∗

i , there will be two cases for BS i.
The first is that BS i received an allocation that is less than

m∗
i under truthful reporting. In this case, inflating the order

cannot result in more allocation, since the BSs whose indices
are smaller than n̂ will be uniformly allocated an energy supply
rate. The second case is the one in which a certain BS i received
m∗

i under the truthfully reporting. In this situation, if there
are some other BSs to inflate their orders, BS i still receives
m∗

i because the mechanism always favors a BS with a smaller
demand. Also, if some other BSs reduce their orders, there will
be enough available capacity for BS i to get its optimal energy
supply rate demand m∗

i under such a mechanism.
Similarly, if a BS i received a zero allocation, ordering less

m∗
i still results in a zero allocation. For a BS i which received an

allocation in less than m∗
i , ordering less m∗

i cannot increase its
allocation. For the remaining cases in which a BS i received m∗

i ,
ordering less than m∗

i will reduce the its allocation. Thus, using
the proposed mechanism, all BSs will truthfully report their
optimal energy demands, which also constitutes a dominant
equilibrium. �

It is easy to see that adaptive uniformly allocation is not
necessarily efficient. But, by choosing the IC mechanism, the
RPS can acquire truthful energy demand information of BSs.
This could lead the RPS’s secure decision-makings on capacity
planning and sales planning.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we study how the RPS allocate its energy
supply rate with a limited capacity and how the BS optimize
their renewable energy storage based on the predictable traffic
condition. Further, the energy supply allocation with multiple
BSs is also shown.

A. Parameters Setting

For our simulations, we use the following parameters. The
time unit is set to one minute, while the dynamic power con-
sumption coefficient is 24 W (Joule/s) per connection, which
is similar to that in [16] and [18]. Without loss of generality,
the time unit td · TTI is set to be 1 second. Thus, the energy
unit is 24 Joule. According to a report from an independent
carbon footprints research group, the average national electrical
price is 12 cents/kWh in the US [39]. Other countries such
as Denmark, Germany and Spain may have more expensive
electricity prices that can exceed 30 cents/kWh. For the green
energy price, a green pricing utility program in US department
of energy, shows that prices of different green power suppliers

TABLE I
THE AVERAGE QUEUE LENGTH UNDER

DIFFERENT TRAFFIC CONDITIONS

Fig. 7. The PDF in different traffic conditions.

vary from about 0.5 cents/kWh to 4.5 cents/kWh7 [36]. We can
observe that the green power could be much cheaper than the
conventional power.

We use cents as the power price unit. For example, the
renewable energy has a low price (e.g., 2.5 cents per kWh), and
the electric energy has a high price (e.g., 25 cents per kWh).
These values fall within the range of the prices discussed in
[36] and [39]. Then, the energy cost of a connection served
by the electric source will be 0.01 cents per minute, and the
energy cost of a connection served by the renewable source is
0.001 cents per minute. The energy reservation cost factor c is
set to 0.001. Thus, the reservation cost with Is units average
energy storage is 0.001Is cents per minute. The units of the
backlogged cost b, and the supply cost of the RPS cs are also
set to cents per minute. In simulations, the cost accounts for
1000 minutes (16.7 hours), i.e, we can set P1 = 1, P2 = 10 and
b = 10 cents per 1000 minutes.

B. The Heavy Traffic Approximation

In Table I and Fig. 7, we illustrate that the continuous-state
approximation can be justified by a heavy traffic approximation
with an incorporation of general inter-arrival time and service
time distributions. For instance, we assume that the traffic of the
BS alternates between a high state and a low state, where the
traffic is in “high” with the connections’ inter-arrival time ex-
ponentially distributed with rate 3.5 (e.g., connections/second)
and in the “low” state with such a rate 2.3. The traffic model
can be viewed as a 2-type hyper-exponential distribution, i.e.,
there are two different mobile services with different request
rates. We consider that the two type services arrive with an
equal probability. Thus, the average connections’ inter-arrival
time is 1

2
1
2.3 + 1

2
1
3.5 = 0.36. We consider that the renewable

7The price of green energy is often expressed as a price “premium” above the
price of conventional power to use the blended green and conventional power
[36], [37].
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Fig. 8. The central system cost.

energy supply rate follows a normal distribution with the mean
μ.8 Table I shows the average queue length where ρ = 1

0.36μ .
And, the probability density function (PDF) of the queue length
is plotted in Fig. 7. We can observe that the continuous-state
approximation is quite accurate when the average queue length
is equal or larger than 2.

C. Analysis for the Single BS Scenario

Fig. 8 verifies the results pertaining to the centralized global
minimum of the system cost where ν̄ = 0.33, s̄ = 7.29, and
C(ν̄, s̄) = 17.19 for b = 10, cs = 5, ϕ = 1. Recall that ν is the
normalized energy supply rate, i.e., ν = μ−λ

λ . Thus, the load
factor is ρ = λ/μ = 0.75 in the global minimum state. The
system consists of the energy reservation cost and the renewable
energy supply cost. Each of them depends on both the values of
s and ν. We can observe that for a certain system cost (e.g.,
17.96), s · ν will be a fixed value. This means that increasing
s has the same effect as reducing ν to achieve such a system
cost. Thus, it is easy to imagine that there will be a competition
between adjusting s and ν in the decentralized system.

The system cost and the Nash solution are only related to
the ratio of the capacity of the RPS to the connection demand
rate, i.e., μ0

λ . The output of the RPS depends on the weather
condition, the size of power generator i.e., the solar panel, and
the time on one day. For example, in [40], it is shown that the
10-second irradiance is about 500 W/m2 at a measure point in
Canada over a clear sky at 12:00, and this value reduces to about
200 W/m2 at 10:00. The efficiency of the solar cell is defined as
the ratio of energy output from the solar cell to input energy
from the sun. Generally, the efficiency of a solar cell could
be 20%, and a recent report shows that the 44.7% efficiency
has been achieved with a special technology [41]. With regards
to the wind energy, the work in [28] shows that a small wind
turbine located on the roof can generate a 150 W output.

8The normal distribution is often used to model random noise. Here, we use
such a distribution for our simulations. But, our analysis also applies to general
distributions under heavy traffic situations.

In Fig. 9, μ0 varies from 1.2λ to 2.2λ. Recall that the en-
ergy coefficient of each connection is 24 W(Joule/S). Consider
λ = 1.5 connections/second as an example. Each connection
accounts for one second, and consumes 240 Joule. Then, μ0 =
1.2λ means that the RPS has an average μ0 = 4.32k Joule
output in 10-second, which is 432 W. As shown in Fig. 9, by
increasing μ0

λ , the optimal system cost reduces and the optimal
energy reservation level s also can be reduced. In other words, if
the RPS has an efficient production capacity, i.e., the solar panel
experiences a clear sky, the BS can make a small reservation,
and the supply cost of the RPS can be also reduced.

Next, we study the decentralized situations. Set b = 10, cs =
5, ϕ = 1. In Fig. 10, we show the best responses of the BS and
the RPS at the NE. Neither the BS nor the RPS can reduce their
individual cost via a unilateral deviation from these strategies
at the NE (ν∗, s∗). The value of the splitting factor α is exoge-
nously determined. As α increases, the BS incurs more back-
logged costs. We can observe from Fig. 10(a) that, a larger s∗

corresponds to a larger α. This means that the BS should reserve
more energy to make up for the backlogged cost with a larger
α. For the RPS, a larger α incurs less splitting backlogged cost.
Thus, as shown in Fig. 10(b), the RPS will set a smaller energy
supply rate with a larger α. Moreover, the costs of RPS in terms
of load factor ρ are illustrated in Fig. 10(c). At s = s∗, ν =
0.05 → 0.8 corresponds to ρ = 0.56 → 0.95. The figure shows
the best response of the RPS occurs at heavy traffic situations,
e.g., ρ > 0.7. These results corroborate the intuition that a
larger supply rate will result in a larger supply cost for the RPS.

In Fig. 11(a), we compare the system cost at the NE and the
optimal system cost (b = 10, cs = 5, ϕ = 1). In this figure, we
can see that the gap between such two values is quite small with
the backlogged cost factor α = 0.5. To coordinate the system
to achieve a minimum system cost, based on the cost sharing,
a kind of transfer payment contract is proposed. In Fig. 11(b)
and (c), we show the BS cost and the RPS cost at the NE. For
illustration purposes, we set the cost sharing factor, ε, to be
a medium value of the range. The corresponding costs under
such a contract coordination are illustrated. Also, we show the
reservation and backlogged costs of the BS, and the supply and
backlogged costs of the RPS in the centralized optimal solution.
Moreover, the gap between the reservation-and-backlog cost in
the centralized optimal solution and the total cost of the BS with
coordination is the transfer payment in the contract.

Fig. 12 shows the energy cost saving by using renewable en-
ergy. We set μ0 = 2, α = 0.5. Clearly, using renewable energy
not only achieves lower cost in most cases, but also allows to
avoid electric energy consumption. In particular, if the connec-
tions’ arrival rate of the BS is 1.3 connections per second, then
the saving of the total electric energy which is mostly generated
from the fossil fuel will be 1.3 · 24 · 60 · 1000 = 0.52 kWh in
1000 minutes. However, if the connections’ arrival rate is larger
than 1.6, i.e., the load factor is 0.9, then, using renewable energy
is not efficient, since the QoS reducing cost overcomes the cost
benefit of the green energy.

Next, the cases in which the BS powered by the combina-
tion electric and renewable sources are investigated. Different
countries or provinces may have different energy prices. In
Fig. 13(a), we set λ̄ = 1.8, P1 = 1, μ0 = 2 and α = 0.5. As the
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Fig. 9. The minimum system cost, optimal energy supply rate and energy reservation with different parameters. (a) The minimum system cost. (b) Optimal
energy supply rate. (c) Optimal energy reservation.

Fig. 10. Illustration of the NE. (a) The cost of BS with ν = ν∗. (b) The cost of RPS with s = s∗. (c) The response of RPS with different load factor at s = s∗.

Fig. 11. Equilibrium costs analysis in which R&B represents reservation-and-backlogged, and S&B represents supply-and-backlogged. (a) Comparison of the
system cost. (b) The BS costs. (c) The RPS costs.

electric grid energy price P2 increases, the BS will allocate a
bigger fraction of its connections to be served by the renewable
energy source. For instance, with the backlogged cost b = 5, if
P2 = 5 → P2 = 10, to achieve the minimum cost, the BS will
set λ = 0.67 → λ = 1.11. However, if the BS has a low QoS
cost, i.e, b = 1, P2 = 5, then λ = 1.05. This means that the BS
can obtain more green energy gain with low backlogged costs.

In Fig. 13(b), we compare the cost of the BS powered by the
electric grid, and the cost of the BS served by a combination
energy. We observe that, even as connections arrival rate λ̄
increases, using the green energy still benefits the BS. This is
due to the fact that the adaptive power management allocates a
fraction of connections to be served by the electric grid, and,
thus, it does not yield a high QoS cost.
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Fig. 12. The response of RPS at different ρ with s = s∗.

Fig. 13. System performance at the NE, and the energy management based
on the NE. (a) The cost of the BS with adaptive power management. (b) The
energy cost gain with the combination energy.

Consider the case in which λ̄ = 1.25 as a example. The cost
gain is about 4.5 with b = 5 in this case. As stated above, this
cost accounts for 1000 minutes in term of cents. Consequently,
the cost saving for one BS is about 1.94 dollars per month. Even
though such a value is seemingly small, this cost saving can be
significant when a large number of BSs are deployed. Also, the
lower use of power from the electric grid will reduce the overall
CO2 footprint of wireless networks.

D. Analysis for the Multiple BSs Scenario

In Fig. 14(a), we examine the renewable energy supply rate
allocation with N = 8 BSs. We set μ0 = 20 which represents
that the maximum average energy output rate of the RPS is
20. Let p = 2, P1 = 1, bi = 2, i ∈ N and P2 = 10. λ̄i = 0.5i
where i ∈ [1, 8] is the index of BS i. Fig. 14(a) shows the BSs’
ordered energy supply rate and the allocated rate by using the
Pareto mechanism and the Proposed adaptive uniform alloca-
tion. The figure illustrates that the Pareto mechanism favors
the BS with a large amount demand. However, the uniform
allocation favors the BS with a small order, and the BSs 5, 6, 7,
and 8 get a uniform allocation.

Corresponding to the scenario in Fig. 14(a), Fig. 14(b) shows
the cost of the BS when the reported demand varies. Consider
BSs 4, 5 and 8 as examples. We observe that as the reported
demand reduces, the cost of the BS cannot reduces and may
increases. And, when the reported demand is larger than the
optimal demand, the cost of a BS will maintain a certain value.
Thus, it is a dominant equilibrium for all BSs to truthfully report
their optimal energy demands under the proposed adaptive uni-
form allocation mechanism. Moreover, note that the mechanism
requires at most 1 adjustment.

In Fig. 14(c), we show the total BSs’cost under the Pareto
mechanism and the IC mechanism. It is clear to see that the
adaptive uniformly allocation is not efficient. However, the gap
between the two mechanisms in terms of total BSs’cost becomes
smaller as the energy production capacity of the RPS, μ0, in-
creases. For instance, when b = 5, μ0 = 28, the IC mechanism
achieves almost the same system cost as the Pareto mechanism,
since the total demand of BSs is about 28 as well, and both the
two mechanisms will allocate all of the energy capacity to BSs.
Moreover, by choosing the IC mechanism, the RPS can acquire
truthful energy demand information from the BSs. In prac-
tice, the RPS can use the informative IC mechanism in some
stages, yielding the RPS’s secure decision-makings on capacity
planning and sales planning. Also, it can switch to the Pareto
mechanism to make a larger social welfare, and higher revenue.

VI. CONCLUSION

In this paper, we have studied a wireless network in which
the BS is able to acquire power from renewable energy sources.
In the studied model, the BS can make reservations for the
renewable energy to support continuous wireless connections.
We have formulated the problem as a noncooperative game
between the BS and the RPS. In this game, an M/M/1 make-to-
stock queuing model has been used to analyze the the competi-
tion between energy reservation strategy and the energy supply
rate setting. Several approaches for improving the efficiency
of the Nash equilibrium as well as for better controlling the
purchase of renewable energy have been proposed. Then, we
have extended the model to the case in which multiple BSs
operate with a monopolistic RPS. For this case, we have pro-
posed an allocation mechanism in which BSs have an incentive
to truthfully report their optimal demands.

Simulation results have shown that using green energy pow-
ered BS yields a significant electric energy saving. Furthermore,
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Fig. 14. Analysis for the energy supply allocation. (a) The energy supply rate demand and allocation. (b) Illustration of the dominant equilibrium. (c) Comparison
of the Pareto mechanism and the IC mechanism.

our results also have revealed that a monopolistic RPS can use
the proposed informative IC mechanism to acquire the market
information in the multi-BS market, and can also switch to the
Pareto mechanism to achieve the optimal social welfare. For
the future work, how to develop mathematical techniques to
examine the impacts of dynamic prices on both the green energy
allocation and the Qos cost of wireless networks will be very
interesting and challenging.
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