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ABSTRACT

Standard least mean square/fourth (LMS/F) is a classical adaptive algorithm that combined the advantages of both least
mean square (LMS) and least mean fourth (LMF). The advantage of LMS is fast convergence speed while its shortcoming
is suboptimal solution in low signal-to-noise ratio (SNR) environment. On the contrary, the advantage of LMF algorithm
is robust in low SNR while its drawback is slow convergence speed in high SNR case. Many finite impulse response sys-
tems are modeled as sparse rather than traditionally dense. To take advantage of system sparsity, different sparse LMS
algorithms with lp-LMS and l0-LMS have been proposed to improve adaptive identification performance. However, sparse
LMS algorithms have the same drawback as standard LMS. Different from LMS filter, standard LMS/F filter can achieve
better performance. Hence, the aim of this paper is to introduce sparse penalties to the LMS/F algorithm so that it can fur-
ther improve identification performance. We propose two sparse LMS/F algorithms using two sparse constraints to improve
adaptive identification performance. Two experiments are performed to show the effectiveness of the proposed algorithms
by computer simulation. In the first experiment, the number of nonzero coefficients is changing, and the proposed algo-
rithms can achieve better mean square deviation performance than sparse LMS algorithms. In the second experiment, the
number of nonzero coefficient is fixed, and mean square deviation performance of sparse LMS/F algorithms is still better
than that of sparse LMS algorithms. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background and motivation

Adaptive system identification includes many applications
such as interference cancelation [1], adaptive beamform-
ing [2], and channel estimation in different systems [3–6].
One of the classical algorithms is called least mean square
(LMS), which is first proposed by Widrow and Hoff [7].
In the last decades, LMS filter is widely used in many
applications [8]. In most of these scenarios, finite impulse
responses (FIRs) of unknown systems can be modeled
sparsely [9–15]. The FIR coefficients vector is supported
only by very few dominant coefficients. A typical exam-
ple of sparse system is shown in Figure 1, where length

of FIR is N D 16 while number of dominant coeffi-
cients is K D 2. As we know, using such sparse prior
information can improve the filtering performance. How-
ever, standard LMS filter never takes advantage of such
information. In the past years, many sparse LMS algo-
rithms have been proposed to exploit sparsity. Motivated
by the compressive sensing (CS) [16,17], Chen and his col-
laborators proposed zero-attracting LMS (ZA-LMS) and
reweighted ZA-LMS (RZA-LMS) algorithms using l1-
norm sparse penalty [18]. Based on this work, Taheri and
Vorobyov proposed an improved sparse LMS algorithm
using lp-norm sparse penalty [19], which is termed as LP-
LMS. Gu and his collaborators also proposed an improved
sparse LMS algorithm using approximated l0-norm sparse
penalty [20], which is termed as L0-LMS. According to
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Figure 1. Example of a 16-length sparse system where the
number of dominant coefficients is K D 2.

CS [16,17], it is well known that a stronger sparse con-
straint can exploit more accurate sparse structure infor-
mation. Hence, performance comparison between the four
aforementioned sparse LMS algorithms can be sorted from
good to poor: L0-LMS, LP-LMS, RZA-LMS, and ZA-
LMS. Interested readers can also refer to the overall dis-
cussions and simulation results in [21,22].

From the preceding introduction of sparse LMS algo-
rithms, we deduce that their adaptive updating equations
are based on updating the equation of standard LMS algo-
rithm. Unfortunately, the common drawback of these algo-
rithms is that LMS is sensitive to scaling of input signal
and noise interference, especially in low signal-to-noise
ratio (SNR) regime [13,23]. To mitigate the two hostile
effects, adaptive algorithms using higher-order moments
of the error signal have been shown to perform better
mean square estimation than LMS in some important appli-
cations. The typical algorithm is that least mean fourth
(LMF) algorithm, developed by Walach and Widrow in
[23], applied a fourth-order power optimization criterion
instead of the square power used for LMS. Their idea
came from the fact that higher-order power filters can miti-
gate noise interference effectively [24]. However, standard
LMF filter does not exploit sparsity on system identifi-
cation. To take advantage of such sparsity, we proposed
sparse LMF algorithms to improve identification perfor-
mance [13]. In this research, sparse LMF filters can achieve
much better performance than sparse LMS. According to
theoretical analysis and computer simulations, it was found
that sparse LMF algorithm can achieve much better perfor-
mance than sparse LMS algorithms in low SNR environ-
ment without sacrificing high computational complexity.
In high SNR regime, unfortunately, sparse LMF algorithms
cannot work well because of its slow convergence speed.

To full take advantage of obvious merits of LMS and
LMF, it is logical to combine two algorithms with appli-
cation to adaptive system identification. The combined

LMS/F algorithm has been first proposed in [25] and fur-
ther developed in [26], as a method to improve the perfor-
mance of the LMS adaptive filter without sacrificing the
simplicity and stability properties of LMS. However, they
have never considered its application to adaptive sparse
system identification.

1.2. Main contribution

In this paper, we propose sparse LMS/F algorithms to
exploit system sparsity using two sparse penalties, that
is, lp-norm and l0-norm. They are termed as LP-LMS/F
and L0-LMS/F, respectively. As we know, both LP-LMS
and L0-LMS filters have achieved better performance than
ZA-LMS and RZA-LMS [19,21]. Hence, two ZA-LMS/F
and RZA-LMS/F algorithms are omitted because of space
limitation.

The main contribution of this paper is to first pro-
pose sparse LMS/F algorithms with application to adaptive
sparse system identification. Sparse penalized cost func-
tions are constructed to implement sparse LMS/F algo-
rithms. At last, two experiments are given to confirm the
effectiveness of our proposed methods. In the first exper-
iment, the mean square deviation (MSD) performance of
sparse LMS/F algorithms is evaluated according to differ-
ent numbers of dominant FIR coefficients. In the second
experiment, when the number of dominant FIR coeffi-
cients are invariant, the MSD performance of the proposed
algorithms is evaluated in different SNRs.

1.3. Relations to other works

In our previous work [13], sparse LMF algorithm using
fourth-order power optimization criterion was proposed
to improve system identification performance. The main
drawback of this proposed algorithm is its instability in
high SNR regime (SNR � 10 dB). Hence, the proposed
algorithm can only be applied in low SNR regime. In a
previous work [22], we proposed an improved sparse LMS
algorithm using second-order power optimization crite-
rion. In addition, several normalized sparse LMS algo-
rithms were proposed. To improve the performance of
sparse LMS algorithm, an improved �-law proportionate
normalized LMS algorithm was also proposed in [27].
Unlike the proposed methods using either fourth-order or
second-order power optimization criterion, the proposed
sparse LMS/F uses a hybrid power optimization crite-
rion, which combines fourth-order and second-order power
optimization criteria.

1.4. Notations

The rest of the paper is organized as follows. Section 2
reviews the LMS and LMS/F algorithms. In Section 3, we
construct sparse penalized LMS/F cost functions and pro-
pose two adaptive sparse algorithms. In Section 4, Monte

1650 Wirel. Commun. Mob. Comput. 2015; 15:1649–1658 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



G. Gui, A. Mehbodniya and F. Adachi Sparse LMS/F algorithms

Carlo simulation results for MSD standard are presented
to confirm the effectiveness of sparse LMS/F algorithms.
Concluding remarks are presented in Section 5.

2. REVIEW OF STANDARD LMS
AND LMS/F ALGORITHM

Assume an unknown system as shown in Figure 2, input
signal is x.t/ at time t , and N length FIR filter coeffi-
cients vector is w D Œw0; w1; : : : ; wN�1�

T, and then the
observed signal y.t/ is given by

y.t/D wTx.t/C z.t/ (1)

where x.t/ D Œx.t/; x.t � 1/; : : : ; x.t �N C 1/�T denotes
the vector of input signal x.t/, and z.t/ is the obser-
vation noise assumed to be independent with x.t/. The
goal of LMF-type filters is to sequentially estimate the
unknown coefficient vector using the input signal x.t/
and the desired output y.t/. Let w.n/ be the estimated
coefficient vector of the adaptive filter at iteration n. The
instantaneous error is defined as e.n/D y.n/�wT.n/x.n/.

In the standard LMS [9], its cost function Llms.n/ is
defined as

Ls.n/D
1

2
e2.n/ (2)

Then the corresponding updating equation of LMS can be
written as

w.nC1/D w.n/��s
@Llms.n/

@w.n/
D w.n/C�se.n/x.n/ (3)

where �s is the update step-size constant that controls sta-
bility and rate of convergence of two algorithms. In the
standard LMF, the cost function Llms is defined as

Llmf.n/D
1

4
e4.n/ (4)

unknown FIR 
filter 

input signal 
vector 

LMS/F-type 
algorithm

additive 
noise 

estimated FIR 
filter

adaptive system identification

Figure 2. LMS/F filter-based adaptive identification system.

The filter coefficient vector is then updated by

w.nC1/D w.n/��lmf
@Llmf.n/

@w.n/
D w.n/C�lmfe

3.n/x.n/

(5)
where �lmf is the step size that controls stability and rate
of convergence of the LMF algorithm.

In the standard LMS/F algorithm, the cost functions
Llmsf.n/ is constructed as follows:

Llmsf.n/D
1

2
" ln

�
e2.n/C"

�
�
1

2
e2.n/ (6)

where " is a positive parameter that control convergence
speed and steady-state performance. Then the correspond-
ing updating equation of LMS/F can be given as

wlmsf.nC 1/D wlmsf.n/��f
@Llmsf.n/

@wlmsf.n/

D wlmsf.n/C�f
e3.n/

e2.n/C "
x.n/;

D wlmsf.n/C
�f

1C "=e2.n/„ ƒ‚ …
�f.n/

e.n/x.n/

(7)

when "�e2.n/, LMS/F algorithm in Equation (7) behaves
like the LMF with a step size of �lmsf="; "�e2.n/, LMS/F
algorithm in Equation (7) reduces to the standard LMS
algorithm with a step size of �lmsf. Based on preced-
ing discussion, the range of �f.n/ is .0; �f/. Hence, this
gives the combined benefits of a large step-size LMS for
fast convergence and small step-size LMF for steady-state
performance.

3. SPARSE LMS/F ALGORITHMS

Adaptive system identification applies standard LMS/F
algorithm, which combined both advantages of LMS and
LMF. However, for an unknown sparse system, LMS/F
may neglect the sparse structure information, which can
be considered as prior information to improve identifica-
tion performance. In this paper, we propose two sparse
LMS/F algorithms for adaptive sparse system identifica-
tion. Like the standard LMS/F algorithm, the common
behavior of the two sparse LMS/F algorithms also applies
fourth-order power optimization criterion. Hence, sparse
LMS/F algorithms for adaptive system identification have
two merits: (i) can mitigate noise interference effectively
by using higher-order power filter and (ii) can exploit
system sparsity by applying sparse penalty.

3.1. LP-LMS/F algorithm

By introducing lp-norm sparse penalty to LMF/S-based
adaptive sparse system identification, its cost function is
given by

Llp.n/D
1

2
" ln

�
e2 .n/C"

�
�
1

2
e2.n/C�lp kw.n/kp (8)
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where �lp > 0 is a regularization parameter that bal-
ances the identification error and system sparsity; param-
eter "> is a threshold that controls the convergence speed
and identification error for adaptive updating. Here, please
note that " plays the same role as standard LMS/F algo-
rithm in Equation (6). For easy understanding of the sparse
constraint function in (8), geometrical interpretation is
shown in Figure 3. By using lp-norm sparse constraint
function, one can obtain unique sparse solution in the
solution plane. It is easy to deduce that adaptive sparse
system identification using LP-LMS/F algorithm can also
be achieved by constructing the cost function in (8).
Hence, the corresponding update equation of LP-LMS/F is
derived as

w.nC 1/D w.n/��f
@Llp.n/

@w.n/

D w.n/C
"�fe.n/x.n/
e2.n/C "

��fe.n/x.n/

� �lp
kw.n/k1�pp sgn fw.n/g

"lpC jw.n/j
1�p

D w.n/C�f
e3.n/x.n/
e2.n/C "

� �lp
kw.n/k1�pp sgn fw.n/g

"lpC jw .n/j
1�p

(9)

where �lp D �f�lp and "LP > 0. If we define the sparse
penalty function of w .n/ as

Glp.w.n//D
kw.n/k1�pp sgn fw.n/g

"lp C jw.n/j
1�p

(10)

then a geometrical figure can also be depicted as in
Figure 4. To exploit the sparsity, indeed, neglect sparse
penalty on dominant coefficients. It was well known that
lp-norm sparse constraint function is nonconvex and can-
not exploit the sparsity efficiently. For example, Glp.w.n//
attracts all filter coefficients uniformly as zero in high
probability as shown in Figure 4.

3.2. L0-LMS/F algorithm

Consider l0-norm penalty on LMS/F cost function to pro-
duce sparse solution because this penalty term forces the
small nonzero filter coefficients of w.n/ to approach zero.
The cost function of L0-LMS/F is given by

Ll0.n/D
1

2
" ln

�
e2 .n/C"

�
�
1

2
e2.n/C �l0 kw.n/k0

(11)
where �l0 is a positive regularization parameter that trades
off the identification error and system sparsity. For the geo-
metrical perspective, the l0-norm sparse constraint func-
tion in (10) is depicted as geometrical Figure 5. Unlike
(8), cost function Ll0.n/using l0-norm sparse constraint
function can achieve optimal sparse solution. As solving

(e.g., )
solution plane

sparse constraint

sparse solution

Figure 3. Sparse solution is obtained using lp-norm sparse
constraint.
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Figure 4. Sparse penalty function Glp.w.n//.

the l0-norm minimization is a non-polynomial hard prob-
lem, we replace it with an approximate continuous func-

tion [28] as kwk0 �
PN�1
iD0

�
1� e�ˇ jwi j

�
. According to

the approximate function, L0-LMS/F cost function can be
rewritten as

Ll0.n/D
1

2
" ln

�
e2.n/C"

�
�
1

2
e2.n/C�l0

NX
iD1

�
1� e�ˇ jwi j

�
(12)

Then the update equation of L0-LMS/F-based adaptive
sparse system identification is given by

w.nC1/D w.n/C�f
e3.n/x .n/
e2.n/C "

��l0ˇsgnfw.n/ge�ˇ jwi j

(13)
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solution plane

sparse solution

sparse constraint

Figure 5. Sparse solution is obtained using l0-norm sparse
constraint.

where �l0 D �f�l0. It is worth mentioning that the
exponential function in Equation (13) will cause high
computational complexity. To reduce the computational
complexity, the first-order Taylor series expansion of expo-
nential function is taken into consideration as

e�ˇ jwi .n/j �

(
1� ˇ jwi .n/j ;when jwi .n/j �

1
ˇ

0; others
(14)

where e�ˇ jw.n/j D
h
e�ˇ jw0.n/j; : : : ; e�ˇ jwi .n/j; : : : ;

e�ˇ jwN�1.n/j
iT

. It was worth noting that the positive

parameter ˇ controls the system sparseness and identifica-
tion performance. Although the L0-LMS/F can exploit sys-
tem sparsity on adaptive system identification, unsuitable
parameter ˇ will cause performance degradation, because
if we choose bigger parameter ˇ, it cannot exploit sparsity
effectively; on the contrary, by choosing smaller parame-
ter ˇ, it will attract some active FIR coefficients as zero.
The parameter of L0-LMS is suggested as ˇ D 10 in
[22]. In this paper, we set the parameter of L0-LMS/F
as ˇ D 10. We can also find that L0-LMS/F algorithm
using ˇ D 10 is very flexible in different SNRs in simula-
tion results. According to preceding analysis, the modified
update equation of L0-LMS/F can be rewritten as

w.nC 1/D w.n/C�f
e3.n/x .n/
e2.n/C "

� �l0Gl0fw.n/g (15)
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Figure 6. Sparse penalty function Gl0.w.n//.

where �l0 D �f�l0 and l0-norm approximation sparse
penalty function Gl0 fw.n/g is defined as

Gl0fwi .n/gD

(
2ˇ2wi .n/�2ˇ sgn fwi .n/g; when jwi .n/j�

1
ˇ

0; others
(16)

where Gl0 fw.n/g D ŒGl0 fw0.n/g ; : : : ; Gl0 fwi .n/g ;

: : : ; Gl0 fwN�1.n/g�
T. Let us take ˇ D 10 for example.

The sparse penalty function Gl0 fwi .n/g is depicted in
Figure 6. As the figure shows, Gl0 .w.n// replaces small
filter coefficients (smaller than 1=ˇ/ by zeros in high
probability while neglecting sparse penalty on dominant
coefficients (larger than 1=ˇ/.

4. EXPERIMENTAL RESULTS

In this section, all of the filters are 1000 independent
Monte Carlo runs for averaging. Performance compar-
isons between sparse LMS algorithms and sparse LMS/F
algorithms are evaluated by MSD, which is defined as

MSDfw.n/g DE
n
kw�w.n/k22

o
(17)

where Ef�g denotes expectation operator, and w and w.n/
denote actual FIR coefficient vector and its estimator,
respectively. The FIR filter length is set as N D 16, and
its number of nonzero coefficients is set as K2 f2; 4; 8g.
The values of the nonzero FIR coefficients follow the
Gaussian distribution, and the positions of coefficients are
randomly allocated within the FIR filter w, which is sub-

jected to E
n
kwk22

o
D 1. The received SNR is defined

as SNRD 10 log .E0=�2n /, where E0 D 1 is transmitted
signal power. Then the noise power is given as �2n D
10�SNR=10. All of the step sizes of gradient descent and
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Table I. Simulation parameters.

Input signal x.t/ Gaussian distribution CN .0;1/
Normalized power E

n
kx.t/k2

o
D E0 D 1

Random additive noise Gaussian distribution CN .0;�2
n /

FIR-based filter w Filter length N D 16
Nonzero coefficient K 2 f2;4;8g
Coefficients distribution CN .0;1/

Sparse LMS algorithms Step size �s D 0:04
LP-LMS �lp D 0:002�2

n and pD 0:5
L0-LMS �l0 D 0:02�2

n and ˇ D 10
Sparse LMS/F algorithms Step size �f D 0:04

LP-LMS/F �lp D 0:002�2
n and pD 0:5

L0-LMS/F �l0 D 0:02�2
n and ˇ D 10

Figure 7. Performance evaluation (SNRD 5 dB and K D 2).

regularization parameters are listed in Table I. Two exper-
iments have been designed to demonstrate their conver-
gence speed and performance in different noise level, that
is, SNR 2 f5 dB; 10 dBg.

In the first experiment, as shown in Figures 7–10, are
comparisons of MSD performance with different numbers
of nonzero FIR coefficientsK in two SNR regimes, that is,
SNR 2 f5 dB; 10 dBg. First of all, Figures 7–10 show that
LMS/F-type algorithms achieved much better MSD perfor-
mance than LMS-type algorithms in different nonzero filter
coefficients, K. It is easy to deduce that the performance
advantage of LMS/F-type algorithms is benefited from
hybrid power optimization criterion. Furthermore, our pro-
posed sparse LMS/F algorithms have the same stability as
sparse LMS ones in two different SNR regimes. Hence,
proposed sparse LMS/F algorithms combine performance
advantage when comparing with sparse LMS algorithms
[21,22] and stability when comparing with sparse LMF
algorithms [13]. Additionally, let us take the K D 2 and
K D 8 for example. When K D 2 in Figures 7 and 8, the
performance gap of sparse LMS/F algorithms and standard
LMS/F algorithm is bigger than that of the case of K D 8
as shown in Figures 11 and 12, respectively. One can find

Figure 8. Performance evaluation (SNRD 10 dB and K D 2).

Figure 9. Performance evaluation (SNRD 5 dB and K D 4).

that the sparse LMS/F algorithms can achieve better per-
formance for sparser FIR filter. This also coincided with
sparse signal recovery theory in the framework of CS

1654 Wirel. Commun. Mob. Comput. 2015; 15:1649–1658 © 2013 John Wiley & Sons, Ltd.
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Figure 10. Performance evaluation (SNRD 10 dB and K D 4).

Figure 11. Performance evaluation (SNRD 5 dB and K D 8).

[16,17]. At the same time, all performance curves of sparse
LMS/F algorithms are lower than the performance curves
of sparse LMS algorithms and the LMS/F one.

In the second experiment, as we can see from
Figures 13 and 14, MSD performance of sparse LMS/F
algorithms at different threshold parameters, for exam-
ple, " 2 f0:4; 0:6:0:8g is evaluated in two SNR regimes.
When the FIR filter works in a very low SNR regime
(SNR D 5 dB), both LMS and sparse LMS/F algorithms
yield faster convergence than the LMS/F. However, LMS/F
can achieve better identification performance than LMS
and LMS/F. In practical system identification, it is neces-
sary to trade off the performance and convergence speed. In
the high noise case, for example, SNRD 5 dB, we suggest
that the parameter is chosen as "D 0:8, because in LMS/F
of up to 800 iterations, steady-state performance of LMS/F
is much better than that of standard LMS. In the higher

Figure 12. Performance evaluation (SNRD 10 dB and K D 8).

Figure 13. Performance evaluation (SNRD 5 dB and K D 2).

Figure 14. Performance evaluation (SNRD 10 dB and K D 2).
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noise level regime, for example, SNRD 10 dB as shown in
Figure 14, if we set parameter " D 0:4, LMS/F algorithm
can keep higher convergence speed than " 2 f0:6; 0:8g
while its steady-state performance is better than that of
LMS algorithm.

5. CONCLUSION AND
FUTURE WORK

We have investigated adaptive sparse identification
approaches using several classical standard algorithms.
Sparse LMS algorithms, for example, LP-LMS and L0-
LMS, do exploit sparsity on unknown sparse systems.
However, their performance is easily degraded because
they are sensitive to scaling of input signal. Motivated
by the background that standard LMS/F algorithm can
achieve better performance than LMS, cost function of
LMS/F algorithm can be penalized by sparse constraints.
In this paper, we proposed two sparse LMS/F algorithms
using two sparse constraints to improve adaptive identifica-
tion performance. Computer simulation results confirmed
the effectiveness of the propose algorithms, which have
achieved better MSD performance than sparse LMS algo-
rithms. In future work, the proposed algorithms will be
applied in sparse channel estimation for different practical
systems, such as multi-input multi-output (MIMO) sys-
tems [29,30], cooperative MIMO systems [31], and MIMO
two-way relay networks [32].
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