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Abstract—In heterogeneous networks, a dense deployment of
base stations (BSs) leads to increased total energy consumption,
and consequently increased co-channel interference (CCI). In
this paper, to deal with this problem, self-organizing mechanisms
are proposed for joint channel and power allocation procedures
which are performed in a fully distributed manner. A dynamic
channel allocation mechanism is proposed, in which the problem
is modeled as a noncooperative game, and a no-regret learning
algorithm is applied for solving the game. In order to improve the
accuracy and reduce the effect of shadowing, we propose another
channel allocation algorithm executed at each user equipment
(UE). In this algorithm, each UE reports the channel with
minimum CCI to its associated BS. Then, the BS selects its
channel based on these received reports. To combat the energy
consumption problem, BSs choose their transmission power by
employing an ON-OFF switching scheme. Simulation results show
that the proposed mechanism, which is based on the second pro-
posed channel allocation algorithm and combined with the ON-
OFF switching scheme, balances load among BSs. Furthermore,
it yields significant performance gains up to about 40.3%, 44.8%,
and 70.6% in terms of average energy consumption, UE’s rate,
and BS’s load, respectively, compared to a benchmark based on
an interference-aware dynamic channel allocation algorithm.

Index Terms—Heterogeneous Networks; Energy Efficiency;
Co-Channel Interference; Learning Algorithm.

I. INTRODUCTION

With the anticipated growth in smartphone penetration and
demand for ubiquitous information access, next-generation
wireless networks face enormous challenges to meet the ever-
increasing network capacity [1]. Among them, the growing
energy consumption of the networks is a main challenge
which will directly result in the increase of carbon footprint
and particularly environmental problems [2]. In the networks,

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This research is supported by “Towards Energy-Efficient Hyper-Dense
Wireless Networks with Trillions of Devices”, the Commissioned Research of
NICT, JAPAN and KDDI foundation research grant, “Energy-Efficient Radio
Resource Management for Next Generation Wireless Network”, in part by the
U.S. National Science Foundation under CNS-1406968 and CNS-1460333.

A. Hajijamali Arani and MJ.Omidi are with the Department of Electrical
and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-
83111, Iran (e-mail: atefeh.haji@ec.iut.ac.ir; omidi@cc.iut.ac.ir).

A. Mehbodniya and F. Adachi are with the Research Organiza-
tion of Electrical Communication Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, 980-8577 Japan (e-mail: mehbodniya@riec.tohoku.ac.jp;
adachi@ecei.tohoku.ac.jp).

W. Saad is with Wireless@VT, Bradley Department of Electrical and
Computer Engineering, Virginia Tech, Blacksburg, VA, 24061 USA, (e-mail:
walids@vt.edu).
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base stations (BSs) consume a considerable amount of energy
(amounting to about 60%–80% of the whole energy con-
sumption) [3]. Therefore, reducing the energy consumption
of BSs can lead to significant energy savings. In this respect,
heterogeneous networks (HetNets), in which different macro
cell BSs (MBSs) and small cell BSs (SBSs) must coexist,
have emerged as a promising approach to increase capacity and
improve energy efficiency (EE) of the next-generation wireless
networks [2], [4]–[7].

However, the deployment of HetNets introduces signif-
icant technical issues which need to be addressed. Some
of these issues include radio resource allocation and self-
organization [8]. Unlike MBSs, SBSs are likely to be user-
deployed in an ad hoc manner in unplanned locations without
any operator supervision. Accordingly, self-organizing net-
work (SON) has been recognized as a key approach which
improves the network’s performance, decreases the networking
cost, and enhances the intelligent management [9]. SON allows
SBSs to adapt to the changes in the network’s conditions,
and lead their strategies to provide proper performance in a
distributed and flexible manner with minimal human interven-
tion [10].

On the other hand, the traffic load of SBSs and MBSs
is dynamic across time and space domain [11]. According
to [12], for a large time portion during a day, the traffic load
is much below the peak traffic load, and a large number of
BSs are often under-utilized. In current cellular networks, BSs’
deployment and operation are usually performed based on the
peak traffic load. Therefore, in low traffic load situations, the
EE of BSs will decrease. This observation requires network
operators to design and utilize effective methods for managing
the networks in a much more energy efficient way than the
existing cellular networks. For instance, techniques such as
BS ON-OFF switching (alternatively termed as sleep mode)
and cell breathing are suitable solutions to reduce the energy
consumption of BSs. In BS ON-OFF switching method, the
BS can switch to low power consumption modes in light traffic
load conditions. Using cell breathing technique allows the BS
to adaptively adjust its cell size according to the traffic load
conditions [13], [14]. Therefore, by using these methods, the
network can be well adapted to spatial and temporal traffic
fluctuations. Additionally, in dense deployment of HetNets,
tackling the co-channel interference (CCI) is still a major
challenge and a bottleneck towards improving network per-
formance. Thus, the problem of channel sharing among BSs
is of utmost importance.
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Figure 1. A two-tier HetNet model for the channel assignment scheme based on Gibbs sampling method with BSs which are able to switch between ON and
OFF states. In beacon transmission phase, the BSs transmit their estimated loads. In sensing phase, the BSs receive the reports from their associated UEs. In
data phase, the BSs send data packets to their associated UEs.

A. Related Work

Several new techniques have been proposed to enhance the
EE of HetNets via various approaches such as sleep mode
and cell breathing [12], [15]–[22]. In [12], a user equipment
(UE) association mechanism for sleeping cell UEs based on
maximum mean channel access probability is proposed. The
proposed mechanism adapts to traffic load at BSs, received
signal power, and cumulative interference power. In [15], a
cooperative optimization problem for maximizing EE, subject
to minimum received signal strength with a set of clusters
is considered. For solving the problem, each cluster employs
simulated annealing search algorithm in a distributed manner.
However, this work does not consider each BS’s load. The
authors in [16] proposed a set of small cell driven, core
network driven, and UE driven sleep mode algorithms for
SBSs in HetNets.

In [17], a centralized sleep mode technique for HetNets
by exploiting the cooperation of cells is proposed. In [18],
a multi-objective optimization problem based on sleep mode
technique for an orthogonal frequency-division multiple access
(OFDMA) based system is developed. In order to find the
solution, a genetic algorithm is applied. However, the proposed
mechanisms in [17] and [18] rely on centralized methods, and
come at the expense of knowing global information. In [19], a
random SBS ON-OFF switching scheme is introduced, where
the UEs can delay their transmissions for a closer SBS to
become available, thereby significantly improving EE.

In [20], network energy consumption is minimized by
optimizing the cell sizes. Moreover, it is shown that the
optimal cell size from an energy perspective depends on BS
technology, data rates, and traffic demands. In [21], the authors
concentrated on separating the control plane from the data
plane, and propose a probabilistic sleeping approach based
on the traffic load for data BSs. In [22], an opportunistic
sleep mode scheme based on a noncooperative game for the
downlink transmission of a two–tier HetNet is proposed. For
solving the proposed game, a learning approach in a distributed
manner is applied. Nonetheless, despite the insights glanced
from these interesting studies [12], [15]–[18], [20]–[22] in
improving the EE of the networks, they focus on only a
particular challenge of the HetNets, i.e. energy consumption,
and they do not consider channel allocation issues.

Since only a limited number of channels are allocated to
the network, efficient assignment of channels among BSs is

an important issue. In this regard, several studies have ad-
dressed channel allocation problem, and suggest some schemes
to share channels among BSs. In [23], a dynamic channel
assignment algorithm based on interference information in
surrounding cells for a multihop cellular network is proposed.
In [24], a centralized dynamic channel assignment based on
interference conditions and traffic demands is considered.
Several distributed dynamic channel assignment approaches
for cellular networks are investigated in [25], [26]. Moreover,
a number of schemes based on neural network [27]–[29], tabu
search [30]–[33], genetic algorithm [34], and simulated an-
nealing algorithm [35] have been proposed. Although efficient
channel assignment is a significant part of resource allocation
problem, it is necessary to take into consideration techniques in
order to improve the EE of the networks that these works [23]–
[35] do not consider EE issue in the networks, especially from
the network operator’s perspective.

The aforementioned works [12], [15]–[18], [20]–[35] do not
jointly address power and channel allocation problems in a
distributed manner. Moreover, they do not consider scenarios
with UEs’ mobility, handoff problems, and the impact of
resource allocation mechanisms on UE’s quality-of-service
(QoS).

B. Contribution

The main contribution of this paper is to introduce a
novel framework for joint channel allocation and BS ON-OFF
switching problem in densely deployed HetNets. We propose
two novel channel allocation schemes. The first scheme is
implemented at the level of BSs, allowing BSs to dynami-
cally choose their channels, and adapt them to the network’s
conditions. Since the channels themselves do not have their
own individual payoff functions or preferences, investigating
noncooperative game is more suitable compared to a matching
game with two-sided preferences. Moreover, in a matching
game, the matching can require additional signaling between
two player sets which can lead to overhead in the design,
and increase complexity [36]. On the other hand, due to the
distributed nature of networks and the competition among BSs,
we cast the problem as a noncooperative game. To solve this
game, a novel distributed learning-based approach is used, in
which the knowledge of received interference on each channel
is needed for choosing the appropriate channel. The need
for this distributed learning solution is desirable as it has
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several advantages. First, since BSs can autonomously select
their channels based on the environmental information about
the channels without information exchange, it can reduce the
signaling overhead in the network. Moreover, this information
is useful for BSs to select their strategies with better long-term
performance. Second, a distributed decision taken by a BS is
independent on the number of BSs in the network. Therefore,
this approach is a suitable solution for densely deployed
HetNets, and when the number of BSs varies over time, and
there is no centralized controller. Furthermore, centralized
approaches rely on a single controller entity. If the controller
entity is compromised, then it can lead to failures at the
entire network. Thus, this distributed approach can improve
the network’s robustness to failures and attacks.

The second proposed scheme is implemented at the level
of UEs. In this algorithm, all UEs in the coverage area of
a BS choose their priority channels, and report them to the
BS. After collecting all the reports, the BS decides to choose
its channel based on the reports received from its associated
UEs, using Gibbs sampling method [37], [38]. Fig. 1 illustrates
our two-tier network model based on BS ON-OFF switching
and channel assignment algorithm based on Gibbs sampling
method.

The advantage of the first proposed algorithm is its simplic-
ity and low complexity as opposed to the second algorithm
which requires feedback from UEs to BSs. However, we
can show intuitively that the second algorithm manages the
channels among BSs more effectively because of employing
additional information from UEs. Furthermore, in order to
improve the EE of the network, an ON-OFF switching al-
gorithm similar to [39] is implemented at BSs, in which BSs
dynamically choose their transmit power. The transmit power
is decided using a machine-learning based game-theoretic
algorithm, and by evaluating a payoff function. Moreover, we
consider mobility for UEs, and use a Manhattan grid model
which is a more realistic mobility model than the random
waypoint model. The handoff decision is made according to
BS’s estimated load which is periodically advertised by BSs
through beacon signals. Simulation results show that the pro-
posed approaches improve the network’s performance in terms
of energy consumption and throughput as compared to the
baseline approaches. As a result the proposed methods achieve
both EE and spectral efficiency (SE) in a fully distributed
manner without any need for information exchanges among
BSs.

The rest of this paper is organized as follows. In Section
II, we introduce our system model. Section III describes
the problem formulation including UE association and BS
operation problem. In Section IV, we propose our joint channel
and power allocation schemes. Section V presents a no-
regret learning approach for solving the proposed games. The
simulation results are presented in Section VI, and conclusions
are drawn in Section VII.

Notations: In this paper, the following notations are used.
The regular and boldface symbols refer to scalars and matrices,
respectively. For any finite set A, the cardinality of set A and
the set of all probability distributions over it are denoted by
|A| and D(A), respectively. {f(x) |g(x)} represents the subset

of all values f(x) for which the assertion g(x) about x is true.
X = [xi,j ]M×N and xi,j represent matrix X with dimension
M -by-N and the element in row i and column j of matrix
X , respectively, which i = 1, . . . , M and j = 1, . . . , N . The
function 1φ denotes the indicator function which equals 1 if
event φ is true and 0, otherwise. Moreover, [x]+ = max{0, x}
denotes the positive part of x. The set of real numbers is
denoted by R.

II. SYSTEM MODEL

A. Deployment Scenario
We consider the downlink of a two-tier HetNet with a set of

BSs B = {1, . . . , |B|} including a set of MBSs BM overlaid
with a set of SBSs BS, i.e. B = BM ∪ BS. For each coverage
area, a MBS is located at the center of area, and SBSs are
uniformly distributed within the coverage of the MBS. We
denote by K the set of active uniformly distributed mobile
UEs with different data rate demands. Since in this paper,
we have been focusing more on issues regarding learning
schemes for energy-efficient resource management, we assume
a single antenna for each UE and BS. However, using multiple
input multiple output-orthogonal frequency division multiplex-
ing (MIMO-OFDM) technique can improve the transmission
quality (throughput, bit error rate, etc.). Moreover, the power
consumption model of BSs depends on the number of trans-
mitting antennas.

We assume that the total bandwidth W is equally divided
among several orthogonal channels with bandwidth W/|Q|
where Q = {1, . . . , |Q|} is the set of available channels, with
|Q| < |B|. Moreover, MBSs and SBSs can operate over the
same channel. OFDM symbols are grouped into a collection of
physical resource blocks (RBs). We consider RM and RS RBs
for MBSs and SBSs, respectively, that are distributed among
their associated UEs. We assume an open access scheme for
BSs in the system, i.e. the UEs are allowed to associate with
any tier’s BSs. In order to save power consumption under low
traffic load, some BSs can be switched to an OFF state (or
sleep mode). The vector of BSs’ states at time t in RB r is
denoted by It,r = [It,rb ]|B|×1

, with each element It,rb being
equal to 1 if BS b is in ON state (or active mode) at time t,
and equal to 0, otherwise. Therefore, the set of active BSs at
time t in RB r is given by:

BrON(t) = {b|It,rb = 1,∀b ∈ B }. (1)

Let PM
m,r(t) (P S

s,r(t)) be the transmit power of MBS m ∈ BM

(SBS s ∈ BS) over RB r ∈ RM (RS) at time t. We denote by
qb,r(t) the channel over which BS b is transmitting at time
t. We treat interference as noise. Therefore, the signal-to-
interference-and-noise-ratio (SINR) at the receiver of macro
cell UE (MUE) k ∈ K associated with MBS m ∈ BM

transmitting over channel qm,r(t) ∈ Q, and allocated in
RB r ∈ RM at time t is defined by (2). In (2), gM

m,k(t)

(gS
s,k(t)) denotes the total channel gain including path loss and

lognormal shadow fading between MBS m (SBS s) and UE k
at time t. Since the time scale for measuring the total channel
gain is much larger than the time scale of fast fading, we do
not consider fast fading. Let σ2 be the additive white Gaussian
noise (AWGN) power level per RB at the receiver of UEs, and
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γm,k,r (t) =
PM
m,r (t) gM

m,k(t)∑
ḿ∈BM, ḿ6=m

PM
ḿ,r(t)I

t,r
ḿ gM

ḿ,k(t)1(qm,r(t)=qḿ,r(t))︸ ︷︷ ︸
Im,rMBS→MBS

+
∑
ś∈BS

P S
ś,r (t) It,rś gS

ś,k (t)1(qm,r(t)=qś,r(t))︸ ︷︷ ︸
Im,rSBS→MBS

+σ2
. (2)

γs,k,r (t) =
P S
s,r (t) gS

s,k(t)∑
ḿ∈BM

PM
ḿ,r(t)I

t,r
ḿ gM

ḿ,k(t)1(qs,r(t)=qḿ,r(t))︸ ︷︷ ︸
Is,rMBS→SBS

+
∑

ś∈BS, ś6=s

P S
ś,r(t)I

t,r
ś gS

ś,k(t)1(qs,r(t)=qś,r(t))︸ ︷︷ ︸
Is,rSBS→SBS

+σ2
. (3)

assumed to be constant for all UEs. Im,rMBS→MBS ( Is,rMBS→SBS)
and Im,rSBS→MBS (Is,rSBS→SBS) indicate the interference caused
by MBSs and SBSs over MBS m (SBS s), respectively. The
SINR at the receiver of small cell UE (SUE) k ∈ K associated
with SBS s ∈ BS transmitting over channel qs,r(t) ∈ Q, and
allocated in RB r ∈ RS at time t is defined by (3).

From Shannon’s capacity formula, the achievable transmis-
sion rate of UE k from BS b in RB r at time t in bit/sec/Hz
is given by:

Ck,r (t) =
W

|Q|
log2 (1 + γb,k,r (t)) . (4)

We assume that new flows arrive into the system with mean
arrival rate λk(t) and mean packet size 1/µk(t) for UE k at
time t. This assumption can capture different spatial traffic
variations by setting different arrival rates or file sizes for
different UEs, i.e. heterogeneous UEs. Therefore, the load den-
sity of BS b at time t is defined as lb(t) =

{
lkb (t)

∣∣k ∈ At,rb },
which lkb (t) = λk(t)

µk(t)Ck,r(t) represents the time fraction required
to deliver the traffic load density from BS b to UE k. Let At,rb
be the set of UE associated with BS b in RB r at time t, which
is defined in Section III. Hence, the load of BS b at time t is
expressed by:

Lb (t) =
∑
k∈At,rb

lkb (t). (5)

Moreover, for a queue system M/M/1, the average number of
flows at BS b is equal to Lb

1−Lb which is proportional to the
expected delay at BS b [40]. The load of BS is an important
metric for evaluating the UE’s QoS. Mathematically speaking,
all the UEs which are associated with a BS can be satisfied if
the BS’s load does not exceed 1. Nevertheless, when the BS’s
load exceeds 1, some UEs which are associated with it may
experience a sudden drop in their received throughput. This
phenomenon is referred as dropped UEs.

B. Power Consumption Model
In HetNets, the BSs of different tiers have different power

consumption. The total input power of a BS consists of the
transmission power and power consumed by the components
of the BS, including power amplifier, radio frequency module,
cooling system, baseband unit, DC-DC power supply, and
main supply. There are several models available for power
consumption for the networks. In a simple model, it is assumed

that the BSs do not consume any power in a sleep mode.
However, such a model is not realistic, and even in the sleep
mode, the BSs still consume a certain amount of power
for sensing purposes. To address this issue, we consider a
linear power model for the BSs in the network [41]. Such
a linear model has two parts including static and dynamic
part. The static part involves the power consumed in the sleep
mode, while the dynamic part depends on the transmit power.
Therefore, the total power consumed by the BSs in the network
at time t can be expressed as follows [39]:

PNetwork (t) =
∑
b∈B

∑
r∈Rj ,
j∈{M,S}

PTotal
b,r (t), (6)

where

PTotal
b,r (t) = POFF

b +
P jb,r(t)1(b∈BrON(t))

ηPA
b Λ(1− λFeed

b )
, j ∈ {M,S} , (7)

with

POFF
b =

PRF
b + PBB

b

Λ
, (8)

and
Λ=

(
1− λDC

b

) (
1− λMS

b

) (
1− λCool

b

)
, (9)

where PTotal
b,r (t) and POFF

b are the total power consumption
and the power consumption in sleep mode by BS b in RB
r at time t, respectively. PRF

b and PBB
b denote the power of

the radio frequency module and the total power of baseband
engine consumed by BS b, respectively. ηPA

b indicates the
power amplifier efficiency of BS b. λFeed

b ,λDC
b , λMS

b , and λCool
b

represent losses which are incurred by feeder, DC-DC power
supply, main supply, and cooling system, respectively [15]. We
assume that all parameters except P jb,r(t) for BSs in any tier
are constant over time. However, this model does not capture
the embodied energy which comprises the energy consumed
in the initial BS manufacturing and the energy associated with
maintaining during the effective lifetime of BSs [42].

III. PROBLEM FORMULATION

Given this model, our goal is to improve the EE of the
network and tackle the CCI problem by focusing on joint
power and channel allocation in a distributed manner. Fur-
thermore, the association of the UEs to the BSs is determined
by the received signal power at the location of UE and BS’s
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estimated load. At each time t, the HetNet can be configured
dynamically based on a transmission power vector, P r (t), a
channel vector, Qr (t), an association matrix between the UEs
and BSs, At,r, and a state vector, It,r, as follows:

P r (t) = [P jb,r (t)]
|B|×1

, r ∈ Rj , b ∈ B, j ∈ {M,S} ,

Qr (t) = [qb,r (t)]|B|×1, At,r = [at,rb,k]
|B|×|K|

,

It,r = [It,rb ]|B|×1
.

(10)

Each single binary element at,rb,k in matrix At,r represents the
association relation between UE k and BS b such that at,rb,k = 1
indicates UE k is associated with BS b at time t, otherwise
at,rb,k = 0. We define the set of UE associated with BS b, At,rb ,
at time t as follow:

At,rb =
{
k
∣∣∣ at,rb,k = 1, ∀k ∈ K

}
. (11)

We assume that each BS b ∈ B broadcasts its estimated load
through a beacon signal in the downlink transmission [39].
Then, the UEs periodically assess their actual performance.
Thus, the set of dropped UEs, U , and the set of new UEs joined
to the network, N , should perform new association processes
in order to assign to new BSs. Moreover, we assume that each
UE k ∈ K is associated with at most one BS at each time t,
i.e., max(

∑
b∈B a

t,r
b,k) = 1. Given the set of BSs, we define an

optimization problem which involves finding the elements of
matrix At,r (i.e., at,rb,k ∀b ∈ B, and ∀k ∈ K) as follows:

max
At,r

=[a
t,r
b,k

]

∑
∀k∈K,

k∈(U
⋃

N )

∑
∀b∈B,

j∈{M,S}

{
at,rb,k P

j
b,r(t)It,rb (βb1(b∈BS)

+ 1(b∈BM))g
j
b,k(t)(1− L̂b(t))

}
,

subject to at,rb,k ∈ {0, 1}, ∀b ∈ B, ∀k ∈ K,∑
∀b∈B

at,rb,k ≤ 1, ∀k ∈ K,

(12)
where βb denotes the cell range expansion (CRE) bias used by
SBS b ∈ BS in order to effectively expand its coverage area.
By convention, MBSs have a bias 1 (0 dB) [43]. Moreover,
SBSs can adaptively optimize this parameter based on the
network’s conditions [44]. However, here we assume that the
SBSs have a fixed CRE bias. Let L̂b(t) be the estimated load
of BS b ∈ B at time t, which is obtained according to:

L̂b (t) = L̂b (t− 1)+

(
1

t

)α (
Lb(t− 1)− L̂b(t− 1)

)
, (13)

where α > 0 is learning rate exponent for the load estimation.
For solving the above problem, the UEs choose their as-

sociated BSs using exhaustive search within the set of BSs.
For each BS b ∈ B, we define a utility function which is
the difference between its benefit and cost, and the BS aims
at maximizing it. Since each BS has incentive to increase
the number of UEs served by it, we consider the fraction
of UEs served by the BS (serving ratio) as the benefit [45].
The cost function for each BS is including its total energy
consumption and load. The weighted benefit function nrb (t)

and cost function crb (t) for BS b in RB r at time t can be
expressed as [46]:

nrb (t) = ωn
b

∣∣At,rb ∣∣
|K|

, (14)

crb (t) = ωl
bLb(t) + ωp

b

PTotal
b,r (t)

POFF
b + PTXMax

b

, (15)

where

PTXMax
b =

PMax
b

ηPAΛ(1− λFeed
b )

, (16)

where PMax
b denotes the maximum transmit power of BS b,

while ωn
b , ωl

b, and ωp
b denote the weight parameters which

indicate the impact of subscription benefit, load, and energy
on the utility function for each BS b ∈ B, respectively. Hence,
we define the utility function of BS b in RB r at time t by,

ψrb (t) =nrb (t)− crb (t) =

ωn
b

∣∣At,rb ∣∣
|K|

− ωl
bLb (t)− ωp

b

PTotal
b,r (t)

POFF
b + PTXMax

b

.
(17)

In order to deal with the CCI problem, each BS aims at
selecting the channel with minimum CCI power. Thus, the
maximization of network utility and minimization of the total
interference to find the optimal resource allocation profile are
given by the following problems:

(P1) max
P r(t),Qr(t), It,r

∑
∀r∈Rj ,
j∈{M,S}

∑
∀b∈B

ψrb (t),

subject to 0 ≤ Lb (t) ≤ 1, ∀b ∈ B,∑
r∈Rj

P jb,r(t) ≤ P
Max
b , ∀b ∈ B, j ∈ {M,S},

qb,r (t) ∈ Q, ∀b ∈ B,
It,rb ∈ {0, 1}, ∀b ∈ B,

(18)
and

(P2) min
P r(t),Qr(t), It,r

∑
∀r∈Rj ,
j∈{M,S}

∑
∀b∈B

(Ib,rMBS→MBS + Ib,rSBS→MBS)

1(b∈BM) + (Ib,rMBS→SBS + Ib,rSBS→SBS)1(b∈BS),

subject to 0 ≤ Lb (t) ≤ 1, ∀b ∈ B∑
r∈Rj

P jb,r(t) ≤ P
Max
b , ∀b ∈ B, j ∈ {M,S},

qb,r (t) ∈ Q, ∀b ∈ B,
It,rb ∈ {0, 1}, ∀b ∈ B.

(19)
In this paper, we deal with above problems with a two-step
procedure, including power and channel assignment.

IV. OPPORTUNISTIC RESOURCE ALLOCATION FOR
SELF-ORGANIZED HETNETS

In this section, we propose our distributed power and
channel assignment schemes. We assume that the BSs indepen-
dently select their transmission strategies. In this regard, for
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power allocation, each BS individually selects its transmission
power according to the following ON-OFF switching ap-
proach. For channel allocation, each BS selects its channel by
utilizing one of our proposed channel assignment mechanisms.
Note that, the traffic pattern dynamically varies in time and
space domain, but could be assumed approximately constant
for a particular period of time. Therefore, we can make a
reasonable assumption of time-scale, in which the variation
of network traffic pattern is determined at a slower time-scale
compared to the dynamic BS operation. Furthermore, based
on the number of iterations required for convergence and the
processor’s strength, the convergence time for the proposed
algorithms would be in the order of minutes, where traffic
pattern would not experience a significant change.

A. Power Allocation Sub-Problem: Game-Theoretic Frame-
work (ON-OFF Switching)

The described resource allocation problem can be formu-
lated as noncooperative games. Here, we only consider power
allocation sub-problem, and name it ON-OFF switching ap-
proach. The normal form of the game is expressed as follows:

G(P ) =

(
B, {S(P )

b }b∈B,
{
u

(P )
b

}
b∈B

)
, (20)

where B represents the set of players, S(P )
b =

{s(P )
b,1 , . . . , s

(P )

b,|S(P )
b |
} is the strategy set of player b where s(P )

b,i

denotes the ith pure strategy of player b. u(P )
b represents

the payoff function of player b in game G(P ). The players,
strategy set and payoff function are defined as follows:
• Players: The set of players B corresponds to the set of

BSs B. For a valid game we require |B|> 1.
• Strategy set: A pure strategy of player b is its trans-

mission power. The available pure strategies for BS b

are S(P )
b = {0, 1

|S(P )
b |−1

PMax
b , . . . ,

|S(P )
b |−1

|S(P )
b |−1

PMax
b } where

|S(P )
b |≥ 2. Since the strategy space for player b is

including of s(P )
b,i = 0 and s

(P )
b,i 6= 0, the strategy of

BS b not only is composed of transmission power, but
also it is composed of the state of BS b.

• Payoff: The payoff function u
(P )
b of player b is defined

as (17).
In Section V, we discuss the solution of this game.

B. Channel Assignment Sub-Problem
In this subsection, we focus on channel assignment sub-

problem, and propose two novel channel assignment mech-
anisms. In particular, our proposed mechanisms function in
a fully distributed manner. Thus, no central controller is
needed. In our first proposed mechanism, we investigate the
competition among BSs using a game-theoretic approach. In
our proposed game, BSs are the players, in which each player
aims at choosing a channel with minimum CCI power. Then,
a no-regret learning approach, presented in Section V, is used
to solve the game. The algorithm is a probabilistic learning
procedure, in which each strategy is played with a probability
based on the regret measurement. The proposed algorithm

is particularly useful because it does not need to exchange
information in the network.

Our second approach leverages reports from UEs to BSs,
in which each UE computes the average received CCI power
over each channel, and selects the channel having the lowest
averaged CCI power. Then, BSs choose their channels based
on the reports received from their associated UEs. For this
case, BSs apply a probabilistic approach for choosing their
channels inspired from softmax selection approach [47], using
Gibbs sampling method.

1) Channel Assignment Mechanism 1: Game-Theoretic
Framework: The channel assignment sub-problem can also
be formulated as a noncooperative game. The normal form of
game is expressed as follows:

G(Q) =

(
B, {S(Q)

b }b∈B,
{
u

(Q)
b

}
b∈B

)
, (21)

where S(Q)
b is the strategy set of player b, and u(Q)

b represents
the payoff function of player b in game G(Q). The differences
between G(Q) and the game described in previous subsection,
G(P ), are in the strategy set of players and payoff function.
Therefore, the strategy set and payoff function are defined as
follows:
• Strategy set: A pure strategy of player is its channel.

Therefore, the available pure strategies for each player b
are S(Q)

b = {s(Q)
b,1 , . . . , s

(Q)

b,|S(Q)
b |
} where S(Q)

b = Q.
• Payoff: The payoff function of player b is defined as

follows:

u
(Q)
b = −(Ib,rMBS→MBS + Ib,rSBS→MBS)1(b∈BM)

− (Ib,rMBS→SBS + Ib,rSBS→SBS)1(b∈BS).
(22)

To solve the game, we apply the learning algorithm described
in Section V, and name it dynamic channel assignment based
on learning algorithm (DCA-LA). In this algorithm, each
player is interested in minimizing its average regret over time.
As a result, it assigns higher probability to the channel with
more regret.

2) Channel Assignment Mechanism 2: Gibbs Sampling-
Based UE Interference-Aware: The performance of networks
hinges on CCI experienced at the UE’s location which varies
by the network’s conditions. In light of this, we propose a
channel assignment scheme, referred as Gibbs sampling-based
UE interference-aware (GUIA) technique. This scheme is
based on the interference that the UEs of each BS experience.
In the proposed approach, each UE k at the coverage area
of BS b computes the average CCI power received over each
channel from other BSs in the network. Using the first order
filtering with a constant forgetting factor λ, the average CCI
power at the receiver of UE k over channel q at time t in RB
r is given by,

Īqk,b,r(t) = (1− λ)Iqk,b,r(t) + λ Īqk,b,r(t− 1), (23)

where Iqk,b,r(t) denotes instantaneous CCI power received by
UE k over channel q at time t in RB r. Each UE k ∈ K has a
CCI table which updates for all q ∈ Q. Then, UE k selects the
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channel with minimum CCI power from this table, and send
it (i.e. the channel itself) to its associated BS b according to:

qk,b,r(t) = argmin
q∈Q

Īqk,b,r(t),

subject to k ∈ At,rb .
(24)

Each BS b ∈ B selects its channel using the received reports.
In this regard, BS b calculates the repetition of each channel
(i.e. channel absolute frequency) q ∈ Q in all received reports
as follows:

fb,q,r(t) =
∑
∀k∈At,rb

1(qk,b,r(t)=q). (25)

Then, each BS assigns a probability distribution to all available
channels according to the reports received from the UEs. The
channels which are mostly reported by the UEs have a higher
selection probability. A common method for enabling this
selection is to use a Boltzmann-Gibbs distribution [37], [38].
A Boltzmann-Gibbs is a probability distribution of particles
over states, which can be expressed as: Λ(x) ∝ exp (−Eθ ).
Here, E is the energy of state x, and θ is a constant which
is proportional to Boltzmann’s constant and thermodynamic
temperature. This implies the probability which a system
will be in state x, and it is proportional with the energy of
states and system’s temperature. In this regard, the Boltzmann-
Gibbs distribution for BS b, Λb = [Λb,1, . . . ,Λb,|Q|], can be
calculated as follows:

Λb,q(fb,q,r(t)) =
exp( 1

θb
fb,q,r(t))∑

∀q′∈Q exp( 1
θb
fb,q′,r(t))

, (26)

where Λb,q(fb,q,r(t)) is the element of Λb which is related to
channel q [48]. Let 1

θb
> 0 denotes the temperature parameter

for BS b that balances between exploration and exploitation.
Note that, by allowing θb → 0, it leads to selecting the
channel which is mostly reported by the UEs associated to
BS b. Therefore, this can lead to the strategies with zero
probabilities. On the contrary, by allowing θ → ∞, it results
in a uniform distribution over the strategy set of player b.
Then, each BS b ∈ B updates the probability assigned to each
channel q ∈ Q at time t according to:

πb,q,r(t) = πb,q,r(t− 1) +
(

1

t

)ν (
Λb,q(fb,q,r(t))− πb,q,r(t− 1)

)
,

(27)
where πb,q,r(t − 1) and ν are the probability assigned to
channel q at time t − 1 and the learning rate exponent,
respectively. Then, each BS b chooses its channel using a
mapping function which maps the probability distribution
{πb,1,r(t), . . . , πb,|Q|,r(t)} to an element in the set of channels.

V. NO REGRET-BASED LEARNING ALGORITHM FOR
MEETING EQUILIBRIUM

Next, the learning procedure for solving the proposed games
is described. Hereinafter, for notational convenience, we drop
the indexes (P ) and (Q) used in the formulations of game G(P )

and G(Q) when interchangeably referring to one of the games.
Let πb(t) = {πb,1(t), . . . , πb,|Sb|(t)} ∈ D(Sb) be the mixed
strategy of player b. Here, πb,i(t) = Pr(sb(t) = sb,i) is the

probability that player b plays strategy sb,i at time t, where
sb(t) is the strategy of player b at time t.

We use a no-regret learning approach [49] to solve the BS
operation problem based on the game theoretic frameworks in
order to allocate power and channel, and consequently obtain
ε-coarse correlated equilibrium. This algorithm is a proba-
bilistic learning procedure. This type of learning algorithm
has a good potential to learn mixed strategy equilibria. In our
proposed algorithm, BSs learn their environment, and optimize
their performance by modifying their transmission power
levels and channels. Moreover, they impact the performance
of other neighboring BSs, by minimizing their regrets for not
having selected other strategies.

Definition 1: (ε-coarse correlated equilibrium): A mixed
strategy profile Γ = (Γs,∀s ∈ S = S1 × . . . × S|B|) is an
ε-coarse correlated equilibrium if no player can gain more
ε by deviating to a pure strategy. More formally, a mixed
strategy profile Γ on the set of strategy profiles S is an ε-
coarse correlated equilibrium for game G, if and only if, for
all b ∈ B, s′b ∈ Sb we have,∑

s∈S
Γsub(s

′
b, s−b) 6

∑
s∈S

Γsub(s) + ε, (28)

where s−b is the strategy of players other than player b. In
the following, we use a no-regret procedure in a distributed
manner, in order to obtain ε-coarse correlated equilibrium. We
assume that each BS b ∈ B has only local information, and
aims at maximizing its payoff function ub, and minimizing
its regret for not having played other strategies. The regret of
player b is defined as the difference between average payoff
obtained up to time t when playing strategy sb,i, and average
payoff obtained up to time t when the player changes its
strategies [50]. Specially, for any strategy sb,i ∈ Sb, the regret
of sb,i at time t is:

Rsb,i(t) := [Dsb,i(t)]
+, (29)

where

Dsb,i(t) =
1

t

∑
τ6t

ub(sb,i, s−b(τ))− ũb(τ), (30)

where ũb(τ) denotes the time average of player b’s payoff. We
consider the behavioral rule proposed in [49], in which BSs
can balance the tradeoff between minimizing their regrets and
estimating average payoffs. Moreover, they play each strategy
with non-zero probability and based on their regrets. The so-
lution which captures this behavioral rule is Λb,sb,i(Rsb,i(t)).
Based on the sole knowledge of the value of the obtained
payoff, each BS b learns and estimates its expected payoff
for all its strategies. Therefore, for each BS b ∈ B and each
sb,i ∈ Sb, payoff estimation is updated as follows:

ûb,sb,i(t+ 1) =ûb,sb,i(t)+(
1

t+ 1

)γ
1(sb(t+1)=sb,i)(ub(t+ 1)− ûb,sb,i(t)),

(31)

where ûb,sb,i(t) and γ denote the estimated payoff at time t and
the learning rate exponent for updating the payoff estimation,
respectively. The point here is that the strategy played at the
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last iteration sees the corresponding estimated payoff updated,
while the estimated payoff for the other strategies were not
changed. For calculating the regret, each player needs the
knowledge of other players’ strategies. Therefore, we use a
learning tool for updating the estimated regret. In order to
obtain distributed approach, each BS b ∈ B estimates its regret
for each sb,i ∈ Sb as follows:

R̂sb,i(t+ 1) = R̂sb,i(t)+(
1

t+ 1

)ζ
(ûb,sb,i(t+ 1)− ub(t+ 1)− R̂sb,i(t)),

(32)
and then, the probability assigned to each strategy sb,i ∈ Sb
is updates as follows:

πb,sb,i(t+ 1) = πb,sb,i(t)+(
1

t+ 1

)ν
(Λb,sb,i(R̂sb,i(t+ 1))− πb,sb,i(t)),

(33)
where ζ and ν are the learning rate exponent for updating the
estimation regret and probability distribution, respectively. We
assume that for all BSs B, there is a mapping function which
maps the mixed strategy to a pure strategy.

We combine DCA-LA and GUIA with ON-OFF switching
approach, and refer them to hereinafter as DCA-LA/ON-
OFF switching and GUIA/ON-OFF switching, respectively.
The pseudo code for the proposed SON mechanisms, i.e.
DCA-LA/ON-OFF switching and GUIA/ON-OFF switching
are summarized in Algorithm 1 and Algorithm 2, respectively.
The procedures continue until reaching a maximum number
of iterations, TMax, which is required for the mechanisms to
converge. In Appendix C, a discussion about the computational
requirements of the proposed mechanisms is presented.

A. Convergence Analysis
In this subsection, we investigate the convergence of the

proposed SON mechanisms. Since both mechanisms use the
Boltzmann-Gibbs distribution in order to allocate the re-
sources, we use xb(t) = (x

(P )
b (t), x

(Q)
b (t)) as the transmission

strategy of BS b composed of its transmission power and chan-
nel at time t. Let x(P )

b (t) and x(Q)
b (t) denote the transmission

power level and channel selected by BS b at time t, respec-
tively. Therefore, the vector x(t) = [x1(t), . . . ,x|B|(t)] ∈ X
denotes the transmission strategies selected by the BSs, where
X =

∏|B|
b=1 S

(P )
b × S(Q)

b . For DCA-LA/ON-OFF switching
mechanism, let Ψb be a vector comprising average regret esti-
mation for power and channel. For GUIA/ON-OFF switching
mechanism, Ψb comprises average regret estimation for power,
and channel absolute frequency. Let 1/tı for all ı = {γ, ζ, ν}
be the learning rates. For converging the mechanisms, using
stochastic approximation theory and the ordinary differential
equation, all learning rate exponents ı = {γ, ζ, ν} are chosen
according to the following conditions [47], [51]:

lim
t→∞

t∑
n=1

1

nı
= +∞, (34)

and

lim
t→∞

t∑
n=1

(
1

nı
)
2

< +∞. (35)

Algorithm 1 : Proposed DCA-LA/ON-OFF switching algo-
rithm.

1: Input: U , N , ûb,sb,i(t), R̂sb,i(t), πb,sb,i(t) ∀b ∈ B, and
sb,i ∈ Sb

2: Output: At, u(Q)
b (t), u(P )

b (t), ûb,sb,i(t+ 1), R̂sb,i(t+ 1),
πb,sb,i(t+ 1) ∀b ∈ B, and sb,i ∈ Sb

3: Initialization: t = 1, B = {1, ..., |B|}, K = {1, ..., |K|},
S(P )
b , S(Q)

b ∀b ∈ B
4: while t ≤ TMax do
5: for ∀r ∈ Rj , j ∈ {M,S} do
6: for ∀b ∈ B, and j ∈ {M,S} do
7: Advertise estimated load L̂b (t)
8: Select P jb,r(t) using πb,sb,i(t) for game G(P )

9: Select qb,r(t) using πb,sb,i(t) for game G(Q)

10: end for
11: for ∀k ∈ K do
12: if (k ∈ U) ∨ (k ∈ N ) then
13: Find at,rb,k (12)
14: end if
15: end for
16: Updating: At,r

17: for ∀b ∈ B do
18: Calculations: Lb(t), u(Q)

b (t), u(P )
b (t)

19: end for
20: for ∀b ∈ B do
21: Updating: ûb,sb,i(t+1), R̂sb,i(t+ 1), πb,sb,i(t+ 1)

for both game G(P ), and G(Q) (31)- (33)
22: end for
23: end for
24: t ← t+ 1,
25: end while

The condition expressed in (34) ensures that the learning rates
are large enough to overcome any random fluctuations or
initial conditions. The condition expressed in (35) guarantees
that the learning rates diminish with iterations, and eventually
become small enough to assure convergence. For satisfying
the above conditions, we choose all ı = {γ, ζ, ν} ∈ (0.5, 1).
Furthermore, we consider the utility estimation procedure as
a fast process relative to the regret estimation, and the regret
estimation procedure as a fast process relative to the strategy
distribution process. Therefore, the learning rate exponents
meet the following criteria:

lim
t→∞

(1/tζ)

(1/tγ)
= 0, (36)

and

lim
t→∞

(1/tν)

(1/tζ)
= 0. (37)

Therefore, the learning rate exponents follow ζ > γ, ν > ζ.
Moreover, we assume that θ > 0, unless when we mention
θ → 0. In the following theorem, we show the proposed SON
mechanisms converge to stationary distributions using similar
argument as [38].

Theorem 1. Starting from an arbitrary initial configura-
tion, the SON mechanisms correspond to Markov chains,
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Algorithm 2 : Proposed GUIA/ON-OFF switching algorithm.

1: Input: U , N , ûb,sb,i(t), R̂sb,i(t), πb,sb,i(t) ∀b ∈ B, and
sb,i ∈ Sb

2: Output: At, u(Q)
b (t), u(P )

b (t), ûb,sb,i(t+ 1), R̂sb,i(t+ 1),
πb,sb,i(t+ 1) ∀b ∈ B, and sb,i ∈ Sb

3: Initialization: t = 1, B = {1, ..., |B|}, K = {1, ..., |K|},
Q = {1, . . . , |Q|}, S(P )

b , ∀b ∈ B
4: while t ≤ TMax do
5: for ∀r ∈ Rj , j ∈ {M,S} do
6: for ∀b ∈ B, and j ∈ {M,S} do
7: Advertise estimated load L̂b (t)
8: Select P jb,r(t) using πb,sb,i(t) for game G(P )

9: Select qb,r(t) according to fb,q,r(t) (28)
10: end for
11: for ∀k ∈ K do
12: if (k ∈ U) ∨ (k ∈ N ) then
13: Find at,rb,k (12)
14: end if
15: end for
16: Updating: At,r

17: for ∀b ∈ B do
18: for ∀k ∈ At,rb do
19: for ∀q ∈ Q do
20: Calculations: Iqk,b,r(t)
21: Calculations: Īqk,b,r(t)
22: end for
23: Select qk,b,r (24)
24: end for
25: end for
26: for ∀b ∈ B do
27: Calculations: Lb(t), u(P )

b (t), fb,q,r(t)
28: end for
29: for ∀b ∈ B do
30: Updating: πb,q,r(t) (27),ûb,sb,i(t+1), R̂sb,i(t+ 1),

πb,sb,i(t+ 1) for game G(P ) (31)- (33)
31: end for
32: end for
33: t ← t+ 1,
34: end while

in which the system converges to a stationary distribution
Γ = (Γx,∀x ∈ X ), i.e., [38]

Γx =
exp( 1

θ Ψ̄x)∑
∀x′∈X exp( 1

θ Ψ̄x′)
, (38)

and
lim
θ→0

sup(Γx − Γ0) = 0, (39)

where Γ0 is the uniform distribution over the set of global
optimal solutions.

The proof of Theorem 1 is presented in Appendix A.
The following theorem characterizes the convergence of the

proposed games under the no-regret learning algorithm.

Theorem 2. In the behavioral rule defined in (31)-(33), the
stationary distribution Γ comprises an ε-coarse correlated
equilibrium for G(P ) and G(Q).

Table I
SYSTEM-LEVEL SIMULATION PARAMETERS

System Parameters
Parameter Value
Physical link type Downlink
Carrier frequency/ Channel bandwidth 2 GHz/ 10 MHz
Noise power spectral density -174 dBm/Hz
Mean packet arrival rate 1800 Kbps
θb 0.1
Weights ωn

b , ωl
b, ωp

b 1, 0.5, 0.5
Learning rate exponent γ, ζ, ν, α 0.6, 0.7, 0.8, 0.9
PThreshold -60 dBm

BSs Parameters
Parameter MBS SBS
Maximum power 46 dBm 30 dBm
Feeder loss 3 dB 0 dB
DC-DC loss 7.5% 9%
Mains supply loss 9% 11%
Cooling loss 10% 0%
ηPAb 31.1% 6.7%
PRF
b 12.9 W 0.8 W
PBB
b 29.6 W 3 W

|S(P )
b | 2 4

Shadowing standard
deviation

8 dB 10 dB

Radius cell 250 m 40 m
Distance-dependent
path loss model (d
in Km)

128.1+37.6 log10(d) 140.7+36.7 log10(d)

Minimum distance MBS-SBS: 75 m
MBS-UE: 35 m

SBS-SBS: 40 m
SBS-UE: 10 m

Load threshold
(LThreshold

b )
0.9 0.7

The proof of Theorem 2 is presented in Appendix B. More-
over, a proof of the convergence of the set of coupled learning
algorithms relies on the stochastic approximation algorithms
by using ordinary differential equations [49].

VI. SIMULATION RESULTS

For our simulations, the proposed mechanisms are validated
in a single cell served by one MBS and a set of SBSs
with the maximum transmit power of 46 dBm and 30 dBm
as presented in [9], respectively. We assume the number of
channels to be 4, i.e. |Q| = 4. Our proposed self-organizing
mechanisms, i.e. proposed DCA-LA/ON-OFF switching and
proposed GUIA/ON-OFF switching, are compared with two
following benchmark references:
• Interference-Aware Dynamic Channel Selection (IADCS):

Each BS transmits with its maximum power, and eval-
uates averages CCI power over each channel, and fi-
nally selects the channel with minimum average CCI
power [52].

• IADCS/ON-OFF Switching: Each BS transmits according
to the ON-OFF switching mechanism, and evaluates
average CCI power over each channel, and finally selects
the channel with minimum average CCI power [53].

Here, the solid curves belong to the benchmark solutions,
and the dashed curves refer to the proposed mechanisms.
We present simulation results for two scenarios, including
stationary environment, i.e. without considering mobility for
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Figure 2. Convergence of average utility per BS of the proposed algorithms
for a network with 20 SBSs and 40 UEs.
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Figure 3. Convergence of average rate per UE of the proposed algorithms
for a network with 20 SBSs and 40 UEs.

UEs, and a non-stationary environment, i.e. with considering
UEs’ mobility. The communications are carried out in full
buffer [54], [55] in accordance to the system parameters shown
in Table I.

A. Convergence of the Proposed Algorithms
Here, we investigate the convergence behavior of our pro-

posed SON mechanisms. First, we consider a network with
40 UEs and 20 SBSs. Fig. 2 and Fig. 3 show the convergence
behavior of BS’s utility, defined in (17), and UE’s rate, re-
spectively. We can observe that DCA-LA/ON-OFF switching
algorithm needs more iterations to converge compared to
GUIA/ON-OFF switching, i.e. the tradeoff between conver-
gence speed and computational complexity. Furthermore, the
proposed GUIA/ON-OFF switching yields better performance
compared to DCA-LA/ON-OFF switching algorithm.

Fig. 4 and Fig. 5 show convergence behavior of our pro-
posed mechanisms, respectively, in terms of BS’s utility and
UE’s rate, for a network with 5 SBSs, and the number of UEs
= 20 and 50. From Fig. 4 and Fig. 5, it can be observed that
two proposed algorithms converge within a small number of
iterations. Furthermore, by increasing the number of UEs, the
iterations for convergence slightly increases.

B. Stationary Environment
Fig. 6 shows average energy consumption per BS as the

number of SBSs varies for 60 active UEs. As the number
of SBSs in the network increases, the path loss between
the BS and the UE degrades. Thus, it induces a decreas-
ing in the required transmit power to provide the certain
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Figure 4. Convergence of average utility per BS of the proposed algorithms
for a network with 5 SBSs, and the number of UEs = 20 and 50.
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Figure 5. Convergence of average rate per UE of the proposed algorithms
for a network with 5 SBSs, and the number of UEs = 20 and 50.

received power at the UE’s receiver. From Fig. 6, we can
observe that with increasing the number of SBSs, the average
energy consumption per BS decreases. At the number of
SBSs = 50, the reduction of average energy consumption
per BS in IADCS/ON-OFF switching, DCA-LA/ON-OFF
switching, and proposed GUIA/ON-OFF switching compared
to IADCS approach are 33.8%, 35.6%, and 40.3%, respec-
tively. Moreover, for a given number of SBSs, proposed
GUIA/ON-OFF switching mechanism consumes less energy
compared to the other approaches. However, it has almost
the same performance compared to the approaches based
on ON-OFF switching. For instance, it reduces the average
energy consumption per BS by 7.2%, and 9.8% compared to
DCA-LA/ON-OFF switching, and IADCS/ON-OFF switching,
respectively. The main reason is that the DCA-LA/ON-OFF
switching and IADCS/ON-OFF switching utilize the ON-OFF
switching mechanism for unnecessary BSs, whereas in IADCS
algorithm, each BS transmits with its maximum power. On
the other hand, in GUIA/ON-OFF switching, the BS selects
the better downlink channel, in terms of CCI, compared to
the other mechanisms based on the ON-OFF switching. This
comes because of receiving the reports from its associated
UEs. Therefore, the interference over the selected channel
using GUIA/ON-OFF switching mechanism is less than the
other mechanisms. This leads to a decrease in the required
transmit power to guarantee the same received power at the
UE’s receiver. Since the proposed mechanisms are simulated
for the number of SBSs = 50, it can imply a dense SBSs
deployment. Furthermore, in the proposed mechanisms, the
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Figure 6. Average energy consumption per BS versus the number of SBSs,
given 60 UEs.
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Figure 7. Average load per BS versus the number of SBSs, given 60 UEs.

average CCI power over each channel is evaluated without the
distinguishing the source of interference, which may consist
of interference from MBSs and SBSs. As a result, without
loss of generality, increasing the number of SBSs can increase
interference in the network, and thus, it can imply a dense
deployment. Fig. 7 shows the average load per BS for 60
active UEs. As the number of SBSs increases, average load per
BS decreases through offloading UEs associated with highly
loaded BSs to lightly loaded BSs. Since GUIA/ON-OFF
switching mechanism assigns the resources in the efficient
manner, it can reduce interference on downlink channel at
the UE’s receiver. As a result, it improves the achievable
transmission rate of the UE, and thus, it reduces the BS’s load.
From Fig. 7, it can be seen that the proposed GUIA/ON-OFF
switching method balances the load among BSs, and yields
78.3%, 70.6%, and 59.2% average load reduction per BS
compared to IADCS/ON-OFF switching, IADCS, and DCA-
LA/ON-OFF switching approaches, respectively.

Fig. 8 shows the average utility per BS, defined in (17),
versus the number of UEs for 5 SBSs. As the number of
UEs increases, more BSs are working in active mode, and less
BSs choose OFF mode. Therefore, the BS’s load and energy
consumption increase, and thus, the utility of the BS decreases.
Since GUIA/ON-OFF switching balances load, and saves more
energy compared to the other mechanisms, it improves the
BS’s utility. However, for high number of UEs, the behavior of
mechanisms based on the ON-OFF switching method becomes
closer to each other. This is mainly due to the fact that, the load
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Figure 8. Average utility per BS versus the number of UEs, given 5 SBSs.

Table II
PROBABILITY DISTRIBUTION FOR UE’S MOVEMENT

Movement direction probability
Current direction pck = 0.5
Turning right prk = 0.25
Turning left plk = 0.25

of BSs increases, and approaches to the maximum BS’s load.
On the other hand, the average energy consumed by BSs in the
mechanisms based on the ON-OFF switching method is almost
same. Fig. 8 shows that the average utility of the proposed
GUIA/ON-OFF switching yields, respectively, 17.8%, 34%,
and 63.9% improvement over DCA-LA/ON-OFF switching,
IADCS/ON-OFF switching, and IADCS approaches for 20
UEs.

C. Non-Stationary Environment

We now turn to the scenario, in which the UEs can freely
move, and perform handoff according to their received signal
strength (RSS), distance, and BS’s estimated load. Since in the
random waypoint model, UEs’ movements occur in an open
field, and they can be located at every point of the region, it
may lead to inaccurate results. The models based on the streets
of urban areas are more realistic mobility models, and provide
more accurate simulation results. In the streets of urban areas,
the UEs’ movements are limited to streets often separated by
buildings, trees, and different obstructions.

Hereby, we use a Manhattan grid model, in which the UEs
move in a straight line, and they can change their directions
at each intersection with a given probability. One way is by
considering a reduced size for the grid squares, which allows
us to make the model closer to the irregular situation. At each
intersection, each UE selects its movement direction according
to the probability distributions in Table II. Here pc

k, pr
k, and pl

k

denote the probabilities for moving on the current direction,
turning right, and turning left for UE k, respectively. We
assume that the UEs move with constant speed, and when a UE
goes out of a boundary, another UE enters on the other side.
We consider a two-fold handoff algorithm: handoff between
MBS and SBS, and handoff between SBS and SBS. Let dk,b(t)
and Rb be estimated distance between UE k and serving BS b,
and the cell radius of BS b, respectively. The handoff algorithm
employed by the UEs is given in Algorithm 3. Here, Pb,k,r (t)
denotes the received power at UE k associated with serving
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Algorithm 3 : Handoff algorithm based on BS’s estimated
load.

1: if (dk,b(t+ 1) > dk,b(t)) ∧ (dk,b(t+ 1) > 0.8×Rb)
2: if 10 logPb,k,r(t)(1 − L̂b) < PThreshold + 10 log(1 −

LThreshold
b ) then

3: Search for another BS better than serving BS accord-
ing to (12)

4: else
5: Continue with serving BS
6: end if
7: end if
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Figure 9. Average throughput per BS versus the number of SBSs, given 30
and 60 UEs.

BS b in RB r at time t. For this subsection, we consider the
UEs move with velocity 5 m/sec on the layout.

In Fig. 9, we depict average throughput per BS when
increasing the number of SBSs for 30 and 60 UEs. We
observe that the proposed GUIA/ON-OFF switching mech-
anism achieves the highest throughput compared to the other
approaches. For instance, for a network with 60 UEs, it
yields up to 35.9%, 42.4%, and 44.4% improvement in terms
of throughput, relative to the proposed DCA-LA/ON-OFF
switching, IADCS/ON-OFF switching, and IADCS, respec-
tively. We can observe that as the number of SBSs increases,
average throughput per BS decreases. The main reason is that
with increasing the number of SBSs, the BS’s load decreases.
On the other hand, for a given number of UEs in the network,
the number of associated UEs to the BS decreases. Moreover,
in our scenario, the decreasing rate of associated UEs to the
decreasing rate of load is less than one. Furthermore, at a given
number of SBSs, with an increase in the number of UEs, the
average throughput per BS increases.

In Fig. 10, we show the average rate per UE versus the
number of SBSs for 30 and 60 UEs. As the number of SBSs
increases, the BS’s load decreases, and thus, the UE’s rate
increases. Moreover, with increasing the number of UEs in the
area, UE’s rate decreases. This is due to the fact that the BS’s
load increases, and it may lead to overload some BSs, and
thus, decreasing UE’s rate. Since GUIA/ON-OFF switching
mechanism exhibits a load balancing behavior, it improves
the UE’s rate. In this respect, in Fig. 10, we can see that
the proposed GUIA/ON-OFF switching improves the average
rate, respectively, 35.7%, 43.2%, and 44.8% when compared
to proposed DCA-LA/ON-OFF switching, IADCS/ON-OFF
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Figure 11. Average number of dropped UEs versus the number of SBSs,
given 30 and 60 UEs.

switching, and IADCS for the network with 60 UEs and 10
SBSs.

Fig. 11 shows the average number of dropped UEs, which
indicates the UE’s QoS, versus the number of SBSs for 30
and 60 UEs. As the number of SBSs increases, the number of
dropped UEs decreases because of load balancing behavior.
Furthermore, it can be observed that increasing the number
of UEs results in increasing the average number of dropped
UEs. Since GUIA/ON-OFF switching mechanism has a good
performance in terms of average BS’s load, it yields insignif-
icant dropped UEs. For a network with 30 UEs and 10 SBSs,
the reductions of average number of dropped UEs in the
proposed GUIA/ON-OFF switching compared to the proposed
DCA-LA/ON-OFF switching, IADCS/ON-OFF switching, and
IADCS are 96.8%, 97.1%, and 97.2%, respectively.

VII. CONCLUSION

In this paper, we have proposed two dynamic channel
assignment mechanisms, i.e. DCA-LA and GUIA. Later, we
have combined them with a BS ON-OFF switching algorithm
in order to reduce the energy consumption of the network.
The proposed DCA-LA/ON-OFF switching algorithm uses
a game-theoretic approach, in which each BS selects its
channel and power based on a no-regret learning algorithm.
In GUIA/ON-OFF switching algorithm, BSs utilize some
information from their associated UEs to improve the per-
formance of the network. Then, they select their channels
based on a Gibbs-sampler. GUIA/ON-OFF switching algo-
rithm balances the load among BSs. Therefore, it improves
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Table III
COMPUTATIONAL REQUIREMENTS FOR THE PROPOSED CHANNEL ASSIGNMENT ALGORITHMS

Operations
Required Instructions for

Proposed DCA-LA Proposed GUIA
at BSs at UEs at BSs at UEs

Sum (6× |Q|+1)× |B| 0 (3× |Q|−1)× |B|+|K| |Q|×|K|
Multiplication (3× |Q|+1)× |B| 0 2× |Q|×|B| 2× |Q|×|K|
Division |Q|×|B| 0 |Q|×|B| 0
Exponential |Q|×|B| 0 |Q|×|B| 0
Comparison (|Q|−1)× |B| 0 |Q|×|K| (|Q|−1)× |K|
Total number of instructions (63× |Q|+1)× |B| 5× |Q|×|K|+(58× |Q|−1)× |B|

system throughput, and consequently yields a better SE. As
a result, our proposed algorithm achieves both high EE and
SE. The proposed algorithms are all executed in a distributed
manner. Simulation results have shown that GUIA/ON-OFF
switching algorithm provides a better performance over the
other algorithms, and significantly outperforms them in terms
of average energy consumption, average load, average BS’s
utility, average throughput, average number of dropped UEs,
and average UE’s rate.

APPENDIX A
PROOF OF THEOREM 1

Transition from x(t) to x(t+1) takes place when some BSs
update their resource values according to their observations on
x(t). Therefore, the transition depends only on current con-
figuration vector. As a result, each proposed SON mechanism
can be modeled as a Markov chain with the set of cliques B,
global energy Ψ̄ : X → R2 derived from the potential function
Ψb where Ψ̄x =

∑
∀b∈B Ψb(xb) and finite configuration space

X . Since for each x ∈ X , Γx is non-zero and positive, the
Markov chain is ergodic (aperiodic and positive recurrent).
Therefore, a stationary distribution exists. Now, we prove the
second part of the theorem. Let X ∗ be the set of global optimal
solutions. For each x∗ ∈ X ∗,

(Γx − Γ0) =
exp( 1

θ Ψ̄x)∑
∀x′∈X exp( 1

θ Ψ̄x′)
− Γ0 =

exp( 1
θ (Ψ̄x − Ψ̄x∗))∑

∀x′∈X exp( 1
θ (Ψ̄x′ − Ψ̄x∗))

− Γ0 ≤

1

|X ∗|+
∑
∀x′ /∈X∗ exp( 1

θ (Ψ̄x′ − Ψ̄x∗))
− Γ0, (40)

When θ → 0, we have,

lim
θ→0

(
1

|X ∗|+
∑
∀x′ /∈X∗ exp( 1

θ (Ψ̄x′ − Ψ̄x∗))
− Γ0) =

1

|X ∗|
− Γ0 = 0. (41)

This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

First, we use the following lemma to show the existence of
the equilibrium.
Lemma 1: In every finite game, the set of correlated equilibria
is nonempty, closed and convex. Since the proposed games are
finite, they have at least one mixed strategy equilibrium.

For x′b ∈ S
(P )
b × S(Q)

b , we define,

ϑ = max
x∈X\X∗

(ub(x
′
b,x−b)− ub(x)), (42)

and

δ = min
x∈X\X∗

((Ψ̄x∗ − Ψ̄x)). (43)

Let 0 ≤ θ ≤ δ

ln
(
ϑ
ε (
|X|
|X∗|−1)

) . Now, we prove (28), thus, we

have,∑
x∈X

Γx(ub(x
′
b,x−b)− ub(x)) =

∑
x∈X

exp( 1
θ (Ψ̄x − Ψ̄x∗))(ub(x

′
b,x−b)− ub(x))

|X ∗|+
∑

x′′∈X\X∗ exp ( 1
θ (Ψ̄x′′ − Ψ̄x∗))

≤

|X ∗|(ub(x′b,x∗−b)− ub(x∗))
|X ∗|

+∑
x∈X\X∗ exp ( 1

θ (Ψ̄x − Ψ̄x∗))(ub(x
′
b,x−b)− ub(x))

|X ∗|
,

(44)
Since (ub(x

′,x∗−b)− ub(x∗)) ≤ 0, we have,

|X ∗|(ub(x′b,x∗−b)− ub(x∗))
|X ∗|

+∑
x∈X\X∗ exp ( 1

θ (Ψ̄x − Ψ̄x∗))(ub(x
′,x−b)− ub(x))

|X ∗|
≤

ϑ
∑

x∈X\X∗ exp ( 1
θ (Ψ̄x − Ψ̄x∗))

|X ∗|
≤

ϑ(
|X |
|X ∗|

− 1) exp(
−1

θ
δ) ≤ ϑ(

|X |
|X ∗|

− 1)
ε

ϑ( |X ||X∗| − 1)
≤ ε,

(45)
Therefore, this concludes the proof of (28). Moreover, using
similar argument as [56], we can assume that (28) does not
hold for ε = 0 when θ → 0. Therefore,

lim
θ→0

sup
∑
x∈X

Γx(ub(x
′
b,x−b)− ub(x)) =

1

|X ∗|
∑
x∈X

(ub(x
′
b,x−b)− ub(x)) > 0. (46)

Thus, for some x ∈ X ∗, (ub(x
′
b,x−b) > ub(x)), and it

implies the regret of player b for x′b. Therefore, player b
interests to deviate from it, and this yields x /∈ X ∗. Thus, the
assumption (46) is not true, and Γx converges to an ε-coarse
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Figure 12. Total required instructions of proposed channel assignment
algorithms versus the number of channels for a network with |B|= 5 and
|K|= 50.

correlated equilibrium. Since Γx and the expected value of Ψ̄x

monotonically decrease with θ [38], we assume that:

( lim
θ→0

∑
x∈X

Γxub(x))−
∑
x∈X

Γxub(x) ≤ ε. (47)

Thus, for θ > 0,

lim
θ→0

∑
x∈X

Γxub(x
′
b,x−b)− lim

θ→0

∑
x∈X

Γxub(x) ≥∑
x∈X

Γxub(x
′
b,x−b)−

∑
x∈X

Γxub(x)− ε. (48)

Since

lim
θ→0

∑
x∈X

Γxub(x
′
b,x−b)− lim

θ→0

∑
x∈X

Γxub(x) ≤ 0. (49)

we conclude that Γ is an ε-coarse correlated equilibrium.

APPENDIX C
COMPUTATIONAL REQUIREMENTS

In the proposed DCA-LA/ON-OFF switching and
GUIA/ON-OFF switching mechanisms, the BSs select their
transmit power by using the same ON-OFF switching
approach. Therefore, in order to compare the computational
requirements of the proposed mechanisms, we only consider
the computational requirements of the proposed channel
assignment approaches. Here, with considering digital signal
processors (DSPs), we present the computational requirements
of the proposed DCA-LA and GUIA approaches. We assume
that addition, multiplication, and comparison operations
require one DSP cycle [57]. For division operation and
exponential computation, 42 and 11 operations are considered,
respectively. Since the computational analysis does not take
into account the compiler optimizations and the ability of
DSPs to execute various instructions, the analysis provides
an upper bound on computations. Table III summarizes the
computational instructions for the proposed DCA-LA and
GUIA approaches. From UE’s perspective, the computational
instructions of channel assignment algorithms are given by
the number of available channels. Accordingly, the proposed
GUIA algorithm requires more computational instructions
compared to DCA-LA algorithm.

Fig. 12 shows the total required instructions over different
number of channels for the proposed channel assignment
algorithms, assuming |B|= 5 and |K|= 50. We can observe
that the proposed GUIA algorithm requires more instructions
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Figure 13. Total required instructions of proposed channel assignment
algorithms versus the number of UEs for a network with |B|= 5 and |Q|= 4.
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Figure 14. Total required instructions of proposed channel assignment
algorithms versus the number of BSs for a network with |K|= 50 and |Q|= 4.

compared to DCA-LA algorithm. Fig. 13 presents the total
required instructions over different number of UEs for a
network with |B|= 5 and |Q|= 4. It can be seen that with
increasing the number of UEs, the total required instructions
of the proposed GUIA algorithm increases, while the required
instructions of DCA-LA algorithm does not change. Fig. 14
shows the total required instructions over different number of
BSs for a network with |K|= 50 and |Q|= 4. We see that
with increasing the number of BSs, the required instructions
increases for both proposed algorithms.
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