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ABSTRACT

This paper studies normalized least mean square-based adaptive sparse filtering algorithms for estimating multiple-input
multiple-output (MIMO) channels. Although the MIMO channel is often modeled as sparse, traditional normalized least
mean square-based filtering algorithm never takes the advantage of the inherent sparse structure information and thus
causes some performance loss. Unlike the traditional method, the proposed two adaptive sparse channel estimation meth-
ods exploit the sparse structure information of MIMO channels. To validate the effectiveness of proposed MIMO channel
estimates, theoretical analysis and simulation results are provided. We derive steady-state mean-square deviations of
the proposed MIMO channel estimates and theoretically show that it is better than the traditional one. Moreover, their
performance advantages are confirmed by computer simulations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of multiple-input multiple-output (MIMO) trans-
mission (as shown in Figure 1) and orthogonal frequency
division multiplexing (OFDM) makes high data commu-
nications over frequency-selective fading channels [1–3].
The accurate estimation of finite impulse response channel
is a crucial and challenging issue in coherent modulation,
and its accuracy has a significant impact on the overall
system performance.

During the last decades, a number of channel estimation
methods have been proposed for MIMO-OFDM systems
[4–12]. These methods can be categorized into two types.
The first type is linear channel estimation methods, for
example, least squares algorithm [5,6], which is based on
the assumption of dense channel impulse responses (CIRs).
The second type is sparse channel estimation methods
[11–13] using compressive sensing [14,15], which is based
on the assumption of sparse CIRs.

In the linear channel estimation methods, the mean
square error (MSE) performance depends on size of MIMO
channel matrix only [11]. Note that the narrowband MIMO

channel may be modeled as the dense CIR because of
its very short time delay spread; however, the broad-
band MIMO channel is often modeled as a sparse CIR
[13,16–19]. A typical example of sparse CIR is shown
in Figure 2. It is well-known that linear channel estima-
tion methods are relatively simple to implement because
of its low computational complexity [4–9]. However, the
main drawback of linear channel estimation methods is the
inability to exploit the inherent channel sparsity. Differ-
ent from the linear channel estimation methods, the sparse
channel estimation methods take advantage of the spar-
sity of the channel [11,20,21]. The optimal sparse channel
estimation often requires circulant matrix of training sig-
nal to satisfy restrictive isometry property [22]. However,
designing the restrictive isometry property-satisfied train-
ing matrix is a nonpolynomial hard problem [23]. Although
some compressive sensing algorithms achieve stable sparse
channel estimation in high probability [11,20,21], these
algorithms often incur extra high computational burden,
especially in fast fading communication systems. For
example, one of the typical sparse channel estimations
methods, using Dantzig selector algorithm [24], has been
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Figure 1. Signal transmission over a MIMO channel.
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Figure 2. A typical example of sparse channel.

proposed for double-selective fading MIMO systems in
[11]. However, Dantzig selector algorithm needs to be
solved by linear programming (LP), and hence, it requires
high computational complexity [11]. To reduce the com-
plexity, sparse channel estimation methods using greedy
iterative algorithms have been proposed in [10,12]. How-
ever, their complexity still depends on the number of
nonzero taps of the MIMO channel due to the larger
number of nonzero taps in the MIMO channel.

To exploit the channel sparsity while without sacrific-
ing complexity, Chen et al. have proposed an effective
sparse least mean square (LMS) algorithm using an `1-
norm sparse penalty [25]. Taheri et al. have proposed an
`p-norm LMS (LP-LMS)-based adaptive sparse channel
estimation (ASCE) method to further exploit the channel
sparsity in single-antenna systems [26]. However, ASCE
using the sparse LMS filtering algorithm is vulnerable to
the random scaling of input signal. To fully take advan-
tage of channel sparsity and to improve stability of esti-
mation method, we have proposed ASCE that combines
normalized LMS (NLMS) filtering algorithms and sparse
constraints, for example, `p-norm and `0-norm, for esti-
mating single-antenna time-variant channels [27]. They
are termed as `p-norm NLMS (LP-NLMS) and `0-norm
NLMS (L0-NLMS), respectively. To the best of our knowl-
edge, ASCE methods for estimating MIMO channels have
not been developed. To estimate the MIMO channel, in

Figure 3. ASCE for estimating MIMO channels.

this paper, we propose MIMO-ASCE methods with LP-
NLMS and L0-NLMS [27]. First, as shown in Figure 3,
a typical MIMO system model is formulated so that
each multiple-input single-output (MISO) channel vector
can be estimated by ASCE methods. Second, steady-state
mean square deviation (MSD) performance of proposed
channel estimate is derived. Later, computer simulation
results are presented to confirm the effectiveness of our
proposed methods.

The remainder of the paper is organized as follows. A
MIMO-OFDM system model is described and problem
formulation is given in Section 2. In Section 3, the NLMS-
based adaptive sparse filtering algorithm is introduced,
and the proposed ASCE using sparse NLMS filtering
algorithms for estimating MIMO channels is highlighted.
In addition, performances of ASCE methods are com-
pared analytically. Computer simulation results are given
in Section 4 in order to evaluate and compare performances
of the ASCE methods. Finally, we conclude the paper
in Section 5.

Notations: Throughout the paper, matrices and vectors
are represented by boldface upper case letters and boldface
lower case letters, respectively; the superscripts .�/T , .�/H ,
and .�/�1 denote the transpose, the Hermitian transpose,
and inverse operators, respectively; khk0 is the `0-norm
operator that counts the number of nonzero taps in h, and
khkp stands for the `p-norm operator, which is computed

by khkp D
�P

i
jhjpi

�1=p

, where p 2 .0, 2� is considered in

this paper; Ef�g denotes the expectation operator.
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2. SYSTEM MODEL AND PROBLEM
FORMULATION

Consider a time-variant MIMO-OFDM communication
system as shown in Figure 1. At time index t, frequency-
domain signal vector at the nt-th antenna Nxnt .t/ D�
Nxnt .t, 0/, : : : , Nxnt .t, N � 1/

�T , nt D 1, 2, : : : , Nt is fed to
inverse discrete Fourier transform, where N is the num-
ber of subcarriers. Assume that the transmit power is
E
˚
Nxnt .t/

2
2

�
D NE0, where E0 denotes unit power. The

resultant vector xnt .t/ , FH Nxnt .t/ is padded with cyclic
prefix of length LCP � .N�1/ to avoid inter-block interfer-
ence, where F is a N �N discrete Fourier transform matrix
with entries ŒF�cq D 1=Ne�j2�cq=N , c, q D 0, 1, : : : , N � 1.
The time-domain signal is transmitted through length N
channel and received by multiple antennas at the receiver.
After cyclic prefix removal, the signal vector received by
the nr-th antenna at time t is written as ynr . Then, the ideal

received signal vector d D
�
d1, d2, : : : , dNr

�T and input
signal x.n/ are related by

d D Hx.n/C z.n/ (1)

where the MIMO channel matrix H can be written as

H D

2
66664

hT
11 hT

12 � � � hT
1Nt

hT
21 hT

22 � � � hT
2Nt

...
...

. . .
...

hT
Nr1 hT

Nr2 � � � hT
NrNt

3
77775 D

2
6664

hT
1:

hT
2:
...

hT
Nr :

3
7775 (2)

Notice that N is the size of filtering memory of each single
channel between each antenna pair hnrnt . Then, the ideal
received signal at nr-th antenna can be written as

dnr D

NtX
ntD1

hT
nrnt

xnt .n/C znr .n/ D hT
nr :x.n/C znr .n/ (3)

where hT
nr : D

h
hT

nr1, : : : , hT
nrnt

, : : : , hT
nrNt

i
2 C1�NtN ,

nr D 1, 2, .., Nr is a MISO channel vector that consists
of Nt single-input single-output subchannels hnrnt (nt D

1, 2, : : : , Nt). We assume that the hnrnt is only supported
by K-dominant channel taps whose positions are randomly
determined. A typical example of sparse multipath chan-
nel is depicted in Figure 2. Hereby, at the nr-th receive
antenna, the corresponding signal estimation error enr for
nr D 1, 2, : : : , Nr at time t can be defined as

enr .n/ D dnr � ynr .n/ D dnr � hT
nr :.n/x.n/ (4)

where hT
nr :.n/ denotes the nr-th adaptive updating estimator

of hT
nr : and ynr .n/ is the output signal from NLMS filter as

it is shown in Figure 3. By collecting all of the error signals
enr .n/, nr D 1, 2, : : : , Nr, Equation (4) can be rewritten as
matrix–vector form as

e.n/ D
�
e1.n/, e2.n/, : : : , eNr .n/

�T
D d � y.n/ (5)

D d �H.n/x.n/

where y.n/ D
�
y1.n/, : : : , yNr .n/

�T denotes estimate of
the output signal; H.n/ is the n-th adaptive estimate chan-
nel matrix H. According to Equation (5), MIMO channel
estimation problem is equivalent to estimating different
individual MISO channel hnr : using error signal enr .n/
and input training signal x.n/. Estimating the MISO chan-
nel vector hnr :, the standard LMS filtering algorithm [28]
constructs the corresponding cost function:

Lnr .n/ D
1

2
e2

nr
.n/ (6)

for nr D 1, 2, : : : , Nr. It is obvious that LMS-based
adaptive channel estimation (ACE) can be derived as

hnr :.nC 1/ D hnr :.n/ � �
@Lnr :.n/

@hnr :.n/

D hnr :.n/C �x.n/enr .n/

(7)

where � 2 .0, ��1
max/ is the step size of LMS gradi-

ent descend and �max is the maximum eigenvalue of the
NtN � NtN covariance matrix, which is calculated as
R D Efx.n/xT .n/g. The stability of LMS-based method
is vulnerable to random scaling of training signal [29]. To
improve the stability, NLMS filtering algorithm is consid-
ered as standard method for estimating MISO channels
[30]. Hence, the update equation is modified as

hnr :.nC 1/ D hnr :.n/C
�

xT .n/x.n/„ ƒ‚ …
�.n/

�x.n/enr .n/ (8)

where �.n/ D �=.xT .n/x.n// is termed as variable step
size (VSS) that depends on the random input signal x.n/.
The advantage of the NLMS filtering algorithm over the
LMS filtering algorithm using invariable step size � is
briefly discussed in the following. Interested authors are
recommended to refer to [31] for detailed derivation pro-
cess. The .nC1/-th adaptive channel estimation hnr :.nC1/
is obtained by solving

minimize wnr :.n/ D hnr :.nC 1/ � hnr :.n/

subject to hT
nr :.nC 1/x.n/ D dnr .n/

(9)

To solve the aforementioned equality constrained opti-
mization problem, Lagrange duality theory is adopted [31],
and then the optimal solution is obtained as

Qhnr :.nC 1/ D Qhnr :.n/C
1

2
��x.n/ (10)
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where �� is a Lagrange multiplier. Substituting
Equation (10) into Equation (9), the ideal received signal
can be rewritten as

dnr D
Qhnr :.nC 1/x.n/

D Qhnr :.n/x.n/C
1

2
��xT .n/x.n/

(11)

Then, the VSS of NLMS filtering algorithm is easily
obtained as

�� D
2e.n/

xT .n/x.n/
(12)

From Equation (12), one can find that VSS of NLMS fil-
tering algorithm is set so that the algorithm can achieve the
flexible trade-off between steady-state MSE performance
and convergence speed. The positive real factor VSS �

controls the update scale from one iteration to the next
without changing the direction. To ensure the stability of
the NLMS filtering algorithm, the VSS � in Equation (8)
is bounded as follows [31]:

0 < � <
2

.NtN C 2/Px
(13)

where Px D Efx2.n/g denotes input signal power. Under
two independent assumptions, (i) input signal and noise are
independent, and (ii) multiple antennas are uncorrelated,
steady-state MSD of MIMO channel estimate using NLMS
filtering algorithm is derived as

MSDNLMS.1/ D lim
n!1

E
˚
.H.n/ �H/T .H.n/ �H/

�
D Nr lim

n!1
E
n�

hnr :.n/ � hnr :
�T

�
�
hnr :.n/ � hnr :

�o
D

�NrNtN

2 � �.NtN C 2/
�

P0

Px
(14)

where P0 D Efz2.n/g denotes the additive noise power.
However, traditional methods in either Equation (7) or (8)
never exploit the inherent sparsity in MIMO channels and
then incur waste of resources that could be utilized by
advanced signal processing method. Therefore, in the next
section, we propose two sparse NLMS filtering algorithms
so as to exploit sparse structure information.

3. PROPOSED SPARSE NLMS
FILTERING ALGORITHMS FOR
ESTMATING MIMO CHANNELS

3.1. Proposed sparse NLMS
filtering algorithms

Consider an `p-norm sparse penalty on NLMS cost func-
tion to produce sparse channel estimate as this penalty

term forces the channel tap values of hnr : to approach
zero. It is termed as LP-NLMS, which was proposed
for single-antenna systems in [26]. For the nr-th MISO
channel vector, the cost function of the LP-NLMS is
given by

Llp,nr
.n/ D

1

2
e2

nr
.n/C �lp,nr

khnr :.n/kp (15)

where k � kp is the `p-norm operator and �lp,nr is a regular-
ization parameter that balances the MSE and the sparsity.
According to Equation (15), the update equation for LP-
NLMS-based ASCE can be derived as

hnr :.nC 1/ D hnr :.n/C
�

xT .n/x.n/„ ƒ‚ …
�.n/

�enr .n/x.n/

„ ƒ‚ …
NLMS

� �lp,nr

khnr :.n/k
1�p
p sgn.hnr :.n//

� C jhnr :.n/j
1�p„ ƒ‚ …

g1.hnr :.n//

(16)

where �lp,nr D ��lp,nr depends on the gradient descend
step size � and the regularization parameter �lp,nr ; � > 0
is a given positive parameter, and g1.hnr :.n// is the sparse
penalty strength function.

Theorem 1. Suppose the number of iterations
approaches infinity (n ! 1) and �.n/ satisfies
Equation (13). Then the nr-th converged MISO chan-
nel hnr :.1/ using LP-NLMS filtering algorithm can be
derived as follows:

E fhnr :.1/g D hnr : �
Px�lp,nr

�

� E

"
khnr :.1/k

1�p
p sgn.hnr :.1//

� C jhnr :.1/j
1�p

# (17)

Proof. Let us define the channel error as vnr :.n/ D
hnr :.n/ � hnr :. According to Equation (16), vnr :.n/ can be
rewritten as

vnr :.n/D
�
I��.n/x.n/xT .n/

�
vnr :.n � 1/C�.n/znr :.n/x.n/

� �lp,nr

khnr :.n/k
1�p
p sgn.hnr :.n//

� C jhnr :.n/j
1�p

(18)
Taking expectation on both sides of Equation (18), one
can obtain
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lim
n!1

E fvnr :.n/g D lim
n!1

E

(�
I � �.n/x.n/xT .n/

�
vnr :.n � 1/C �.n/znr :.n/x.n/ � �lp,nr

khnr :.n/k
1�p
p sgn.hnr :.n//

� C jhnr :.n/j
1�p

)

D lim
n!1

(
ŒI � �R=Px�EŒvnr :.n � 1/� � �lp,nr E

"
khnr :.n/k

1�p
p sgn.hnr :.n//

� C jhnr :.n/j
1�p

#)
(19)

D ŒI � �R=Px�EŒvnr :.1/� � �lp,nr E

"
khnr :.1/k

1�p
p sgn.hnr :.1//

� C jhnr :.1/j
1�p

#

Because EŒhnr :.n/� D EŒvnr :.n/� C hnr :, the conver-
gence condition of EŒhnr :.n/� is the same as EŒvnr :.n/� in
Equation (19), which is independent of �lp,nr as well as the
`p-norm sparse constraint function. However, according to
Equation (19), an appropriate selection of �lp,nr and `p-
norm functions for LP-NLMS filtering algorithm realizes
lower MSD than NLMS [25].

By setting p D 0 (`0-norm sparse constraint function) in
the LP-NLMS-based ASCE, the zero-attracting forces the
channel tap values of hnr : to approach zero. It is termed as
`0-norm NLMS (L0-NLMS) [27], and whose cost function
is given by

Ll0,nr
.n/ D

1

2
e2

nr
.n/C �l0,nr

khnr :.n/k0 (20)

where �l0,nr is a regularization parameter to balance the
estimation error and sparse penalty. Because solving the
L0-norm minimization is an nonpolynomial hard problem
[23], we replace it with approximate continuous function

khnr :k0 �

NtN�1X
lD0

	
1 � e�ˇ jhnn :,lj



(21)

According to the approximate function, the L0-LMS cost
function can be revised as

Ll0,nr
.n/ D

1

2
e2

nr
.n/C �l0,nr

NtN�1X
lD0

	
1 � e�ˇ jhnn :,lj



(22)

Then, the update equation for L0-LMS-based ASCE can
be derived as

hnr :.nC 1/ D hnr :.n/C
�

xT .n/x.n/„ ƒ‚ …
�.n/

�enr .n/x.n/

„ ƒ‚ …
NLMS

� �l0,nrˇsgn
�
hnr :.n/

�
e�ˇ jhnr :.n/j

(23)

where �l0,nr D ��l0,nr . It is worth mentioning that the
exponential function in Equation (21) will cause high
computational complexity. To reduce the computational
complexity, the first-order Taylor series expansion of
exponential functions is taken into consideration as [32]

e�ˇ jhnr :.n/j �

�
1 � ˇ

ˇ̌
hnr :,l.n/

ˇ̌
, when

ˇ̌
hnr :,l.n/

ˇ̌
� 1=ˇ

0, others
(24)

Then, the update equation for L0-NLMS-based ASCE can
be derived as

hnr :.nC 1/ D hnr :.n/C
�

xT .n/x.n/„ ƒ‚ …
�.n/

�enr .n/x.n/

„ ƒ‚ …
NLMS

� �l0,nr g2
�
hnr :.n/

�
(25)

where g2.hnr :.n// is the sparse penalty strength function
that is defined as

g2
�
hnr :.n/

�
D

�
2ˇ2hnr :,l.n/�2ˇsgn.hnr :,l.n//, when

ˇ̌
hnr :,l.n/

ˇ̌
�1=ˇ

0, others
(26)

Theorem 2. Suppose the number of iterations
approaches to infinity (n ! 1) and �.n/ satisfies
Equation (13). Then, the nr-th converged MISO channel
hnr :.n C 1/ using L0-NLMS filtering algorithm can be
derived as follows:

E fhnr :.1/g D hnr : �
Px�l0,nr

�
E
�
g2
�
hnr :.1/

��
(27)

where

lim
n!1

E
�
g2
�
hnr :.n/

��
D

�
2ˇ2hnr :,l.1/ � 2ˇE

�
sgn.hnr :,l.1/

�
/, when

ˇ̌
hnr :,l.1/

ˇ̌
� 1=ˇ

0, others
(28)

Note that the proof of the Theorem 2 is similar to the
derivation of Theorem 1 in Equation (17). Because very
sparse channel (i.e., K � N ) was considered in this paper,
one can find that .NtK C 2/�Px < .NtN C 2/�Px �

2 according to Equation (13). The steady-state MSD of
ASCE using sparse NLMS filtering algorithms, according
to [33], can be derived as
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Table I. Sparse NLMS filtering algorithms for estimating MIMO channels.

Input Training signal vector: x.n/ D
h
xT

1 .n/, xT
2 .n/, : : : , xT

Nt
.n/

iT

Received signal vector: d D
�
d1, d2, : : : , dNr

�T
Output Channel estimate QH
Initialize Update times n D 1,

Initial channel estimate Qh.0/ D 0
Algorithm formulation Determine nr : nr =mod(n� 1, Nr )+1

Choose nr -th channel estimate
Received antenna: hnr .n/ D QH.nr ; :/
Set desired signal: dnr D y.nr /

Calculate error Update error: enr .n/ D dnr � hT
nr:
.n/x.n/

Adaptive filtering algorithms LP-NLMS in Equation (16) or L0-NLMS in Equation (25)
Stop criterion H.nr ; :/ D hnr .nC 1/, if H.nC 1/� H.n/22 � 10�5 or

n > threshold is satisfied, then algorithm stop; otherwise,
n D nC 1, run the algorithm from step 2.

MSDsparse.1/ D lim
n!1

E
˚
.H.n/ �H/T .H.n/ �H/

�
D Nr lim

n!1
E
n�

hnr :.n/ � hnr :
�T �hnr :.n/ � hnr :

�o

D
�NrNtN

2 � �.NtN C 2/

P0

Px

0
B@1 �

�2

�1 C �2 C

q
�2

1 C
32ˇ 2NtN
� G.hnr :/

1
CA �

�NrNtN

2 � �.NtN C 2/

P0

Px

(29)

where �1, �2, and G.hnr :/ in Equation (29) are given by

�1 D 4ˇ2Px�C 2G.hnr :/NtN (30)

�2 D
16ˇ2NtN

�.2 � .NtN C 2/�Px/
(31)

G.hnr :/ D
X
l2�

g2
i .hl/, i D 1, 2 and l D 0, 1, : : : , NtN � 1

(32)

where 	 denotes the position sets of zero or approximate
zero taps. Choosing reasonable sparse penalty parameter
can exploit the sparsity of MIMO channel. Hence, sparse
NLMS filtering algorithm can achieve lower MSD than
NLMS, that is, MSDsparse.1/ � MSDNLMS.1/.

3.2. Adaptive MIMO channel estimation

Based on `p-norm and `0-norm sparse constraints, two
sparse NLMS filtering algorithms were proposed in
Equations (16) and (23), respectively. For estimating
MIMO channels, ASCE methods using sparse NLMS fil-
tering algorithms are provided in Table I.

4. COMPUTER SIMULATIONS

In this section, we present the estimation performance
of the proposed ASCE estimators. The 100 independent
Monte Carlo runs are averaged for evaluation. The length
of channel vector hntnr between each pair .nt, nr/ is set
as N D 16, and its number of dominant taps is set

as K D 1 and 4, respectively. The values of domi-
nant channel taps follow Gaussian distribution, which is
subjected to E

˚
khntnrk

2
2 D 1

�
, and their positions are ran-

domly allocated within the length of hntnr . The threshold
of stopping criterion is set as threshold D 1000. Note
that setting threshold according to specific system require-
ments, the received signal-to-noise ratio (SNR) is defined
as 10log.E0=�

2
n /, where E0 D 1 is transmitted symbol

power at each antenna. Here, simulation environment is set
in two SNR regimes: 10 and 20 dB. All of the step sizes and
regularization parameters are listed in Table II. The estima-
tion performance is evaluated by average MSD, which is
defined as

Average MSDfH.n/g D E
n
kH �H.n/k22

o
(33)

where H and H.n/ are the actual MIMO channel and its
n-th adaptive channel estimate, respectively.

First, the impact of SNR on the average MSD perfor-
mance is evaluated. Figures 4–6 show that LP-NLMS-
based ASCE methods can achieve better estimation
performance than standard NLMS-based ACE. Because
L0-NLMS-based ASCE methods take advantage of the
sparsity of MIMO channel, the estimation performance is
better than NLMS. In addition, the three figures also indi-
cate that the estimation performance of ACE using NLMS
is insensitive to the number of nonzero channel taps. On

Table II. Simulation parameters.

Parameters � �lp �l0

Values 0.5, 1.0 and 1.5 .1e� 4/�2
n .1e� 3/�2

n
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Figure 4. Performance comparison at SNR D 5 dB and� D 0.5.
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Figure 5. Performance comparison at SNR D 10 dB and
� D 0.5.
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Figure 6. Performance comparison at SNR D 15 dB and
� D 0.5.

0 500 1000 1500 2000
10-3

10-2

10-1

100

101

Iterations

M
SD

Figure 7. Performance comparison at SNR D 10 dB and
� D 0.5.
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Figure 8. Performance comparison at SNR D 15 dB and
� D 0.5.

the other hand, the proposed ASCE methods depend on the
number of nonzero taps. The proposed ASCE methods can
achieve better estimation performance for sparser channel.

Second, the impact of the number of transmit/receive
antennas on the estimation performance of the proposed
methods is evaluated in Figures 7 and 8 where the number
of transmit/receive antennas is set to .Nt, Nr/ D .2, 4/. The
figures show that the performance advantage of proposed
ASCE is still better than traditional ACE method even if
the number of receive antenna was changed.

Finally, the impact of the step sizes, that is, � D 0.5, 1,
and 1.5 on the estimation performance of the proposed
method, is shown in Figures 9 and 10. The SNR is set
to 10 dB, and the number of transmit/receive antennas
is set to .Nt, Nr/ D .2, 2/ in Figure 9 and .Nt, Nr/ D

.2, 4/ in Figure 10. The two figures clearly show that the
proposed ASCE methods can achieve better performance
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Figure 9. Performance comparison versus step size of
gradient descends.
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Figure 10. Performance comparison versus step size of
gradient descend.

than standard ACE method. Here, note that each proposed
ASCE method using smaller gradient descend step size can
achieve better estimation accuracy than the one using big-
ger step size, at the cost of slightly higher computational
complexity. For a practical time-variant MIMO-OFDM
system, both performance and simplicity of the ASCE
method are required. In different SNR region, hence,
different step size could be applied to trade off the per-
formance and computational complexity of the proposed
ASCE methods.

5. CONCLUSION

In this paper, we proposed ASCE methods using NLMS-
based adaptive sparse filtering algorithms for estimating
MIMO channels. First, system model was formulated

to ensure that each MISO channel vector can be esti-
mated independently. Second, cost function of the two
proposed methods was constructed using sparse con-
straint functions, that is, `p-norm and `0-norm. Third,
MIMO channel matrix was estimated using proposed adap-
tive sparse filtering algorithm-based ASCE methods. In
addition, steady-state MSD of proposed methods was
derived, and their MSD performance was proved lower
than traditional method. At last, computer simulations were
shown that proposed ASCE methods (with sparse con-
straint) achieved better performance than standard ACE
method (without sparse constraint) without scarifying extra
computational complexity.
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