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SUMMARY

Normalized least mean square (NLMS) was considered as one of the classical adaptive system identification
algorithms. Because most of systems are often modeled as sparse, sparse NLMS algorithm was also applied
to improve identification performance by taking the advantage of system sparsity. However, identification
performances of NLMS type algorithms cannot achieve high-identification performance, especially in low
signal-to-noise ratio regime. It was well known that least mean fourth (LMF) can achieve high-
identification performance by utilizing fourth-order identification error updating rather than second-order.
However, the main drawback of LMF is its instability and it cannot be applied to adaptive sparse system
identifications. In this paper, we propose a stable sparse normalized LMF algorithm to exploit the sparse
structure information to improve identification performance. Its stability is shown to be equivalent to sparse
NLMS type algorithm. Simulation results show that the proposed normalized LMF algorithm can achieve
better identification performance than sparse NLMS one. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background and motivation

Adaptive system identification (ASI) has been applied in many applications, such as channel esti-
mation [1, 2] and echo cancelation [3]. Least mean square (LMS) algorithm is one of the popular
methods for ASI [4]. Because of its sensitivity to random scaling of input signal, normalized least
mean square (NLMS) was also proposed to improve identification performance [4]. In many scenar-
ios, impulse responses of unknown systems are often modeled as sparse, consisting of only a few
large coefficients and many small ones, which are below noise floor. Taking advantage of such
sparse prior information can improve the system identification performance [1, 5–8]. In [1], ‘0-norm
sparse penalty function was introduced to NLMS to exploit system sparsity. However, NLMS type
algorithm cannot achieve high-identification performance, especially in low signal-to-noise ratio
(SNR) regime [9].
Least mean fourth (LMF) algorithm [10] outperforms the well-known NLMS algorithm [4] in

achieving a better balance between convergence and steady-state performances of ASI as shown
in Figure 1. It is well known that the stability is one of the key factors for ASI. Standard LMF
algorithm is unstable due to the fact that its stability depends on the following three factors: input
signal power, noise power, and weight initialization [11]. In general, for a given gradient descend
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step-size, NLMS algorithm is stable and depends solely on the input signal power [4]. However,
more and more systems, such as broadband wireless channels, were confirmed that exhibits sparse
structures [12, 13]. NLMS-based ASI may degrade the identification performance because of
neglecting the sparsity. To exploit sparse structure information in unknown system, sparse NLMS
algorithm [1] were proposed for adaptive sparse system identifications (ASSI). Note that finite
impulse response (FIR)-based sparse system vector is only supported by few nonzero coefficients.
An example of sparse system is given as shown in Figure 2, the length of FIR-based system is 16,
whereas the number of nonzero coefficients is only 2.
To improve ASSI performance, sparse LMF was proposed in low SNR regime [14]. However,

the proposed method cannot work stable in high SNR regime. Inspirited by traditional LMF
algorithm, stable normalized LMF (NLMF) algorithm for ASI was also proposed in [9]. The
stability of NLMF is controlled by a variable step-size. For a better understanding about the stabil-
ity, we will explain in detail in third section in this paper.

Figure 1. Adaptive system identification using adaptive algorithm.
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Figure 2. An example of sparse finite impulse response system.
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1.2. Main contribution

On the basis of standard NLMF algorithm, we propose a stable sparse NLMF algorithm, which
provides better identification performance than sparse NLMS one. To improve the stability of
sparse NLMF algorithm, normalized version of the algorithm using sparse penalty is considered.
The proposed sparse algorithm is effective for exploiting system sparsity and stable for all statistics
of input signal, noise, and initial setting of the algorithm. For one thing, the updating normalization
stabilizes the algorithm against increasing input power and the infinity of the input distribution. For
another, the estimation error normalization term stabilizes the algorithm against increasing noise
power and increasing initial weight deviation. At last, the approximated ‘0-norm sparse penalty is
utilized so that ASSI replaces small system coefficients with zero. In other words, system sparsity
can be exploited. Note that when the values of variable step-size in the range (0, 2), stability of the
sparse NLMF algorithm is similar to that of the sparse NLMS one [1]. Performance of the proposed
algorithm is evaluated by the computer simulation.

1.3. Relates to previous works

In [15], a faster proportionate PNLMS algorithm was proposed for ASSI for improving conver-
gence speed. In other words, the proposed method can reduce computational complexity for sparse
system. Unlike this method, our proposed method can exploit the system sparsity to improve the
identification performance. In [14], sparse LMF for ASI was proposed in low SNR regime (e.g., less
than 5 dB). By means of computer simulations, identification performance of sparse LMF improved
is much better than sparse LMS [1, 16]. However, sparse LMF is not more stable if the SNR beyond
low SNR regime. In [17], reweighted zero-attracting NLMF was proposed for ASSI by using ‘1-norm
sparse penalty function for taking the advantage of system sparsity. Different from the proposed
algorithm, we utilized an approximated ‘0 -norm sparse penalty function to exploit stronger system
sparsity than ‘1-norm one [18, 19].
Remainder of the rest paper is organized as follows. A system model is described and problems are

formulated in Section 2. In section 3, sparse NLMF algorithm is proposed, and variable step-size con-
trolling algorithm stability is highlighted. Simulation results are presented in Section 4 in order to verify
the effectiveness of the proposed algorithm for ASI. Finally, we conclude the paper in Section 5.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Assume that an input signal x(n) is input to the system with unknown sparse FIR coefficients vector
w= [w1,w2,…,wN]

T, then its observed output signal y(n) is given by

y nð Þ ¼ wTx nð Þ þ z nð Þ; (1)

where x(n) = [x(n), x(n� 1),…, x(n�N+ 1)]T denotes the vector of input signal x(n), and z(n) is the
observation noise assumed to be independent with x(n). The objective of the algorithm is to adaptively
identify the unknown FIR coefficients vector w using the input signal x(n) and the desired output y(n).
One of the effective identification methods is adopting the traditional NLMS algorithm. The
system mismatching identification error is defined as e nð Þ ¼ y nð Þ � ewT nð Þx nð Þ , where ew nð Þ ¼ew1 nð Þ; ew2 nð Þ;…; ewN nð Þ½ �T denotes n-th filter updating weight vector. Hence, the cost function and
corresponding update equation of NLMS are given by

Cost function : G1 nð Þ ¼ 1
2
e2 nð Þ

Update equation : ew nþ 1ð Þ ¼ ew nð Þ þ μ

x nð Þk k22
�∂G1 nð Þ
∂ew nð Þ ¼ ew nð Þ þ μ

e nð Þx nð Þ
x nð Þk k22

:

8>><>>: (2)

where step-size μ ∈ (0, 1/γmax ) controls the steady-state performance and stability of NLMF and γmax is
maximal eigenvalue of covariance matrix R=E{x(n)xT(n)}.
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To exploit the system sparsity, ASSI using L0-NLMS algorithm was proposed in [1]. The cost
function G2(n) of L0-NLMS is given by

G2 nð Þ ¼ 1
2
e2 nð Þ þ λ1 ew nð Þk k0; (3)

where λ1 is a regularization parameter, which balances matching error and sparseness of the system;ewk k0 denotes zero-norm operator, which counts the number of nonzero coefficient of ew. Because
solving zero-norm algorithm is a non-deterministic polynomial-time hard problem [20], ewk k0 in Eq. (3)

can be approximated by J ewð Þ ¼ J ew0ð Þ;…; J ewið Þ;…; J ewN�1ð Þ½ �T , and J ewið Þ is given by

J ewið Þ ¼ 2ε2ewi � 2εsgn ewið Þ; when ewij j≤1=ε
0; others

(
; (4)

where sgn(wi) is a component-wise function, which is defined as: sgn(wi) =wi / |wi| when wi≠ 0 and sgn
(wi) = 0 when wi=0; and ε is a threshold, which controls sparseness of w. In this letter, we set ε=10 in
computer simulation which was suggested by [21]. Then, update equation of sparse NLMS algorithm is
given by

ew nþ 1ð Þ ¼ ew nð Þ þ μ
e nð Þx nð Þ
x nð Þk k22

� β1J ew nð Þð Þ; (5)

where β1 =μλ1; μ ∈ (0,2) is a gradient descend step-size, which controls convergence speed and steady-

state performance; ‖ � ‖2 is the Euclidean norm operator and xk k22¼ ∑N
i¼1 xij j2.

3. ADAPTIVE SPARSE SYSTEM IDENTIFICATIONS USING SPARSE NORMALIZED
LEAST MEAN FOURTH ALGORITHM

3.1. Sparse normalized least mean fourth algorithm

It is well known that four-order error cost function can achieve better performance than second-
order error one in ((2)) [14]. The cost function and corresponding update equation of LMF are
constructed by

Cost function : G3 nð Þ ¼ 1
4
e4 nð Þ

Update equation : ew nþ 1ð Þ ¼ ew nð Þ þ μ

x nð Þk k22
�∂G3 nð Þ
∂ew nð Þ ¼ ew nð Þ þ μ

e3 nð Þx nð Þ
x nð Þk k22

:

8>><>>: (6)

Similarly, the cost function of sparse LMF algorithm [14] can also be written as

G3 nð Þ ¼ 1
4
e4 nð Þ þ λ2 ew nð Þk k0; (7)

where λ2> 0 is a regularization parameter, which trades off the fourth-order mismatching error and
sparseness of system. Then, updating equation of sparse NLMF algorithm can be written as

ew nþ 1ð Þ ¼ ew nð Þ þ μ
e3 nð Þx nð Þ
x nð Þk k22

� β2J ew nð Þð Þ; (8)
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where β2 =μλ2. However, stability of Eq. (8) still depends on input signal power, noise power, and weight
initialization of sparse NLMF. To ensure its stability, the updating equation in Eq. (8) is modified as

ew nþ 1ð Þ ¼ ew nð Þ þ μe2 nð Þ
x nð Þk k22þe2 nð Þ �

e nð Þx nð Þ
x nð Þk k22

� β2J ew nð Þð Þ;

¼ ew nð Þ þ μ nð Þe nð Þx nð Þ
x nð Þk k22

� β2J ew nð Þð Þ;
(9)

where the variable step-size μ(n), which is decided by e2(n).

3.2. Stability analysis

Unlike the traditional sparse NLMF algorithm in (8), the proposed sparse NLMF algorithm in (9)
behaves more like sparse NLMS algorithm in (5). The main difference between the two algorithms
is their step-sizes. It was well known that the necessary condition of stable sparse NLMS algorithm
is 0<μ< 2/γmax. According to the Eq. (9), the variable step-size μ(n) is equals to

μ nð Þ ¼ μe2 nð Þ
x nð Þk k22þe2 nð Þ ; (10)

where the input signal vector x(n) is invariable. Hence, variable step-size μ(n) in Eq. (10) depends only
on the system identification error e2(n).

Theorem 1
The necessary condition of sparse NLMF algorithm is μ(n)∈ (0,μ), where μ ∈ (0, 2/γmax).

Proof
According to Eq. (10), when e2 nð Þ≫ x nð Þk k22 then μ(n)→μ; when e2 nð Þ≈ x nð Þk k22 then μ(n)→μ/2;
and when e2 nð Þ≪ x nð Þk k22 then μ(n)→ 0. Obviously, μ(n)∈ (0,μ) is necessary condition to ensure
sparse NLMF algorithm stable. ■
For example, two step-sizes of NLMS type are set as μ = 0.5 and 1, x nð Þk k22¼ 16, variable step-

sizes of NLMF can be depicted as in Figure 3. As the identification error e2(n) increases, μ(n)
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Figure 3. Variable step-size depends on estimation error.
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approaches to μ to improve convergence speed of NLMF; and as the identification error e2(n)
decreases, μ(n) approaches to 0 to ensure stability of the NLMF.

4. COMPUTER SIMULATION AND DISCUSSION

In this section, computer simulation adopts 1000 independent Monte-Carlo runs for achieving av-
erage. Four algorithms, that is, NLMS, NLMF, sparse NLMS, and sparse NLMF will be evaluated
by mean square deviation (MSD), which is defined as

MSD w nð Þf g ¼ E w� ew nð Þk k22
n o

; (11)

where E{�} denotes expectation operator, w and ew nð Þ denote actual system coefficient vector and its
estimator, respectively. The FIR system length is set as N= 16 and its number of nonzero coefficients
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Figure 4. Performance comparison (K = 1 and SNR= 2 dB).
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Figure 5. Performance comparison (K = 1 and SNR= 4 dB).
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is set as K= 1 and 4, respectively. The values of the nonzero FIR coefficients follow Gaussian
distribution and the positions of coefficients are randomly allocated within the FIR system w, which
is subjected to wk k22¼ 1. The received SNR is defined as SNR ¼ 10log E0=σ2

n

� �
, where E0 = 1 is

normalized transmitted power and the noise power is given by σ2
n ¼ 10�SNR=10 . These algorithms

use the same step-size each time and two step-sizes, that is, μ= 0.5 and 1 are considered. The regular-
ization parameters are set as λ1 ¼ 0:02σ2

n and λ2 ¼ 0:0002σ2
n, respectively. Please note that effective

regularization parameters selection methods via Monte-Carlo simulations. Interesting authors can find
the detail selection methods in our paper [22, 23]. Experiments have been designed to demonstrate
their convergence speed (or iterative times) and steady-state performance (measured by MSD) in dif-
ferent SNR regimes.
In the first experiment, K= 1, number of nonzero coefficients of FIR system, as well as different

SNR cases are considered for comparison. MSD performance curves of two type algorithms, that
is,, NLMS, sparse NLMS, NLMF, and sparse NLMF, are depicted in Figures 4–7. These figures
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Figure 6. Performance comparison (K = 1 and SNR= 6 dB).
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Figure 7. Performance comparison (K = 1 and SNR= 8 dB).
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show that the proposed sparse NLMF algorithm is stable at two different step-sizes, that is, μ= 0.5
and 1. On the one hand, because sparse NLMF algorithm has taken the advantage of system
sparsity, sparse NLMF algorithm obtained better identification performance than standard NLMF
algorithm. On the other hand, the proposed algorithm achieved much better performance than
sparse NLMS one at two different step-sizes, that is, μ= 0.5 and 1. It was worth mentioning that
sparse NLMF algorithm has to run more iterative times than sparse NLMS. The main reason is that
variable step-size μ(n) decreases adaptively to ensure sparse NLMF algorithm stable as the
identification error e2(n) reducing. One can also find that its gradient descend speed is always
slower than sparse NLMS algorithm in Figures 4–7.
In the second experiments, to confirm the effectiveness of proposed method in different sparse

systems, Figures 8–11 depict MSD performance curves of the proposed method at K = 4. According
to these figures, proposed sparse NLMF algorithm achieves better estimation performance than
sparse NLMS. Compare with all of simulation figures, that is, Figures 4–11, we can find that sparse
filters relates with sparseness of system. In other words, sparser system vector may obtain better
performance and vice versa.
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5. CONCLUSION

Normalized least mean square type algorithm was considered as one of effective methods for ASSI.
Because NLMF adopts four-order statistical in cost function, hence, it can achieve better identification
performance than NLMS. Motivated by this idea, first of all, in this paper, we applied the NLMF
algorithm to ASI so that it can improve identification performance. To exploit the system sparsity,
we proposed a stable sparse NLMF algorithm to further improve the identification performance. In
addition, equivalent stability between NLMS and NLMF was also discussed. Simulation results have
shown the superior performance of the proposed algorithm compared with the existing algorithms.
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