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Abstract— The co-existence of small cell base stations (SBSs)
with conventional macrocell base station is a promising approach
to boost the capacity and coverage of cellular networks. However,
densifying the network with a viral deployment of SBSs can
significantly increase energy consumption. To reduce the reliance
on unsustainable energy sources, one can adopt self-powered
SBSs that rely solely on energy harvesting. Due to the uncertainty
of energy arrival and the finite capacity of energy storage systems,
self-powered SBSs must smartly optimize their ON and OFF
schedule. In this paper, the problem of ON/OFF scheduling of self-
powered SBSs is studied, in the presence of energy harvesting
uncertainty with the goal of minimizing the operational costs
consisting of energy consumption and transmission delay of a
network. For the original problem, we show that an algorithm
can solve the problem in the illustrative case. Then, to reduce
the complexity of the original problem, an approximation is
proposed. To solve the approximated problem, a novel approach
based on the ski rental framework, a powerful online optimization
tool, is proposed. Using this approach, each SBS can effectively
decide on its ON/OFF schedule autonomously, without any prior
information on future energy arrivals. By using competitive
analysis, a deterministic online algorithm and a randomized
online algorithm (ROA) are developed. The ROA is then shown
to achieve the optimal competitive ratio in the approximation
problem. Simulation results show that, compared with a baseline
approach, the ROA can yield performance gains reaching up to
15.6% in terms of reduced total energy consumption of SBSs and
up to 20.6% in terms of per-SBS network delay reduction. The
results also shed light on the fundamental aspects that impact
the ON time of SBSs while demonstrating that the proposed ROA
can reduce up to 69.9% the total cost compared with a baseline
approach.

Index Terms— Energy harvesting, cellular networks, optimiza-
tion, small cell networks, online algorithms, ski rental problem.
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I. INTRODUCTION

DESPITE their promising potential for enhancing the
capacity and coverage of cellular systems, small cell

networks (SCNs) can also increase the overall power con-
sumption of a cellular system since the access network and
edge facilities take up to 83% of mobiles’ operator power
consumption [2]. To this end, enhancing the energy efficiency
of dense SCNs has emerged as a major research challenge [3].
In particular, there has been a recent significant interest,
not only in minimizing energy consumption, but also in
maximizing the use of green energy by deploying energy
harvesting, self-powered base stations (BSs) that rely solely on
renewable and clean energy for operation [4]. Thus, deploying
self-powered BSs is currently being demonstrated by various
network operators. For instance, LG Uplus deploys solar-
powered LTE BSs in mountain areas of South Korea [5], and,
also, a large solar-powered BS cluster is deployed in Tibet by
China Mobile [6]. Clearly, one can realize the vision of truly
green cellular networks by deploying self-powered, energy
harvesting small cell base stations (SBSs) that rely solely on
renewable energy for their operation [7].

Recently, numerous works have focused on the use of
energy harvesting techniques in cellular networks [8]–[17].
For instance, the work in [8] overviews key design issues for
adopting energy harvesting into cellular networks and propose
energy harvesting-aware user association and BS sleep mode
optimization problems. With regards to the user association
problem in energy harvesting scenarios, the authors in [9]
consider a model in which wireless BSs are powered by both
grid power and green energy in energy harvesting heteroge-
neous cellular networks. For this model, the authors propose
a user association scheme that minimizes the average traffic
delay while maximizing the use of green energy. Furthermore,
the authors in [10] propose a probabilistic framework to
model energy harvesting and energy consumptions of BSs and
investigate a distributed user association problem when BSs is
powered by energy harvesting. Also, to study the problem of
user association, in [11], the authors considered a network in
which the uncertainty of energy harvesting is modeled within
a competitive market with the SBSs being the consumers who
seek to maximize their utility function.

Reaping the benefits of self-powered SBSs mandates effec-
tive and self-organizing ways to optimize the ON and OFF
schedules of such SBSs, depending on uncertain and inter-
mittent energy arrivals. Therefore, several recent works have
focused on optimizing energy efficiency in energy harvesting
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systems by intelligently turning BSs ON and OFF [12]–[17].
For instance, the authors in [12] provide a model to measure
the performance of heterogeneous networks with self-powered
BSs. In [13], when BSs are powered by both a renewable
source and the power grid, the authors propose an algorithm
to maximize the utilization of green energy so that the grid
power consumption can be minimized. Moreover, the work
in [14] develops a number of algorithms to minimize grid
power consumption when considering hybrid-powered BSs.
For solving a capital expenditure minimization problem, the
authors in [15] propose an ON/OFF scheduling method for
self-powered BSs. The work in [16] investigates the problem
of minimizing grid power consumption and blocking proba-
bility by using statistical information for traffic and renewable
energy. The authors in [17] study the optimal BS sleep policy
based on dynamic programming with the statistical energy
arrival information.

In this existing body of literature that addresses ON/OFF
scheduling in energy harvesting networks [13]–[17], it is gen-
erally assumed that statistical or complete information about
the amount and arrival time of energy is perfectly known.
However, in practice, energy arrivals are largely intermittent
and uncertain since they can stem from multiple sources.
Moreover, turning SBSs ON and OFF based on every single
energy arrival instance can lead to significant handovers and
network stoppage times. Further, the existing works [8], [9],
[14], [16] on energy harvesting networks often assume the
presence of both smart grid and energy harvesting sources at
every SBS. In contrast, here, we focus on cellular networks
in which SBSs are completely self-powered and reliant on
energy harvesting. In [18] and [19] the problem of ON/OFF
scheduling of base stations is studied for a heterogeneous
network using reinforcement learning. However, these works
are focused on classical grid-powered networks and do not take
into account the presence of energy harvesting in the system.
Also, unlike the work in [12] which focuses on the global
performance analysis of self-powered SBSs, our goal is to
develop self-organizing and online algorithms for optimizing
the ON/OFF schedule of self-powered SBSs.

The main contributions of this paper is to develop a novel
framework for optimizing the ON and OFF schedule of self-
powered SBSs in a cellular network in which multiple SBSs
coexist with a macrocell base station (MBS). In particular, an
optimization problem is formulated that seeks to minimize the
operational cost that captures both the power and delay of the
system by appropriately determining the SBSs ON and OFF
scheduling, in the presence of complete uncertainty on the
energy harvesting process. We cast the problem as an online
optimization and we analyze its properties. We show that,
under an illustrative case, an algorithm achieves a competitive
ratio, defined as the ratio of an online algorithm’s to the
optimal cost of an offline algorithm, of 2. Then, to overcome
the complexity of the original problem, an approximation is
derived and shown to allow the decomposition of the original
problem into a set of distributed online optimization problems
that are run at each SBS. To solve the resulting per-SBS
online optimization problem, a novel approach based on the
ski rental problem, a powerful online optimization tool [20],

is proposed. In particular, we present two schemes to solve
the ski rental problem: a deterministic online algorithm (DOA)
and a randomized online algorithm (ROA). On the one hand,
the DOA is a benchmark scheme designed to turn each SBS
OFF at a predetermined time so as to achieve a competitive
ratio of 2. On the other hand, the ROA enables the SBSs
to make a decision according to a probability distribution,
and it can achieve an optimal competitive ratio of e/(e − 1)
which provides an upper bound for the approximated prob-
lem. The proposed algorithms allow the SBSs to effectively
decide on their ON/OFF schedule, without knowing any prior
information on future energy arrivals. To the best of our
knowledge, this is the first work that exploits the online ski
rental problem for managing energy uncertainty in cellular
systems with self-powered SBSs. Simulation results show that
the empirical competitive ratio of using the ROA to solve
the original problem is 1.86. This demonstrates that the ROA
achieves a reasonable performance gap compared to the ideal,
offline optimal solution found by exhaustive search. Also, our
results show that the ROA can decrease the total operational
cost compared to the DOA and a baseline approach. Moreover,
the ROA can reduce total energy consumption of SBSs and
per-SBS network delay compared to DOA or a baseline that
turns SBSs ON during the same fixed period for all SBS.
This performance advantage is shown to reach up to 15.6%
and 11.4% in reducing the energy consumption of a network
relative to a baseline and the DOA, respectively. The ROA also
decreases the delay per SBS up to 20.6% and 8.4% relative to
a baseline and the DOA, respectively. In particular, we observe
that the ON time of each SBS is affected by various factors
including the harvested energy and the power consumption
of BSs.

The rest of this paper is organized as follows. In Section II,
the system model is presented. In Section III, we present
the problem formulation. In Section IV, we propose online
algorithms based on the ski rental framework. In Section V, the
performance of the proposed algorithm is demonstrated with
using extensive simulations. Finally, conclusions are drawn in
Section VI.

II. SYSTEM MODEL

Consider the downlink of a two-tier heterogeneous small
cell network in which an MBS is located at the center of
a service area. In this network, a set J of J self-powered
SBSs are deployed. Moreover, we define the set of all BSs
as B = {0, 1, 2, · · · , J } where the MBS is indexed by 0.
We assume that the SBSs and the MBS will use different
frequency bands and, therefore, the MBS and the SBSs will not
interfere. In contrast, within the SBS tier, frequency bands may
be reused and, as such, the SBS will interfere with one another.
In this system, when activated, the SBSs can offload traffic
from the MBS, thus reducing the overall network congestion.
A set I of I UEs is randomly distributed in the coverage of the
MBS where each UE can access either an SBS or MBS. Each
UE can be connected with only one of the BSs at a certain
time t within a period of T .

An illustration of our system model is shown in Fig. 1.
In our considered system, while the MBS is connected to
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Fig. 1. System model of a heterogeneous deployment with self-powered
SBSs.

the conventional power grid, SBSs are self-powered and rely
exclusively on energy harvesting sources. In such case, the
self-powered SBSs will operate as a means to boost capacity
and to complement the existing grid powered MBS. For
example, SBSs can be equipped with solar panels to procure
energy for their operation, or, alternatively, they can use
wireless power transfer from MBS transmissions. Since the
characteristics of the harvested energy can be highly dynamic,
we do not make any specific assumption on the energy
harvesting process. Thus, our model can accommodate any
type of energy harvesting mechanism. To enhance the overall
energy efficiency of the system, we assume that the SBSs
can dynamically turn ON or OFF, depending on the network
state, energy harvesting state, and other related parameters.
To manage the intermittent and uncertain nature of energy
harvesting, energy storage systems (ESS) can be used. Energy
harvesting is assumed to be done irrespective on whether an
SBS is turned ON or OFF. Thus, an SBS will store energy in
its ESS when it is turned OFF, and this stored energy can be
used when it is turned ON to service users. Also, when it is
turned ON, an SBS can store the excess of harvested energy if
instantaneous harvested energy is enough to operate an SBS.

At time t , the ON or OFF state of SBS j is denoted by
σ j (t) which is defined as follows:

σ j (t) =
{

1, if SBS j is turned ON at time t,

0, otherwise.
(1)

For the MBS, σ0(t) = 1 since the MBS is always turned
ON. The set of switched-ON BSs at time t is denoted by
Bon(t) = { j |σ j (t) = 1,∀ j ∈ B}. Similarly, the set of switched-
OFF BSs can be shown as Boff(t) = B \ Bon(t).

A. Network Performance

We model the network performance between BS and UE.
In the downlink, the signal to interference and noise
ratio (SINR) between UE i and SBS j ∈ J at time t can
be shown as

γi j (σ (t)) =
P tx

j σ j (t)hi j∑
j ′∈Bon\{ j } P tx

j ′ σ j ′(t)hi j ′ + ρ2
, (2)

where σ (t) = [σ j (t)|∀ j ∈ J], hi j is the channel gain between
UE i and SBS j , P tx

j is the transmit power of the connected

SBS j , and ρ2 is the noise power. If an UE is associated with
an SBS, the UE can receive interference from the other SBSs.
On the other hand, when a UE is associated with the MBS,
the UE does not experience any interference from the SBSs.
Therefore, when UE i is associated with the MBS, the signal
to noise ratio (SNR) at UE i will be:

γi0(σ (t)) = P tx
0 hi0σ0(t)

ρ2 , (3)

where hi0 is the channel gain between UE i and the MBS,
and P tx

0 is the transmit power of the MBS. The channel gain
hi j can be seen as the time-averaged gain.

When γi j (σ (t)) is given, UE i is associated with the BS
j∗(i, σ (t)) that provides the largest SINR or SNR depending
on whether j∗(i, σ (t)) is an SBS or MBS, respectively.
Therefore, the user association can be given by:

j∗(i, σ (t)) = argmax j∈Bon(t)γi j (σ (t)). (4)

By using the user association rule in (4), the user association
of whole network is updated at each time t . Then, the set of
UEs associated with the same BS j can be defined by

I j (σ (t)) = {i | j∗(i, σ (t)) = j,∀i}. (5)

The set I j (σ (t)) changes over time t according to the user
association results from (4). If j �= 0, then I j (σ (t)) indicates
the set of UEs associated with SBS j . Otherwise, when j = 0,
then I0(σ (0)) indicates the set of UEs connected to the
MBS. Subsequently, the set of all UEs I can be divided into
J + 1 subsets at most, each of which is denoted by I j (σ (t)),
j ∈ J . Thus, each UE should be associated with one of
BSs at any time 0 ≤ t ≤ T from (4), and, thus, we have
I = ∪J

j=0I j (σ (t)), 0 ≤ t ≤ T .
When the user association is determined by (4), the achiev-

able data rate of UE i is given by

ci j (σ (t)) = B

|I j (t)| log2(1+ γi j (σ (t))), (6)

where |I j (t)| is the number of UEs associated with SBS j
at time t , and B is the bandwidth of an SBS (B = Bs) or
MBS (B = Bm). When the MBS can transmit data to UEs
using bandwidth Bm , time slots are scheduled for the |I0(t)|
UEs using a round robin scheduling. In the considered model,
whenever a file of K bits needs to be transmitted to each UE,
we can define the total transmission delay between BS j and
all UE in I j (t) at time t as

φ j (σ (t)) =
∑

i∈I j (σ (t))

K

ci j (σ (t))
. (7)

B. Power Consumption

Next, we define the power consumption models for the MBS
and SBSs. When modeling the power consumption of BSs,
the resource utilization of a BS monotonically increases as
the number of UE connections increases. Thus, the power
consumption of a BS increase as the utilization become
higher. The power consumption model for a BS includes two
components: the utilization-proportional power consumption
and the fixed power consumption. The utilization-proportional
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power consumption depends on the signal processing functions
and, hence, it varies depending on the number of associated
UEs at a BS. Meanwhile, the fixed power components pertain
to the power consumed due to components such as the power
amplifier or the cooler. Thus, a fixed amount of power is
required to operate the BS regardless of the number of the
associated UEs. The power consumption of a BS at time t is
therefore given by:

ψ j (σ (t)) = |I j (σ (t))|
M

(1− q)Pop
j + q Pop

j , (8)

where q is a weighting parameter that captures the tradeoff
between the utilization-proportional power consumption and
the fixed power, Pop

j is the maximum power consumption
when the BS is fully utilized, and M is the maximum number
of UE connections. If the type of BS j is a MBS, then we
set M = Mm , and, if BS j indicates an SBS, then M = Ms .
The MBS can provide service to the larger number of UEs
since the MBS has higher computing capability than an SBS;
thus, the different service capabilities can be presented by
Mm ≥ Ms . Also, P tx

j = a Pop
j where the constant a denotes

the fraction of the transmit power P tx
j out of the total the

maximum operational power Pop
j . For example, if q = 1, the

BS consumes constant power regardless of the utilization level
of the BS. On the other hand, if q = 0, the power consumption
of the BS is proportional to the utilization, which is a more
realistic BS power consumption model. Note that ψ j (σ (t)) is
the power required to turn ON SBS j at time t , and it depends
on the number of UEs associated with SBS j .

As mentioned, SBSs use energy harvesting as a primary
energy source, so an ESS can be used to store the excess
energy for future use. The available amount of energy at time t
is given by

E j (t) = min

(∫ t−ε

0
� j (τ )dτ −

∫ t

0
ψ j (σ (τ ))dτ, Emax

)
,

∀ j ∈ J, (9)

where E j (t) ≥ 0 is the stored energy of SBS j at time t ,
ψ j (σ (t)) is the consumed power of SBS j , � j (t) is the
amount of energy arrival of SBS j , ε is a small number,
and Emax is the maximum capacity of ESS. � j (t) captures
the uncertainty of energy harvesting in the time domain.
Since an SBS solely relies on the energy harvesting, if E j (t)
becomes zero at a certain time t , SBS j is turned OFF at
time t , and the UEs connected to SBS j are handed over
to other SBSs or the MBS according to the user association
rule (4).

C. Operational Expenditure of Base Stations

Given the defined network delay and power consumption
models, we define operational costs incurred when using an
SBS or MBS. First, we account for the operational cost of a
given SBS per unit time when an SBS is turned ON. In the
ON state, UEs associated with SBS j experience the network
delay given by φ j (σ (t)). Since higher delay is an unfavorable
aspect, the operational cost has to increase with the network
delay of UEs. Moreover, while an SBS is turned ON, it will

incur a power consumption cost. Thus, to turn SBS j ON at
time t , the required cost of using SBS j can be defined by

r j (σ (t)) = αDφ j (σ (t))+ αPψ j (σ (t)), (10)

where the constant αD is the monetary cost per unit
transmission delay, and the constant αP is the monetary
cost per unit power consumption. αD and αP can be used
to change the weighting of delay and power consumption.
The delay and energy are combined in (10) so as to balance
the tradeoff between the two metrics. The cost r j (σ (t)) of
a given SBS j can vary over time due to the fact that the
user association of UEs can change between two different
times t and t ′, i.e., I j (σ (t)) �= I j (σ (t ′)). Thus, different user
associations can result in different φ j (σ (t)) and ψ j (σ (t))
since the data rate of each UE and the number of connected
UEs per SBS are different.

Next, we model the cost for using the MBS. When self-
powered SBSs rely solely on the harvested energy that is
highly uncertain and intermittent, they might need to turn
OFF if they have no more energy. Therefore, to avoid the risk
of such energy depletion, the SBSs can go into an energy-
saving OFF state to store additional energy for future use.
Due to this energy storage need, the system can end up with
a large number of OFF SBSs which, in turn, will degrade
the network performance as it increases congestion at the
MBS and the ON SBSs. Thus, to prevent such a network
congestion, if SBS j decides to switch OFF, we assume that
it will be charged a cost b j . By setting a flat-rate cost b j ,
the network can control how often the SBSs can turn OFF,
particularly when they still have a sufficient amount of energy
stored. Here, as b j increases, the penalty of turning a given
SBS j OFF becomes larger; thus, the SBSs will have an
incentive to maintain the ON state as long as possible. In a
dynamic network, the ON and OFF states of the SBSs can
change over time thus also changing the user association.
In such a dynamic network, finding an exact, flat rate b j

is difficult. Therefore, we propose to derive this cost based
on a worst-case assumption. In particular, to define the cost
b j , first we find the maximum cost of using the MBS which
is then scaled by a parameter αB ∈ [0, 1]. The cost b j is
the maximum cost that can be incurred by turning OFF and
transferring traffic to the MBS. To find the maximum cost of
using the MBS in the worst case, suppose that all UEs can
be associated with the MBS so that the network delay and
power consumption of the MBS are maximized. Here, when
a portion of the maximum cost is incurred to an SBS, the
incurred cost can depend on the UEs in the SBS denoted by
the set I j (σ (0)). By doing so, the maximum cost of using the
MBS can be divided into the per-SBS costs. If UE i ∈ I j (0) is
connected to the MBS, the transmission delay of UE i will be

K
Bm

I log2(1+γi0(0))
. By summing over all UEs in I j (0), we obtain

the network delay corresponding to the UEs in I j (0), as shown
as

�
I j (0)
0 =

∑
i∈I j (0)

K
Bm
I log2(1+ γi0(0))

. (11)



2980 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 5, MAY 2017

Also, the portion of the power consumption of the MBS that
is consumed by the UEs in I j (0) will be:

�
I j (σ (0))
0 = |I j (σ (0))|

M
(1− q)Pop

0 + q Pop
0 . (12)

Consequently, whenever an SBS j decides to turn OFF, the
accompanying cost, due to the handover to the MBS, will be
given by:

b j = αB

(
αD�

I j (σ (0))
0 + αP�

I j (σ (0))
0

)
T, (13)

where αB ∈ [0, 1] is the fraction of the maximum cost. For
example, when we set αB = 0.10, then 10% of the maximum
cost of using the MBS during time period T will be incurred
to SBS j . Thus, if the value of b j is too high, being turned
ON becomes an affordable option, so SBS j is turned ON
until the whole harvested energy is used. On the other hand,
if the value of b j is low, SBSs tend to be turned OFF to keep
the stored harvested energy due to a low penalty in switching
SBSs OFF.

III. PROBLEM FORMULATION

Given the operational costs, our goal is to analyze the
optimal ON and OFF scheduling problem for the SBSs. In cel-
lular networks consisting of self-powered SBSs, the amount
of available energy is dynamically changing and very limited.
To be able to operate using energy harvesting as a primary
energy source of SBSs, self-powered SBSs should intelligently
manage their ON and OFF states considering delay, power,
and energy state. Moreover, since future energy arrivals can
be highly unpredictable, optimizing the ON and OFF schedule
of SBSs is a very challenging problem. By properly scheduling
its OFF duration, an SBS can reduce its energy consumption
while also storing more energy for future use. However, at the
same time, the SBS must turn ON for a sufficient period of
time to service users and offload MBS traffic. In our prob-
lem, information on energy arrival is unknown, so an online
optimization approach is suitable. To cope with the inherent
uncertainty of energy harvesting while balancing the tradeoff
between energy consumption and network delay, we introduce
a novel, self-organizing online optimization framework for
optimizing the ON and OFF schedule of self-powered SBSs.

A. ON/OFF Scheduling as an Online Optimization Problem

We formulate the global ON and OFF scheduling problem
with the goal of minimizing the sum of costs that encompass
the costs of using an SBS and the MBS in (10) and (13), as
follows:

min
σ (t),x

J∑
j=1

(∫ u j

0
r j (σ (τ ))σ j (τ )dτ + b j x j

)
, (14)

s.t. σ j (t)+ x j ≥ 1, 0 ≤ t ≤ u j , ∀ j, (15)

σ j (t) ∈ {0, 1}, 0 ≤ t ≤ u j , ∀ j, (16)

x j ∈ {0, 1}, ∀ j, (17)

where x = [x j |∀ j ∈ J], respectively. The ON and OFF states
of SBS j at time t is denoted by σ j (t) in (16). Also, x j

in (17) indicates whether SBS j is determined to be turned

OFF before SBS j ’s stored energy is depleted at time u j .
In (15) and (16), time t > u j is not considered since SBS
j is turned OFF due to energy depletion. Note that u j is
the first moment when energy harvesting constraint (9) is not
satisfied. Thus, each SBS can experience energy depletion at a
different time u j since the amount of energy arrival of SBS j
denoted by � j (t) is unknown before time t , and SBS j cannot
know the future energy status, as observed in many real-world
scenarios [21]. For example, when energy is harvested from
the environment, the amount of harvested energy can quickly
change due to factors such as weather conditions which can
change rapidly during are changing in a short period of time.
Not only the sudden weather, long-term seasonal changes
also brings uncertainty into energy harvesting. Therefore, the
uncertainty of the harvested energy at each moment can be
captured by � j (t), and, thus, the energy depletion time u j

is unknown in our problem. In essence, our problem is online
where energy harvesting brings in uncertainty about the future
event. The period T can be defined in various ways. For
example, T can be defined as a short period of time during
which the SBS can stay ON using a fully charged battery.

Also, it is required to reduce the network congestion by
increasing the use of the harvested energy, so the ON time of
each SBS needs to be extended. In problem (14), if an SBS
is turned OFF due to energy depletion, the cost of using the
MBS is not incurred to the SBS so as to provide incentives
for SBSs to maintain a longer ON period. However, if SBS j
is turned OFF according to its decision, the cost of using the
MBS is incurred to the SBS, as captured by setting x j = 1.
Therefore, the ON and OFF scheduling solution given by σ j (t)
and x j can be determined by SBS j during 1 ≤ t ≤ u j so that
UEs in I j (σ (t)) can be connected to either SBS j (σ j (t) = 1)
or the MBS (x j = 1) by satisfying constraint (15).

If the problem is offline, then it can be readily solved. For
example, in the offline scenario, the optimal solution is either
always ON strategy (σ j (t) = 1, 0 ≤ t ≤ u j , x j = 0) or
OFF strategy (σ j (t) = 0, 0 ≤ t ≤ u j , x j = 1). When u j

is known in offline, it is possible to compute the total costs
corresponding to a strategy that the SBS uses. Thus, since
the SBS can compare the costs of all possible solutions, the
optimal solution can be found. However, such offline scenario
is not available in real environment due to the uncertainty of
energy harvesting as mentioned above. Thus, the problem (14)
needs to be considered in an online optimization framework.

To solve (14), one must develop a suitable online algorithm.
To assess the effectiveness of such an algorithm, we need
to use competitive analysis. Competitive analysis [22] is a
method used to compare between the performance of online
algorithms and that of an optimal offline algorithm. One key
metric in competitive analysis is the so-called competitive
ratio, defined next:

Definition 1: The competitive ratio of an online algorithm
is defined by

κ = max
u j

βALG(u j )

βOPT(u j )
, ∀u j , (18)

where u j is a random time instant when harvested energy
is depleted, βALG(u j ) is the cost of an online algorithm that
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corresponds to the total cost of the problem (14), and βOPT(u j )
is the optimal cost achieved by using an offline algorithm that
knows all input information.

When we use an online algorithm, our goal is to find an
algorithm that minimize the competitive ratio κ . Therefore,
in competitive analysis, the competitive ratio is meaningful
since it shows the performance of an online algorithm [23].
For this analysis, the competitive ratio of online algorithms is
evaluated for a given arbitrary input sequence that corresponds
to uncertain energy arrivals. In our model, the arbitrary input
sequence is characterized by u j that is the moment of energy
depletion. From the competitive analysis, even though an
SBS does not know the input sequence, the use of online
algorithms will give a solution that can at least achieve the cost
of κβOPT(u j ).

To analyze this problem, first, we consider two
special cases in which: a) r j (σ (t)) is decreasing over
time or b) r j (σ (t)) is increasing over time. If an SBS’s
r j (σ (t)) decreases, the SBS can have motivation to extend its
ON time since the cost of using SBS becomes inexpensive.
Thus, the SBS can simply extend the ON time. On the other
hand, if r j (σ (t)) increases, the SBS has less motivation of
maintaining the ON state. Moreover, in this case, it is possible
that the SBS could stay in the OFF state from the beginning
if the SBS knew the increasing of r j (σ (t)). Therefore, since
the SBS cannot change its previous decisions in the case in
which r j (σ (t)) is increasing, it is difficult to minimize the
total cost.

Thus, we present an example case where the cost of using
an SBS r j (σ (t)) decreases as the time t increases. By doing
so, we can propose an ON and OFF scheduling algorithm that
achieves a finite competitive ratio. Note that the decreasing of
r j (σ (t)) can be physically observed when an SBS increases
the transmission power so that it can decrease the delay cost
of the SBS as shown in our simulations. In such case, we
propose an online algorithm in which the SBS is turned OFF at
a predetermined time t̄ . When the value of r j (σ (t)) decreases,
each achieved value for r j (σ (t)) will be denoted by r(v).
These values are then arranged in a descending order where
v indicates the order of a given value r(v), as follows:

r(1) > r(2) > · · · > r(v−1) > r(v). (19)

Here, we note that, r j (σ (t)) changes from r(v−1) to r(v) at
time t(v−1), and r(v) stays constant from t(v−1) to t(v) where
t(0) = 0 < t(1) < t(2) < · · · < t(v−1) < t(v).

Theorem 1: When r j (σ (t)) decreases over time t in the
problem (14), the initial SBS’s OFF time is given by t̄ =
b j/r(1) at time t(0). Also, at time t(v−1), v ≥ 2, the SBS’s OFF
time is updated using the following equation:

t̄ = b j

r(v)
− 1

r(v)

v−1∑
v ′=1

t(v ′)
(
r(v ′) − r(v ′+1)

)
. (20)

Then, the OFF time t̄ increases when it is updated by (20).
Also, an online OFF time scheduling algorithm that uses t̄
can achieve a competitive ratio of 2.

Proof: See the Appendix. �

In Theorem 1, at the time in which the SBS’s cost r j (σ (t))
is updated, the SBS update its ON time by setting a larger
value for t̄ . Thus, the updated t̄ effectively optimizes the
problem.

To investigate more dynamically changing r j (σ (t)) needs to
be considered. However, since the value of r j (σ (t)) depends
on the ON/OFF state of SBSs in a network, the exact value of a
future r j (σ (t)) cannot be known and expected. For instance,
if the neighboring SBSs are turned OFF, the interference at
SBS j will be reduced thus increasing the data rate of UEs
that are associated with SBS j . This, in turn, results in a
smaller delay cost and reduces r j (σ (t)). At the same time,
UEs associated with other, neighboring SBSs may be handed
over to SBS j . Then, the number of UEs served by SBS j
increases thus increasing the delay cost. In addition, due to
the increase of the number of UEs, the power consumption
of SBS j also increases thus yielding a higher r j (σ (t)).
As seen from these illustrative scenarios, the OFF scheduling
of the various SBSs can either increase or decrease r j (σ (t)).
Therefore, the cost of using a given SBS will not always be
monotonically increasing or decreasing thus making it very
challenging to find a solution to the optimization problem
in (14) by estimating the future variation of r j (σ (t)) over
time t . Moreover, to solve (14), the ON and OFF states of
all SBS must be collected by the network which can generate
additional signaling overhead for information exchange. This
can also require the use of a centralized controller. Naturally,
in a dense SCN, such centralized control may not be possible
or scalable.

Consequently, in essence, our goal is to devise a self-
organizing approach in which the solution to (14) can be
done locally at each SBS. Clearly, solving this problem for a
generic, non-monotonically changing r j (σ (t)) is challenging
and, therefore, we need to use an approximation. One natural
way is to assume that r j (σ (t)) is not time-varying, which
can simplify the problem because the interference and user
association that change over time do not need to be considered,
as discussed next.

B. Approximated Problem

To relax the time dependence from r j (σ (t)), we assume
that the cost will be equal to r j = r j (σ (0)). In other words,
the initial cost, which is generally known to the network, will
be used as a flat cost of using an SBS. This approximation
can help simplify the problem by considering a worst-case
assumption for the interference, as follows. As mentioned, the
cost r j (σ (t)) incurred to an SBS j is affected by interference
when other SBSs are randomly turned OFF. However, by
approximating r j (σ (t)) using a constant value, the scheduling
decisions will no longer be dependent and, thus, each SBS can
make its own decision without having global knowledge about
other SBSs’ ON and OFF states. Note that the largest value of
the interference is captured in the approximated problem since
all SBSs are turned ON at the beginning. Thus, the SBSs can
compute the value of r j even though all SBSs are not actually
turned ON. One key advantage of the proposed approach is
that an SBS can determine the solution at the beginning of
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each period T . Thus, distributed optimization can be done by
computing locally, and also it reduce network overhead since
signaling is not required. Here, the approximated problem can
be given by:

min
σ (t),x

J∑
j=1

(∫ u j

0
r jσ j (τ )dτ + b j x j

)
, (21)

s.t. (15), (16), and (17).

To solve problem (21), we decompose it into smaller,
per SBS subproblems. As shown next, each SBS can solve
an individual optimization subproblem, so the approximated
problem in (21) can be solved in a distributed way.

Proposition 1: The problem in (21) can be decomposed into
|J | subproblems.

Proof: The objective function of the problem (21) can
be shown to be a sum of functions of σ j (t) and x j as shown
as (21). Thus, changing of σ j (t) and x j does not affect to
σ j ′(t) and x j ′ , j ′ �= j . Therefore, the objective function of
(21) can be separated into |J | functions. Also, each SBS’s
energy storage is not connected to other SBSs’ energy source.
Thus, due to the isolated energy harvesting system of each
SBS, the amount of stored energy shown as (9) is managed
independently by each SBS. Hence, the problem (21) can be
decomposed into |J | subproblems. �

Now, we have |J | subproblems derived from the approx-
imated problem in (21). The ON or OFF decision of an
SBS does not affect the decision of another SBS, so we can
solve |J | subproblems in parallel. By solving each of the per-
SBS problems, we can significantly reduce complexity and
overhead while allowing for a self-organizing implementation.
Consequently, each SBS will solve its local version of (21) that
seeks to minimize its individual cost function given by

min
σ j (t),x j

∫ u j

0
r jσ j (τ )dτ + b j x j ,

s.t. (15), (16), and (17). (22)

Since SBS j does not know the whole input sequence (e.g.,
uncertain energy arrivals), the SBS cannot know the optimal
schedule of ON and OFF before time elapses. Thus, (22) is
still formulated as an online optimization problem, for which
an online algorithm is needed to make a decision in real time
under an uncertain future. Remarkably, the problem in (22) is
analogous to the so-called ski rental problem [20], an online
optimization framework that enables such decision making in
face of uncertainty, as discussed next.

IV. ON/OFF SCHEDULING AS AN ONLINE

SKI RENTAL PROBLEM

First, we will explicitly define the analogy between ski
rental and self-powered BS scheduling. In the classical online
ski rental problem, an individual is going skiing for an
unknown number of days [22]. The uncertainty on the skiing
period is due to factors such as nature or whether this
individual will enjoy skiing or not. Here, the individual must
decide on whether to rent skis over a short period of time or,
alternatively, buy them for a long period of time, depending

on the costs of renting and buying, the number of days that
he/she will end up skiing, and on whether the skiing activity
will be enjoyable. The online ski rental framework provides
online optimization techniques that allows one to understand
how an individual will make a “rent” or “buy” decision in
such a scenario while facing uncertainty due to nature and
while accounting for the tradeoff between the costs of rental
and purchase and the benefits of skiing.

In this regard, our problem in (22) is similar to the ski
rental decision making process. In our model, each SBS
is an individual that must rent its resources (turn ON) to
the network under the uncertainty of energy harvesting or
alternatively buy more reliable MBS resources (and turn OFF).
From (10) and (13), we can see that r j and b j will represent
the prices for rent and buy, respectively. Thus, the decision
of an SBS on how long to turn ON is essentially a decision
on how long to rent its resources which require paying r j per
unit time. Once the SBS turns OFF, the network must buy the
more expensive but more reliable MBS resources at a price b j .
Given this analogy, we can develop efficient online algorithms
to solve (21) [24]. An online algorithm can solve the problem
at each present time without having whole information about
future energy harvesting results.

To solve the BS ON/OFF scheduling problem, one may
consider other methods such as Markov decision processes,
dynamic programming, reinforcement learning, or convex
online optimization. However, those are not suitable frame-
works for studying the problem considered in this work since
additional assumption or information on energy harvesting
process would be required to model the environment.

We use online algorithms to solve the optimization problem,
and competitive analysis is used to study the performance of
the online algorithms. We first analyze the optimal offline
strategy when assuming energy arrival information over the
entire period is given. The offline optimal cost can be shown
as

βOPT(u j ) =

⎧⎪⎪⎨
⎪⎪⎩

r j u j , 0 ≤ u j ≤ b j

r j
,

b j ,
b j

r j
≤ u j ≤ T .

(23)

The optimal solution is using the rent option until b j/r j

if energy is depleted earlier than b j/r j . Otherwise, the buy
option should be chosen with one time payment b j at time 0.

A. Deterministic Online Algorithm

To design an online algorithm that can achieve a close
performance to optimal, we first investigate how close per-
formance a deterministic online algorithm can yield. A deter-
ministic approach is mainly operated by a predetermined
parameter when making decision of ON/OFF scheduling. In a

deterministic online algorithm (DOA), SBS j is turned OFF at
a predetermined time t j , 0 ≤ t j ≤ T . This flowchart in Fig. 2
shows the structure of Algorithm 1 where the OFF time is
determined at the beginning of the period. From time 0 to
t j , the rent option is used, and the cost increases along with
the rental cost r j per time. Then, at time t j , the buy option
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Fig. 2. Flowchart of algorithm 1.

Algorithm 1 Deterministic Online Algorithm (DOA)
1: Initialization: SBS j ∈ J has a predetermined value t j =

b j/r j .
2: while t ≤ T
3: Update t ← t + ε.
4: If ((9) is unsatisfied) or (t = t j ),
5: then SBS j is turned OFF.
6: else SBS j maintains its ON state.
7: end while
8: At t = T , update Pop

j , P tx
j ,∀ j ∈ J , and user association.

is purchased for the one time cost b j . DOA can be shown
as Algorithm 1. The competitive ratio κ of DOA is given by

βDOA(u j )

βOPT(u j )
=

⎧⎪⎨
⎪⎩

r j u j

min{r j u j , b j } , 0 ≤ u j ≤ t j ,

r j t j + b j

min{r j u j , b j } , t j ≤ u j ≤ T,
(24)

where βDOA is the cost of DOA.
We want to minimize κ subject to βDOA(u j ) ≤ κβOPT(u j )

for every u j from 0 to T . Therefore, when u j = t j = b j/r j ,
the competitive ratio becomes 2 known as the best possible
competitive ratio of a deterministic, online algorithm [20].

B. Randomized Online Algorithm

To handle uncertainty, a rent or buy decision will be made
by using a randomized online algorithm (ROA) by means of
a probability distribution for ON/OFF scheduling designed to
solve our cost-minimization problem. For instance, it is known
that, when a randomized approach is used to address a ski
rental problem, it is possible to achieve a lower competitive
ratio of e

e−1 [20], [25], while DOA achieves the competitive
ratio of 2.

To develop an ROA for our problem, a competitive analysis
analogous to the one done in [20] will be followed. For
an arbitrary input, ROA computes an output (i.e., the turn

OFF time, t j ) based on a probability distribution. We want
to design an ROA that satisfies E[Fj (t j )] < κβOPT(u j ) where
E[Fj (t j )] is the expected cost of the problem (22) redefined

by Fj (t j ) =
{ r j u j , if u j < t j ,

r j t j + b j , if u j ≥ t j ,
provided that unknown

time of energy depletion is given by u j . This will be adequate
for our problem in that the input sequence is the unknown
and uncertain energy arrivals at a given SBS. Even though an
SBS does not know the input sequence, the use of an ROA
will give a solution that can at least achieve the expected cost
of κβOPT.

In this section, when the rental price r j and the buying
price b j are values related to the cost of using an SBS and
the MBS, respectively, we will compute the expected cost of
ROA. At time t j , the state of the SBS can be either ON or OFF
with probability distribution pon

j (t j ) or poff
j (t j ) = 1− pon

j (t j ).
When an SBS decides to turn OFF at t j , we have

E[Fj (t j )] =
∫ u j

0
(r j t j+b j )p′off

j (t j )dt j+
∫ T

u j

r j u j p′off
j (t j )dt j ,

(25)

where p′off
j (t j ) is the first-order derivative of poff

j (t j ). Then,

from d
du j

E[Fj (t j )] = R j (u j ), the rate of increase of the cost
will be expressed by

R j (u j ) = r j pon
j (u j )+ r j u j p′on

j (u j )+ (r j u j + b j )p′off
j (u j ),

where p′on
j = −p′off

j . To find an upper bound on Fj (t j ), we
focus on the case in which the expected cost is at its largest
value. Naturally, this is the same as finding the worst case in
the online ski rental problem which corresponds to the case in
which the individual buys the skis on one day, but is unable
to use them in the next day. In our model, this corresponds to
the case in which the SBS pays for the MBS resources at a
price b j at u j due to the uncertainty of energy. However, at
u j = t j , the SBS does not need to turn OFF if new energy
arrives suddenly at that moment. In this worst case, the cost-
increasing rate R j (u j ) becomes

R j (t j ) = r j pon
j (t j )+ r j t j p′on

j (t j )+ (r j t j + b j )p′off
j (t j )

= r j pon
j (t j )− b j p′on

j (t j ).

By using the relationship E[Fj (t j )] < κβOPT, the cost-
increasing rate of E[Fj (t j )] cannot be larger than the cost-
increasing rate of κβOPT. The cost-increasing rate of βOPT
with respect to u j can be readily derived by choosing the rent
or buy option that yields smaller cost. Now, we divide the
range of u j , t j into two cases.

First, if 0 < u j < b j/r j and 0 < t j < b j/r j , then
the optimal cost-increasing rate is r j which means that an
SBS should be turned ON during t j . Thus, the cost-increasing
rate of ROA cannot be lower than κ times the optimal cost-
increasing rate, we have

r jκ = r j pon
j (t j )− b j p′on

j (t j ).

Since this is a first-order linear ordinary differential equation,
the solution pon

j (t j ) is given by:

pon
j (t j ) = ce

r j
b j

t j + κ, (26)
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Algorithm 2 Randomized Online Algorithm (ROA)
1: Initialization: SBS j ∈ J determines r j and b j .
2: Find t j s.t. poff

j (t j ) = μ j , μ j ∼ U(0, 1),∀ j ∈ J .
3: while t ≤ T
4: Update t ← t + ε.
5: If ((9) is unsatisfied) or (t = t j ),
6: then SBS j is turned OFF.
7: else SBS j maintains its ON state.
8: end while
9: At t = T , update Pop

j , P tx
j ,∀ j ∈ J , and user association.

where c is a constant that can be found by using two boundary
conditions. If an SBS starts with the ON state, then pon

j (0) =
κ + c = 1, and then c = 1− κ .

Second, if b j/r j < u j and b j/r j < t j , then using the MBS
is the optimal choice. In this case, an SBS should buy the
MBS resource before b j/r j . Thus, the SBS should remain in
the OFF state at b j/r j . This fact leads us to find pon

j (b j/r j ) =
(1 − κ)e + κ = 0, and we find κ = e

e−1 . Therefore, we have

the ON probability pon
j (t j ) = e−e

r j
b j

t j

e−1 .
Remark 1: At t j , SBS j will turn OFF according to the

following probability distribution,

poff
j (t j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
r j
b j

t j − 1

e − 1
, 0 ≤ t j ≤ b j

r j
,

1,
b j

r j
≤ t j ≤ T .

(27)

The proposed online ski rental algorithm is summarized in
Algorithm 2. From (27), we observe the tradeoff between rent
and buy. As mentioned, the rental price is a cost related to
using an SBS while the buying price reflects the cost of using
the MBS. For example, the rental price is reduced if using an
SBS yields lower delay cost, or the power consumption of an
SBS is reduced. Also, the buying price increases if the delay
from using the MBS increases, or the power consumption of
the MBS increases. Therefore, if r j is low and b j is high, then
it implies that using SBS will reap benefits in terms of delay
cost or power consumption, so the rent time becomes longer.
In contrast, the rent time becomes shorter if r j is high and
b j is low. The short rent time means an SBS turns OFF early
because buying the MBS resource would be more beneficial
than using the SBS resource with the rent price. Each SBS will
now run Algorithm 2 and decide at time t = 0 when to turn
OFF, without knowing any information on energy arrivals, by
using the distribution in (27). From (27), we can observe that
the OFF time can be adjusted by changing the value of T .
For example, if b j/r j increases by having a longer period
of T , the ON time can be extended, so it can prevent the
frequent ON/OFF switching. Also, it can be helpful to reduce
the frequent handovers.

When using the Algorithm 2, we can verify that the expected
competitive ratio of ROA is e

e−1 if r j T ≥ b j is satisfied. When
the rental option is chosen during the whole period T , the total
cost is r j T . If the total cost is smaller than selecting the buy
option such that r j T < b j , then this leads to a special case.

For such a case, since the optimal solution is always choosing
the rental option, the SBS is not turned OFF until the energy
is exhausted. Therefore, to find a solution of our interest, we
should consider the case in which r j T ≥ b j .

Then, to show the expected competitive ratio, we calculate
the expected cost of ROA. First, let us consider when 0 ≤
u j < b j/r j and b j/r j < T . By using (25), the expected cost
is

E[Fj (t j )] =
∫ u j

0
(r j t j + b j )p′off

j (t j )dt j

+
∫ b j

r j

u j

r j u j p′off
j (t j )dt j

+
∫ T

b j
r j

r j u j p′off
j (t j )dt j = r j u j e

e − 1
, (28)

where p′off
j (t j ) =

{ r j
b j

e

r j
b j

t j

e−1 , 0 ≤ t j ≤ b j/r j ,

0, b j/r j ≤ t j ≤ T .
. The third inte-

gration in (28) becomes zero since p′off
j (t j ) = 0 in b j/r j ≤

t j ≤ T . Second, by letting b j/r j ≤ u j < T , we have the
expected cost shown as

E[Fj (t j )] =
∫ b j

r j

0
(r j t j + b j )p′off

j (t j )dt j

+
∫ u j

b j
r j

(r j t j + b j )p′off
j (t j )dt j

+
∫ T

u j

r j u j p′off
j (t j )dt j = b j e

e − 1
. (29)

The second and third terms in (29) become zero since
p′off

j (t j ) = 0 in b j/r j ≤ t j ≤ T . By using Definition 1 and
the optimal cost given by (23), the expected competitive ratio
of ROA is κ = e/(e − 1). As a result, for an arbitrary energy
arrival, an ROA provides the OFF time of SBS that can have
the expected cost of e/(e − 1) times of the minimum cost
of the problem (22). Also, while the ROA has the optimal
competitive ratio, the solutions found by the online algorithms
are suboptimal as shown in the definition of competitive
ratio [24], [25]. In fact, given uncertainty of energy harvesting,
it is challenging to find the optimal solution of problems.

Then, we can derive the average OFF time period of each
SBS when the ROA is used to solve problem (21) in the worst
case that yields the optimal competitive ratio.

Theorem 2: The expected OFF time period of the SBS is
T − 1

e−1
b j
r j

.
Proof: SBS j is turned OFF at time t j , so the OFF time

period becomes T − t j . Therefore, the expected OFF time
period within period T is given by

∫ T
0 (T − t j )p′off

j (t j )dt j =∫ b j /r j
0 (T − t j )

r j
b j

e(r j /b j )t j

e−1 dt j = T − 1
e−1

b j
r j
. �

In the classical ski-rental problem, the skiing period is not
determined by T ; thus, the average buying time period cannot
be derived. However, in our problem, by using a given period
T , the average OFF time period can be derived. The result
shows how b j and r j affect the OFF time period. From the
result, if the cost of using the MBS, b j , becomes inexpensive,
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TABLE I

SIMULATION PARAMETERS

the OFF time period is longer. Also, if the cost of using SBS,
r j , is decreasing, then the OFF time is reduced, and the SBSs
can be turned ON for a longer time.

Next, we discuss the case that the ROA solves the original
problem (14). Due to the difficulty of theoretical analysis in
problem (14), we numerically evaluate the empirical com-
petitive ratio of the ROA with respect to the problem (14)
throughout simulations. Furthermore, we carry out simulations
to evaluate the OFF time when the ROA is used to solve
problem (14) in Section V.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, the SBSs and UEs are randomly
distributed in a 0.5 × 0.5 km2 area with one MBS located
at the center of the area as shown in Fig 3. Statistical results
are averaged over a large number of independent simulation
runs during time period 2T with the parameters in Table 1.
Simulations during 2T allow a clear observation of the impact
of the unused energy in the first period which can be exploited
in the next period. In the simulation, all values are updated
with the time resolution of ε = 0.1 sec. Without loss of
generality, during T = 10 sec, we assume that energy arrivals
per second follow a Poisson process in which energy arrival
rate is 20, and each arrived energy is 0.2 J; for example, it
can model a 4 W solar panel or wind generation having power
density of 4 W/m2 [26]. Also it is assumed that initially stored
energy of SBS j is set to E j (0) = 60 J where the maximum
capacity of ESS is Emax = 100 J. We use q = 0.9 and
K = 105 bits. We compare our online ski rental approach
ROA and DOA to the baseline approach that turns all SBSs
OFF at a certain, pre-determined time t j .

Fig. 3 shows a snapshot example for 15 SBSs, and 30 UEs
at t = 2 when ROA is used. In Fig. 3, 9 SBSs are turned
ON while 6 SBSs are turned OFF. Here, user association is
shown as dotted lines between ON SBSs and UEs. From the
beginning, four OFF SBSs out of the 6 OFF SBSs initially
stay in the OFF state since they do not have any associated
UE as shown in Fig. 3. We can observe that the other two
SBSs are turned OFF by the ROA scheduling since the UEs
of two OFF SBSs are located near the MBS. In contrast, most
of the ON SBSs are located far from the MBS. In Fig. 3, as
UEs in I j (0) are located closer to the MBS, the delay cost
of using the MBS, φ0, decreases. Therefore, the buy price
in (13) becomes lower. Thus, as the use of the MBS becomes
inexpensive, the SBS tends to buy the MBS resource earlier.
Also, as the UEs are located farther from any given SBS j , the
delay cost of using this SBS, φ j (0), will increase. Thus, the

Fig. 3. Snapshot example of network resulting from the proposed ROA
approach.

Fig. 4. Total energy consumption of SBSs and delay cost per SBS for the
ROA, DOA, and baselines.

rental price in (10) becomes higher. Since the use of the SBS
becomes more expensive, the SBS will buy the MBS resource
earlier.

Fig. 4 shows, jointly, the total energy consumption of SBSs
and the average network delay per SBS, for various numbers
of SBSs with 15 UEs, E j (0) = 30 J, αD = 0.05, αP =
0.0001, and αB = 0.05. From Fig. 4, we can see that, for all
algorithms, as the network size increases, the delay per SBS
will decrease, but the total energy consumption will increase.
This is due to the fact that having more SBSs turned ON will
enable the network to service users more efficiently, however,
this comes with an increase in energy consumption. From
Fig. 4, we can clearly see that ROA reduces both the delay
and the energy consumption as compared to the baseline. It is
because ROA results the different turned-OFF time of SBSs
while all SBSs are turned OFF at the same designated time
in the baseline. Thus, it is possible to mitigate interference
and enhance network performance when ROA is used. This
performance advantage, reaches up to 20.6% reduction in the
delay relative to the baseline t j = 7 for a network with 4 SBSs
and 15.6% reduction in energy consumption relative to the
baseline for a network with 8 SBSs. Finally, compared to the
DOA scheme, Fig. 4 shows that ROA will reduce the delay
of up to 8.4% (for 4 SBSs) and the energy by up to 11.4%
(for 8 SBSs).

In Fig. 5, we show the total cost of the network as the
network size varies for 30 UEs, αD = 0.05, αP = 0.05,
and αB = 0.05. From Fig. 5, we can first see that the
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Fig. 5. Comparison of the total network cost when using ROA, DOA, and
a baseline.

Fig. 6. Comparison of the total network cost with respect to the number
of UEs.

overall cost of the network given by (14) will increase as
the number of SBSs increases. This is mainly due to the fact
that increasing the number of SBSs will increase the overall
power consumption of the network. Also, the sum of delay of
SBSs increases along with the number of SBSs in the network.
Fig. 5 shows that the cost increase of the proposed ROA is
much slower than the increase of the DOA and the baseline
approach. This demonstrates the effectiveness of the proposed
approach in maintaining a low network cost. In particular,
Fig. 5 shows that, at all network sizes, the proposed online
ski rental approach yields reduction in the overall cost of the
network. This performance advantage of ROA reaches up to
69.9% reduction of the average cost for 8 SBSs compared to
the baseline with t j = 7.

In Fig. 6, the total cost of the network is shown when the
number of UEs varies for a network with 6 SBSs, αD = 0.05,
αP = 0.05, and αB = 0.05. Fig. 6 shows that the total cost of
the network increases along with the number of UEs. This is
because of the fact that increasing the number of UEs will
naturally lead to a higher network delay. Nonetheless, we
can clearly see that the cost increase of the proposed ROA
is slower than that of the DOA and the baseline approach.
This shows that the increase of the overall cost is limited by
using the proposed ROA. Fig. 6 shows that the performance
advantage of ROA can yield a reduction of up to 65.4% of
the average cost for 40 UEs compared to the baseline t j = 7.

Fig. 7 shows the empirical competitive ratio for a network
consisting of 3 SBSs and 15 UEs with αD = 0.05, αP = 0.05,
and αB = 0.05. To compute empirical competitive ratio,
the total cost of the solution resulting from the ROA is

Fig. 7. Empirical competitive ratio between the total cost of the ROA and
the optimal cost.

Fig. 8. Average ON time per SBS with respect to the transmit power of an
SBS and the MBS during period T .

divided by the total cost of the offline optimal solution. The
optimal cost of each network realization is found by running
exhaustive search where all possible OFF times of SBSs are
computed. Since the time complexity of the exhaustive search
is O

(
(T/ε)J

)
, we reduce the time resolution to ε = 0.2 sec

and run the simulation for one period T . We can see that, in
50% of all iterations, the ROA can yield a total cost that is
1.36 times that of the offline optimal cost. Also, over a total
of 800 simulation runs, the empirical competitive ratio in the
worst case is shown to be of 1.86. Thus, the results show
that ROA can effectively choose the OFF time in an online
manner.

In Fig. 8, the average ON time per SBS within time period T
is shown for different transmit powers of an SBS and the MBS
with 6 SBSs, 16 UEs, αD = 0.05, αP = 0, and αB = 0.05.
We compare three different values for the transmit power of
an SBS, P tx

j : 22, 23, and 26 dBm. If an SBS uses a high P tx
j ,

then the rent price becomes smaller. As the use of the SBS
resource becomes less expensive, the SBS tends to maintain
the ON state. This, in turn, results in a longer ON time as
shown in Fig. 8. For example, the average ON time increase
by 16.9% if P tx

j increases from 22 dBm to 26 dBm when the
MBS uses the transmit power of 37 dBm. Moreover, if the
MBS uses a high P tx

0 , then the buy price becomes smaller.
As the cost of using the MBS becomes lower, the SBS tends
to use the MBS resource. For example, the average ON time
per SBS is reduced by 19.2% if P tx

0 increases from 33 dBm
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Fig. 9. The number of ON/OFF switchings of the network during one
period T .

Fig. 10. Fraction of unused SBSs in the network for the different transmit
power.

to 37 dBm when the transmit power of 22 dBm is used by an
SBS in a network.

In Fig. 9, we show the total number of ON/OFF operations
within time period T for 16 UEs, αD = 0.05, αP = 0.05,
and αB = 0.05. Here, we consider another baseline approach
that turns an SBS ON if and only if the percentage of charged
energy in storage is greater than a threshold K . For example,
we set K = 40 or 50 such that an SBS maintains its ESS
half-charged. We first present two baselines in which an SBS
is turned ON if K = 40 and K = 50, respectively. The
ROA and DOA clearly yield a lower number of SBS ON/OFF
switchings whereas the baseline (K = 40 or 50) turns SBSs
ON and OFF more frequently. This is mainly due to the fact
that the algorithm based on the stored energy will turn ON
SBSs that have more than a certain predetermined level of
energy. However, the ROA and DOA switch SBSs OFF only
once in period T . The baseline (t j = 7) also shows the similar
number of ON/OFF switchings compared to DOA. Hence,
Fig. 9 shows that the performance advantage of ROA reaches
up to 97.9% of reduction in the number of ON/OFF switchings
when compared to the baseline (K = 50) in the network
consisted of 8 SBSs.

In Fig. 10, we show the percentage of unused SBSs for
different network sizes. We compare three different values
for P tx

j : 22, 23, and 26 dBm for 16 UEs, αD = 0.05, and
αB = 0.05 while the transmission power of the MBS is
fixed to 33 dBm. We set αP = 0 to observe the changes
related to network performance. In Fig. 10, the percentage
of unused SBS decreases as the transmission power of an

Fig. 11. Average ON time per SBS for different operational power of an SBS.

Fig. 12. Average ON time per SBS for different operational power of
the MBS.

SBS increases in the network. When the transmission power
of an SBS become higher, UEs can receive higher SINR value
in (2) than SNR from the MBS in (3). Thus, larger number
of UEs is connected to SBSs, so it can reduce the number of
unused SBSs. For example, Fig. 10 shows that the percentage
of unused SBSs is reduced by 33% if the transmission power
of an SBS increases from 22 dBm to 26 dBm. Also, as the
number of SBSs increases, we observe that a higher fraction
of SBSs is not used in the network. This is because, as the
number of SBSs increases, higher interference will occur thus
reducing the SINR at the UEs. In essence, it leads to more
UEs that associate with the MBS thus increasing the number
of unused SBSs. Indeed, in Fig. 10, we can see that the
percentage of unused SBSs increases by 47.2% if the number
of SBSs changes from 4 to 8 in the network.

Figs. 11 and 12 show the average ON time per SBS for
the different operational power of an SBS Pop

j and the MBS
Pop

0 , respectively, with 6 SBSs, 16 UEs, and αP = 0.05.
We set αD = 0 to observe the effects from different power
consumptions. In Fig. 11, we observe that the ON time per
SBS becomes shorter if an SBS consumes a higher operational
power. This is due to the fact that the cost of using an SBS
increases with the power consumption of an SBS. As a result,
the rent price becomes higher. This means that choosing the
rent option becomes less affordable, thus resulting in a shorter
average ON time per SBS. From Fig. 11, the average ON time
per SBS is shortened by 45 % when the operational power
of an SBS is changed from 10 W to 16 W when the MBS
uses 20 W. Also, in Fig. 12, we observe that the ON time per
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Fig. 13. Average ON time per SBS for different harvested energy.

SBS can be prolonged if the MBS consumes high Pop
0 . This

can be explained as follows: if Pop
0 is high, then the buying

price (13) becomes higher, so the ON time per SBS becomes
longer. The simulation result shows that the average ON time
increases 2 times if Pop

0 increases from 20 W to 40 W when
an SBS consumes 10 W.

Furthermore, in Figs. 11 and 12, the average ON time per
SBS within time period T is shown for different αB . As αB

becomes larger, a higher buy price will be incurred when an
SBS is turned OFF, so the SBS tends to stay in the ON state
without buying the MBS resource. This, in turn, results in
a longer ON time as shown in Figs. 11 and 12. Also, the
increase in the ON time is proportional to the increase of αB .
For example, in Fig. 11, the average ON time increases three
folds if αB increases from 0.05 to 0.15 when Pop

j is 10 W.
The same effect can be seen in Fig. 12 where the average ON
time is extended three folds if αB increases from 0.05 to 0.15
when Pop

0 is 40 W.
In Fig. 13, we show the effect of the initial energy levels

on the average ON time for 6 SBSs, 16 UEs, αD = 0.05,
αP = 0.05, and αB = 0.15. We compare three different values
for E j (0): 20, 40, and 60 J while other parameters related to
energy arrival is given equally. As an SBS has high E j (0),
an increase in the average ON time is observed. The result is
due to the fact that a high E j (0) can help an SBS maintain
in ON state for a longer period. For instance, the average ON
time per SBS increases by 5.1% if E j (0) increases from 20 J
to 60 J when P tx

j is 22 dBm. Furthermore, we observe that
the utilization-proportional power consumption of the MBS is
reduced when the ON time per SBS becomes longer. This is
because the SBSs will offload UEs from the MBS. Clearly, the
use of self-powered SBSs can reduce the power consumption
of the MBS as shown in the case of E tx

j (0) = 60J .
In Fig. 14, we investigate the effect of using more informa-

tion about the dynamics of the rental cost on minimizing the
total cost. We compare the update rule (20) in Theorem 1,
DOA, and ROA under an illustrative network example in
which the rental price is monotonically decreasing over time.
The considered network here consists of 1 SBS, 1 MBS,
and 10 UEs, for αD = 0.05, αP = 0.0001, and αB =
0.05. To satisfy (19), we set the transmission power P tx

j to
23, 25, 27, and 29 dBm, at the following time instants t =
0, 1, 3, and 5, respectively. Therefore, when P tx

j increases at
t = 1, 3, and 5, the delay cost of the SBS can be reduced;
thus, the rental price decreases. In this environment, we can

Fig. 14. Total cost and ON time of an SBS when comparing Theorem 1,
ROA, and DOA.

observe that the derived update rule in (20) can reduce the total
cost when it is compared to DOA or ROA. This is due to the
fact that by using (20), the SBS can use more information on
the updated P tx

j to make a better decision as opposed to DOA
and ROA which rely solely on only information. The SBS
following (20) can dynamically update its decisions based on
the decreasing rental cost, so it is possible to have a longer ON
time than the DOA as shown in Fig. 14. For the considered
network example, by using (20), SBS will not need to buy
the MBS resourse whereas the DOA uses the SBS resource
and also buy the MBS resource. Thus, Theorem 1 results in
the smaller total cost compared to the DOA in the example.
Also, ROA can reduce the total cost than the DOA since
ROA uses the SBS resource for a short period and chooses
to buy the MBS resource earlier. Our example illustrates that
the ROA yields a lower cost than the DOA but a higher cost
than Theorem 1. However, clearly, by using the ROA, the
approximation yields a reasonably good solution, which does
not require any full information on the dynamic parameters of
the system.

VI. CONCLUSION

In this paper, we have proposed a novel approach to opti-
mize the ON/OFF schedule of self-powered SBSs. We have
formulated the problem that minimizing network operational
costs during a period. Also, the problem is approximated as an
online ski rental problem which enables the network to operate
effectively in the presence of energy harvesting uncertainty.
To solve this online problem, we have proposed deterministic
and randomized online algorithm that is shown to achieve
the optimal competitive ratio for the approximated problem.
Indeed, we have shown that by using the proposed ROA,
each SBS can autonomously decide on its ON time without
knowing any prior information on future energy arrivals.
Simulation results have shown that the proposed ROA can
achieve an empirical competitive ratio of 1.86, thus showing
that ROA can effectively choose the OFF time in an online
manner. The results have also shown that both delay and the
ON/OFF switching overhead are significantly reduced when
one adopts the online ski rental approach.

APPENDIX

PROOF OF THEOREM 1

Given definitions of r(v) and t(v), we determine t̄ such that
the accumulated cost up to time t̄ equals to the cost of using
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the MBS b j ; thus, t̄ satisfies

r(1)t(1) + r(2)(t(2) − t(1))+ · · ·
+ r(v−1)(t(v−1) − t(v−2))+ r(v)(t̄ − t(v−1)) = b j . (30)

At time t(0), the initial SBS’s OFF time can be given by
t̄ = b j/r(1). At time t(v−1), v ≥ 2, the SBS’s OFF time can
be updated by t̄ = b j

r(v)
− 1

r(v)

∑v−1
v ′=1 t(v ′)(r(v ′)− r(v ′+1)). In the

algorithm, an SBS determines the OFF time t̄ at the beginning,
e.g., t(0) = 0. Since the cost is updated from r(v−1) to r(v) at
each moment t(v−1), v ≥ 2, the SBS newly update the OFF
time t̄ by using (20).

When the previous OFF time t̄old is determined at t(v−2) with
r(v−1), t̄ is updated at t(v−1) with r(v). Then, t̄ is shown as (20),
and t̄old is given by

b j
r(v−1)

− 1
r(v−1)

∑v−2
v ′=1 t(v ′)(r(v ′) − r(v ′+1)).

If t̄old ≤ t(v−1), the SBS is turned OFF at t̄old. Therefore, t̄old >
t(v−1) is required so that an SBS is in the ON state at t(v−1). By
using two given conditions, r(v−1) > r(v) and t̄old > t(v−1), the
inequality t̄ = 1

r(v)

(
r(v−1)t̄old − t(v−1)(r(v−1) − r(v))

)
> t̄old

holds. Hence, the updated OFF time t̄ is later than the previous
OFF time t̄old if r(v−1) > r(v).

For an arbitrary v ≥ 2, the OFF time of SBS j can be
determined at time t(v−1) by (20). Also, the energy of the
SBS can be depleted at time u where u ≥ t(v−1). To derive
the competitive ratio, we show the total cost of the algorithm
and the optimal cost, respectively. If t(v−1) ≤ u < t̄ , then the
total cost of the problem in (14) is given by

βALG(u) =
v−1∑
v ′=1

t(v ′)(r(v ′) − r(v ′+1))+ r(v)u. (31)

The optimal cost βOPT(u) can be calculated by assuming
an offline scenario where energy arrival information over the
entire period is given. Thus, the amount of stored energy at
each moment becomes known information. In this case, we
can find that βOPT(u) is the same as (31). Also, if t̄ ≤ u, then
the total cost is given by

βALG(u) =
v−1∑
v ′=1

t(v ′)(r(v ′) − r(v ′+1))+ r(v) t̄ + b j .

However, the offline optimal cost is given by βOPT(u) = b j .
Therefore, the worst-case competitive ratio given by (18)
becomes 2 in the case of t̄ ≤ u since βALG(u) can be two
times greater than βOPT(u) due to (30).
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