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ABSTRACT The deployment of heterogeneous networks (HetNets) can significantly boost the network
capacity. However, the large number of small cell base stations (SBSs) deployed in HetNets can result in an
increased total energy consumption. One of the promising techniques to reduce the energy consumption of
networks is base station (BS) ON/OFF switching (sleeping) approaches. Due to device lifetime and energy waste
by unnecessary switchings, the number of switchings is considered as an important problem. In this paper, we
formulate the ON/OFF switching problem as a satisfaction game, where BSs seek to meet certain performance
constraints in order to avoid the frequent BS switchings. Furthermore, BSs can choose their transmission
power levels according to the network conditions in a distributed manner. The proposed satisfaction game
involves a multi-step process. In the first step, we aim at satisfying the players with the high satisfaction
threshold in a predefined time interval. To measure a BS’s satisfaction, a utility function is used that includes
BS’s load and power consumption, in which the load of each BS is coupled with the load of other BSs. Since
all players cannot be simultaneously satisfied, unsatisfied players decide to reduce their thresholds, and
form a game with the redefined thresholds. To solve the game, a regret-based satisfaction algorithm and a
satisfaction equilibrium search algorithm are applied. Simulation results show that the proposed schemes
can achieve significant reductions in the number of switchings compared with the benchmark methods.

INDEX TERMS Heterogeneous networks, game theory, learning algorithm, self-organizing networks, sleep
mode.

I. INTRODUCTION
Heterogeneous networks (HetNets), which consist of tra-
ditional macro cell overlaid with small cell base stations
(SBSs), have been considered as a promising approach to
meet the explosive mobile data traffic demand [1]. HetNets
are envisioned to enable next-generation wireless networks
to deliver higher rate data services, and offload traffic load
frommacro base station (MBS) to SBSs [2], [3]. Compared to
MBS, SBSs cover much smaller areas, and hence they operate
with lower transmit power [4], [5]. However, the growing
number of SBSs gives rise to several challenges. Especially,
densely deployed SBSs can significantly increase energy con-
sumption of the networks, which will directly result in the
increase of carbon footprint and particularly environmental

problems [6], [7]. It has been estimated that the information
and communication technology (ICT) sector is responsible
for about 2% of global CO2 emissions, in which the mobile
communication industry contributes 15-20% [8]. Even with
the technological advancements in the ICT infrastructure,
6% growth rate is expected in CO2 emissions every year
till 2020 [9]. From the economical perspective, the energy
cost accounts to a large portion of operational expenditure
(OPEX) of the network operators [10]. Therefore, it is essen-
tial to consider a paradigm shift to reduce the energy con-
sumption of the networks.

According to some surveys on the energy consump-
tion (e.g., see [8], [11], [12]), base stations (BSs) con-
sume a significant proportion of energy in the network.
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Furthermore, based on the results from China Mobile Com-
munications Corporation, a BS consumes 100% and about
50%-60% energy at the peak traffic load and zero traffic load,
respectively [8]. Therefore, switching OFF BSs (alternatively
termed as sleep mode) and keeping them in energy-saving
mode are effective solutions to achieve energy saving in low
traffic load situations [13], [14]. Themain advantages of these
approaches are easier to test and implement as they do not
require upgrading the equipments and changing the network
architecture [11].

On the other hand, a major priority in HetNets is
self-organization issue. In particular, 3GPP has defined self-
organizing network (SON) as a key standardization fea-
ture [15]. SON allows BSs adjust their configurations with
minimal human intervention in a distributed and flexible
manner [16]. Therefore, SON can significantly reduce capital
expenditure (CAPEX) and OPEX for network operators [17].
In HetNets, SONs can gain more importance when the Het-
Nets become denser and more heterogeneous. Accordingly,
ON/OFF switching schemes based on SON for BSs have
been extensively studied in the literatures [18]–[21]. In LTE
and LTE-advanced standards, a discontinuous transmission
(DTX) and discontinuous reception (DTR) approaches are
introduced where transceivers can be switched to a sleep
mode whenever there is no data to transmit or receive [11].
Several predefined BS sleeping schemes according to traffic
variation patterns are proposed in [22]–[24]. In [23], optimal
power saving schemes by reducing the number of active cells
in low traffic load situations are analyzed. It is proved that
a 25%-30% energy saving is possible. A random ON/OFF
switching approach for SBSs is proposed in [25]. There is a
tradeoff between delay and transmit power where user equip-
ments (UEs) can save energy by delaying their transmissions
in order to connect closer SBSs. In [26], a UE offloading
algorithm to balance load for the sleeping BSs is proposed.
To minimize power consumption, an integer optimization
problem is formulated. A sleep mechanism for IEEE 802.11
wireless local area network access points is developed in [27].
To determine the length of sleep interval, a dynamic sleep
boundary decision algorithm based on the rate and delay is
proposed. A sleep mode approach for BSs based on a binary
social spider algorithm is proposed in [28]. In [29], two low
complexity approximation algorithms are proposed to select
the active BSs set that can preserve the UEs’ minimal rate
requirements. For the BS ON/OFF switching problem, two
simple greedy-on and greedy-off algorithms are proposed
in [30]. Furthermore, Son et al. [30] develop the greedy
heuristic algorithms based on the distances between BSs
without any additional signaling overhead. In [31], a BS
switch-OFF algorithm based on an artificial neural network
is developed. In order to offload UEs from MBSs to SBSs
or neighboring MBSs, a decentralized sleep mechanism for
MBSs is introduced in [32]. In this mechanism, it is assumed
that the SBSs are always ON. By exploiting the cooperation
of cells in HetNets, a sleep mode technique for SBSs is
proposed in [33]. In [34], a centralized greedy-add algorithm

is proposed for the BS switch-OFF approach. To investigate
the effect of cell sorting on the energy saving, three different
BS sorting criteria are compared. For BS ON/OFF switching
problem in the HetNets, a centralized algorithm based on the
simulated-annealing search is proposed in [35]. A game theo-
retic approach for switching OFF BSs in a network with two
operators is proposed in [36], where a cooperation between
the operators is required. To find the optimal BS sleeping
strategies, a distributed cooperative approach is proposed
in [37]. The problem is formulated as a constrained graphical
game, in which the set of players corresponds to the set
of BSs, and the solution converges to a generalized Nash
equilibrium. In this approach, the neighboring BSs cooperate
with each other based on the load to reduce the energy con-
sumption, while guaranteeing UE’s quality of service (QoS).
Furthermore, it only requires local information exchange
among the neighboring BSs in the network. The proposed
mechanisms in [33]–[37], rely on centralized methods or
require cooperation among BSs in the network. Thus, they
come at the expense of knowing local or global information.
This means that, some information is needed to exchange
among BSs. Therefore, they may increase the signaling over-
head in the networks. However, such approaches have their
own advantages, and the outcomes obtained from the fully
distributed approaches might not always be as good as the
outcomes obtained from the approaches that utilize the local
or global information.

Noncooperative game theory plays a fundamental role for
enabling SON feature. In [38], an energy-efficient resource
management for SONs using game theoretic framework is
proposed. To save energy consumption, BSs employ an
ON/OFF switching algorithm, where there is a tradeoff
between energy consumption reduction and load. To solve
the game, a regret based learning algorithm is applied, in
which BSs select their transmission power in a distributed
manner. The proposed algorithm converges to an ε-coarse
correlated equilibrium. From this point of view, players in
the game aim at optimizing their utility functions by selfishly
choosing theirs strategies. For most widely used applications
in wireless networks, players seek strategies that meet certain
performance constraints, instead of optimizing the individual
performance [39]. Games in satisfaction-form enable players
to adapt their strategies to guarantee these constraints. The
idea of satisfaction game and the corresponding notion of
equilibrium in decentralized self-configuring networks are
introduced in [40]–[42]. In [43], the problem of QoS provi-
sioning in decentralized networks is modeled as a satisfaction
game approach.Moreover, a comparison between the concept
of generalized Nash equilibrium and the satisfaction equilib-
rium is provided.

However, when a BS switches between ON and OFF
modes, there is a switching cost which cannot be ignored.
This issue has not been addressed properly in the aforemen-
tioned research works. In this paper, we use the framework
of satisfaction equilibrium, and propose satisfaction based
approaches for BS ON/OFF switching problem. In these
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approaches, the ON/OFF switching problem is modeled as
a noncooperative game in satisfaction-form, in which players
only need to achieve target utility constraints. Our proposed
framework considers a multi-level threshold mechanism.
In order to meet an equilibrium, we introduce adaptive sat-
isfaction thresholds for players that are unable to achieve
satisfaction. There are two issues involved in this problem:
1) for given satisfaction thresholds, forming a satisfaction
game and applying a learning algorithm, such that the set of
satisfied players is maximized, and 2) decreasing satisfaction
thresholds for the set of unsatisfied players after a predefined
time interval. If the player is satisfied, it has no inclination
to change its strategy. To solve the game in a distritbuted
manner, we apply a regret based satisfaction algorithm and
a satisfaction equilibrium search algorithm (SESA). In the
regret based satisfaction algorithm, players play each strategy
with a non-zero probability and based on their regrets. In the
SESA, each player only requires the value of its individual
utility to assign a probability distribution to its strategies.

The proposed satisfaction based approaches can help to
reduce the number of switches in BSs, and thus switching
costs. Furthermore, they do not require a central controller
and information exchange. Therefore, they are executed in a
fully distributed manner, and suitable for dense BSs deploy-
ments scenarios. Since players can only target satisfactory
performance levels, they can reduce the computational com-
plexity.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents the prob-
lem statement, and formulates the ON/OFF switching prob-
lem as a satisfaction-form game. Furthermore, a no-regret
learning algorithm and a learning algorithm based on the
observed utility are described to learn a satisfaction equi-
librium. In section IV, we evaluate the performance of the
proposed approach, and Section V concludes the paper.
Notations: The regular and boldface symbols refer to

scalars and matrices, respectively. For any finite set A, the
cardinality of set A and the set of all probability distribu-
tions over it are denoted by |A| and 1(A), respectively. The
function 1φ denotes the indicator function which equals 1
if event φ is true and 0, otherwise. The set of real numbers
is denoted by R. Furthermore, the single- and n-dimension
space of all real non-negative numbers are denoted by R+
and Rn

+, respectively.

II. SYSTEM MODEL
We consider the downlink of a two-tier HetNet consisting of
the set of MBSs BM overlaid with a set of SBSs BS. For each
MBS’s coverage area, a MBS is located at the center of area,
and the SBSs are uniformly distributed within the coverage
of the MBS as shown in Fig. 1. The set of UEs is denoted
by K, which are uniformly distributed over the area. Assume
that each UE k ∈ K can be associated with at most one BS at
each time.

Let pb(t) be the transmit power of BS b at time instant t .
In order to save energy, BSs can switch to an OFF mode.

FIGURE 1. An illustration of a two-tier HetNet.

In this respect, each BS b ∈ B is either in an ON mode
(i.e. pb(t) > 0) or an OFF mode (i.e. pb(t) = 0) at time
instant t . To characterise the power consumption at a BS, we
need to consider the efficiency of the power amplifier, the
consumed power in the components such as baseband unit,
radio frequency module, and cooling system. The consumed
power of various components in BSs depends on the BS type.
We adopt a linear power consumption model proposed in [44]
which can be expressed as:

Ptotalb (t) =
PPAb (t)+ PRFb + P

BB
b

3b
[W], (1)

with

PPAb (t) =
pb(t)

ηPAb · (1− λ
feed
b )

[W], (2)

and

3b = (1− λDCb )(1− λMS
b )(1− λcoolb ), (3)

where PPAb (t), PRFb , and PBBb indicate the power consumed
by power amplifier, radio frequency module, and baseband
engine, respectively. Parameter ηPAb denotes the power ampli-
fier efficiency of BS b. Parameters λfeedb , λDCb , λMS

b , and λcoolb
represent the losses which are incurred by feeder, DC-DC
power supply, main supply, and cooling system, respectively.
Typically, the feeder losses can be ignored for SBSs. Note
that there are no cooling equipments in SBSs. In order to
select different amounts for the power levels, there are several
practical limitations that are imposed by standards and hard-
ware, such as minimum and maximum transmission power.
Practically, there are only limited number of discrete power
levels available at the transmitter. Therefore, we consider
finite and predetermined number of discrete power levels for
BSs [45].

Suppose UE k is served by BS b, and σ 2 denotes the
additive white Gaussian noise (AWGN) power. We assume
that all BSs transmit over the same channel, i.e. co-channel
deployment. To model signal to interference plus noise ratio
(SINR), a load coupling model is considered, in which the
interference from the other BSs are scaled by their loads [46].
The load of each BS is defined as the fraction of the available
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resource that are being used [47]. Then, SINR experienced by
UE k can be formulated as [48], [49]:

γb,k (t) =
pb(t)gb,k (t)∑

b′∈B\b pb′ (t)gb′,k (t)ρb′ (t)+ σ 2 , (4)

where gb,k (t) and ρb(t) are the channel gain between BS b
and UE k and the load of BS b at time t , respectively. The
term

∑
b′∈B\b pb′ (t)gb′,k (t)ρb′ (t) denotes the time averaged

interference power [50]. This model provides a good approx-
imation for multi-cell systems [49], [51]. From Shannon’s
capacity formula, the achievable transmission rate of UE k is:

Rb,k (t) = ω log2(1+ γb,k (t)) [bits/sec], (5)

where ω is the bandwidth. Let ϑk be the traffic influx rate
of UE k . This assumption can capture different UEs’ QoS
demands (i.e. heterogeneous UEs) depending on hardware
capabilities and UE’s activity [52]. The fraction of time
required to serve the traffic load from BS b to the location
of UE k is defined as ϑk

Rb,k (t)
[53]. Therefore, the load of BS b

at time t is expressed by:

ρb(t) =
∑
k∈Kb

ϑk

Rb,k (t)

=

∑
k∈Kb

ϑk

ω log2(1+
pb(t)gb,k (t)∑

b′∈B\b pb′ (t)gb′,k (t)ρb′ (t)+σ 2
)

, hb(ρ), (6)

where Kb and ρ = [ρ1, . . . , ρ|B|] denote the set of UEs
associated with BS b and the network load vector, respec-
tively. The function hb(ρ), b = 1, . . . , |B|, represents the
R|B|−1+ → R+ function as defined by (6). The load vector
is obtained (if a solution exists) by solving the following
nonlinear equations:

ρ1 = h1(ρ)
...

ρ|B| = h|B|(ρ). (7)

Let h(ρ) = [h1(ρ), . . . , h|B|(ρ)]. In vector form, we have:

ρ = h(ρ). (8)

Since the load ρ appears in both sides of (8), it cannot be
solved in closed-form. Note that a solution ρ∗ is feasible if
ρ∗ satisfies (8) and ρ∗ ≥ 0. Due to the limited resources
available in the network, the load cannot exceed one. Thus,
if the load of a BS exceeds one, the BS will drop some UEs
and/or decrease the UEs’ throughput [54]. Since the function
hb(ρ) is a standard interference function (SIF) as a function
of ρ, the solution can be computed by using fixed point
iterations.
Definition 1: A function I (x) is a SIF if for all x ≥ 0 the

following properties hold [55]:
1) Positivity: I (x) > 0,
2) Monotonicity: x ≥ x ′ ⇒ I (x) ≥ I (x ′),
3) Scalability: αI (x) > I (αx) for α > 1,

Starting from an initial load ρ0 > 0, the unique fixed
point solution (if exists) of (8) can be found iteratively by the
following algorithm:

ρm = min
(
h(ρm−1), 1

)
, (9)

for m = 1, . . . ,M , where M and ρm are the total number of
iterations and the output for iteration m, respectively.
Lemma 1: If a feasible load ρ∗ exists for (8), then it is

unique, and ρM converges to ρ∗ as M →∞ [51].
Proof: Proving that hb(.) is a SIF is presented in [49].

Using Theorem 7 in [55], if the function hb(ρ) is a SIF,
then the function min(hb(ρ), 1) is a SIF. Then, by applying
Theorem 2 in [55], the convergence is proved.

From (6), with increasing the transmission power of BS b,
the SINR of its associated UEs increases. Therefore, given
the traffic influx rate of its UEs, the load of BS b decreases.
Thus, there is the tradeoff between BS’s load and energy
consumption reduction. Moreover, the load grows with the
traffic demand and the amount of interference [48]. In the
following section, the problem of selecting BS’s power level
is presented.

III. PROBLEM FORMULATION
In most existing works that consider the problem of switch-
ing BS’s power level, the number of ON/OFF switchings
is not considered. In practical systems, switchings in a BS
impose an additional power consumption. In a specific case,
switching between ON and OFF modes incurs an energy
cost that is needed to switch ON and OFF some components
of a BS. Moreover, a portion of energy is consumed for
signaling for re-association of the dropped UEs by BSs that
switch to a sleep mode [56]. For future generation cellular
networks, cloud radio access network (C-RAN) is considered
as a novel mobile network architecture [57]. In C-RAN,
BSs’ switchings will cause the high variations of resource
demand in the servers of C-RAN. As a result, it will yield the
higher switching cost, including: the energy used, the delay
inmigration connections/data, increasedwear-and-tear on the
servers, and the risk associated with server toggling [58].

Our objective is to reduce the energy consumption of
BSs while satisfying QoS requirement and avoiding frequent
switchings. Due to the limited device lifetime and switching
energy consumption, it is necessary to minimize the number
of switchings [59]. Further, ON/OFF switching in BSs must
be coupled with UE association problem: when a BS switches
to an OFF mode, its associated UEs need to migrate to
another BSs. Therefore, UE association problem should be
considered jointly with the BS operation problem [30].

A. UE ASSOCIATION
At time t , UE k is associated with BS b(k, t) based on
the received signal power and BS’s estimated load as fol-
lows [60]:

b(k, t) = argmax
b∈B

{
pb(t)gb,k (t)

(
1− ρ̂b(t)

)}
, (10)
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where ρ̂b(t) denotes the estimated load of BS b at time t ,
which is advertised by BS b through a broadcast control
message. The estimated load ρ̂b(t) is calculated based on
history as follows [61]:

ρ̂b (t) = ρ̂b (t − 1)+ τ (t)
(
ρb(t − 1)− ρ̂b(t − 1)

)
, (11)

where τ (t) is the learning rate for the load estimation.

B. ON/OFF SWITCHING GAME IN SATISFACTION-FORM
In this section, we solve the ON/OFF switching in two steps.
In the first step, for a given satisfaction threshold, a learning
algorithm is used to solve the game such that the set of sat-
isfied players is maximized. In the second step, for the set of
unsatisfied players, the satisfaction thresholds decrease. Now,
we define a utility function including the energy consumption
and load, as follows:

ub(t) = −

(
ωb · ρb(t)+ φb ·

Ptotalb (t)

PTMb

)
, (12)

where ωb and φb are the weight parameters for BS b that
indicate the impact of energy and load on the utility function,
respectively. Parameter PTMb denotes the maximum power
consumed by BS b when it transmits with its maximum
power. Then, the energy saving problem can be formulated
as:

max
p1(t),...,p|B|(t)

∑
b∈B

ub(t) (13a)

subject to pb(t) ≤ Pmax
b , ∀b ∈ B (13b)

ρb(t) = hb(ρ), ∀b ∈ B (13c)

0 ≤ ρb(t) ≤ 1, ∀b ∈ B, (13d)

where Pmax
b denotes the maximum transmit power of BS b.

The constraint in (13b) corresponds to the limits on the BSs’
transmission power. The constraints in (13c)-(13d) are related
to the definition of load. In general, to solve the problem (13),
a game GNF in normal-form can be used which is described
by the following triplet:

GNF = 〈B, {Ab}b∈B, {ub}b∈B〉 , (14)

where B and Ab are the set of BSs as the players and the
strategy set of player b, respectively. The utility function of
player b is given by ub : A = A1×· · ·×A|B|→ R. To solve
the problem (13) with avoiding frequent mode switchings, we
model the GNF in satisfaction-form which can be defined as
follows:

GSF = 〈B, {Ab}b∈B, {fb}b∈B〉 , (15)

where fb : A−b→ 2Ab represents a correspondence function
for satisfaction of the constraint, where A−b = A1 × · · · ×

Ab−1 × Ab+1 × · · · × A|B|. The correspondence fb(a−b) ⊆
Ab determines the set of strategies of player b which allows
its satisfaction given the strategies of all other players a−b,
and 2Ab is the set of all subsets of the set Ab. Let ab ∈ Ab
and a−b = (a1, . . . , ab−1, ab+1, . . . , a|B|) denote the strategy

of player b and the strategies of all players except player b,
respectively. More specifically, given a strategy profile a =
(ab, a−b), player b is satisfied if ab ∈ fb(a−b). The strategy
set and correspondence are defined as follows:
• Strategy set: A pure strategy of player b is its trans-
mission power. The available pure strategies for BS
b are Ab = {0, 1

|Ab|−1
PMax
b , . . . ,

|Ab|−1
|Ab|−1

PMax
b } where

|Ab| ≥ 2.
• Correspondence: The correspondence fb is defined as
follows:

fb(a−b) = {ab ∈ Ab : ub(t) ≥ 0b}, (16)

where 0b denotes a threshold value for player b, which
represents the satisfactory threshold for the player.

Definition 2 (Satisfaction Equilibrium): A strategy profile
a′ = (a′1, . . . , a

′

|B|) is an equilibrium for the game GSF if

a′b ∈ fb(a−b), ∀b ∈ B. (17)

In other words, a strategy profile a′ is an equilibrium if the
strategy at all players corresponds to a strategy that yields
satisfaction given all other players’ strategies. In wireless
networks, simultaneously satisfying all players might not
always be feasible, and thus a satisfaction equilibrium does
not exist. In such a case, there are two options [62]:
• find the largest subset of satisfied players
• redefine the satisfaction thresholds for unsatisfied
players.

To implement the first option, if a player is unsatisfied for a
certain time period, it will select a do-nothing strategy for a
period of time. In the second option, the satisfaction threshold
is decreased for each unsatisfied player. Here, we consider
the second option. In this regard, we divide time period
(i.e. total number of iterations) T into N time intervals with
duration T/N . In each time interval [Ti,Ti+1), the satisfaction
threshold is constant, and it is lower than previous threshold,
i.e. 0b(Ti) < 0b(Ti−1) . Therefore, we consider the adaptive
threshold which is defined as follows:

fb(t, a−b) = {ab ∈ Ab : ub(t) ≥ 0b(Ti)}, Ti ≤ t < Ti+1
(18)

where Ti is ith time interval of time period T . Moreover,
in each interval Ti, the player keeps a constant 0b(Ti). Note
that Ti should be large enough such that the player is able
to try all strategies in order to satisfy. When all players are
simultaneously satisfied, an equilibrium is observed.

For each player b, we choose a proper choice 0b(Ti) for
i = 0. If none of its strategies lead to meeting its satisfaction
threshold 0b(T0), the player need to decrease the threshold.
We redefine the threshold 0b(Ti) as follows:

0b(Ti) = 0b(Ti−1)− δ · |0b(T0)|, (19)

where 0 < δ < 1 denotes a decrement coefficient. If the
player chooses a strategy that satisfies it, then it has no
incentive to deviate from it.
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In order to find a strategy that satisfies the constraint, the
player can adopt the following algorithm:

i) For a time interval T0, the player b starts by choosing a
strategy from its strategy set Ab.

ii) If the player is satisfied, it has no incentive to deviate
from it.

iii) If the player is not satisfied, it selects another strategy
according a learning tool.

To learn at least one satisfaction equilibrium, players
utilize one of the behavioral rules described in the next sub-
section.

C. LEARNING THE SATISFACTION EQUILIBRIUM
In this subsection, two learning algorithms are presented to
distributively achieve a satisfaction equilibrium.

1) REGRET BASED SATISFACTION ALGORITHM
Each player b ∈ B chooses its strategy as follows. In the first
iteration, the player selects its strategy following an arbitrary
probability distribution πb(0) ∈ 4(Ab). Let ṽb(t) be the
satisfaction indicator of BS b such that ṽb(t) = 1 indicates
that BS b is satisfied at time t and ṽb(t) = 0, otherwise.
At time t , player b keeps playing the same action played at
time t − 1, if it is satisfied (i.e. ṽb(t − 1) = 1). If the player
is not satisfied (i.e. ṽb(t − 1) = 0), it may change its strategy.
In this case, it chooses its strategy based on a probability
distribution πb(t). Therefore, the player selects the strategy
according to [43]:

ab(t) =

{
ab(t − 1), if ṽb(t − 1) = 1
∼ πb(t), if ṽb(t − 1) = 0.

(20)

where ∼ πb(t) means according to the probability distribu-
tion πb(t). In order to evaluate the probability distribution
πb(t), each player evaluates its regret for not having played its
strategies, and aims at minimizing its regret [63]. In order to
calculate the regret, the player needs the knowledge of other
players’ strategies. Thus, a learning tool is applied. For each
player b ∈ B and ab ∈ Ab, the estimated utility ûb,ab (t),
the estimated regret R̂b,ab (t), and the probability πb,ab (t) are
updated as follows [63]:

ûb,ab (t) = ûb,ab (t − 1)

+ (
1
tκ
)1{ab(t)=ab}

(
ub(t)− ûb,ab (t)

)
, (21)

R̂b,ab (t) = R̂b,ab (t − 1)

+ (
1
tζ
)
(̂
ub,ab (t)− ub(t)− R̂b,ab (t − 1)

)
, (22)

πb,ab (t) = πb,ab (t − 1)

+ (
1
tν
)
(
Gb,ab (R̂b(t))− πb,ab (t − 1)

)
(23)

where κ , ζ > 0 and ν > 0 denote the learning rate
exponents. Let R̂b(t) = [̂Rb,1(t), . . . , R̂b,|Ab|(t)] represents
the vector of regret estimation values. Here, Gb(R̂b(t)) =
[Gb,1(R̂b(t)), . . . ,Gb,|Ab|(R̂b(t))] is the Boltzmann-Gibbs

distribution vector defined as follows:

Gb,ab
(
R̂b(t)

)
=

exp
(

1
θb
R̂b,ab (t)

)
∑
∀śb∈Ab

exp
(

1
θb
R̂b,áb (t)

) , (24)

where 1
θb
> 0 denotes the temperature parameter for player b.

In the learning algorithm, we consider the utility estimation
procedure as a fast process relative to the regret estima-
tion, and the regret estimation procedure as a fast process
relative to the strategy distribution process [63]. Thus, the
learning rate exponents are chosen as ν > ζ > κ . Since
players may not update (21)-(23) at each iteration, thus the
proposed approach can reduce the computational complexity
with respect to a normal-form gameGNF which uses the learn-
ing algorithm (21)-(23) to solve the game. The behavioral rule
in (20)-(23) are summarized in Algorithm 1.
Theorem 1: Algorithm 1 is guaranteed to converge to a

satisfaction equilibrium of game GSF in finite time.
Proof: The proof of Theorem 1 is presented in

Appendix A.

2) SATISFACTION EQUILIBRIUM SEARCH
ALGORITHM (SESA)
This approach is the modified version of the algorithm pro-
posed in [64], which is based on the observed utilities. It uses
the knowledge of the individual utility to assign the probabili-
ties to the strategies. In the SESA approach, each player b ∈ B
selects its strategy according to (20). If the player is not satis-
fied, it updates its strategy according to a probability update
function db

(
πb,ab (t)

)
which is defined as follows [41]:

db
(
πb,ab (t)

)
= πb,ab (t)

+αb(t)rb(t)
(
1{ab(t)=ab} − πb,ab (t)

)
, (25)

where αb(t) = 1
t+1 is the learning rate of BS b. The parameter

rb(t) is computed as follows:

rb(t) =
1+ ub(t)− 0b(Ti)

2
, Ti ≤ t < Ti+1. (26)

Thus, the probability distribution for each player b ∈ B is
described as follows:

πb,ab (t + 1) =

{
πb,ab (t), if ṽb(t) = 1

db
(
πb,ab (t)

)
, if ṽb(t) = 0.

(27)

The pseudocode for SESA is presented in Algorithm 2. The
point here is that, each player only requires the value of its
individual utility at time t . Moreover, the increment in the
probability of each strategy depends on the observed utility
and the learning rate [65].
Theorem 2: The proposed ON/OFF switching based on the

SESA converges to an equilibrium of the game GSF in finite
time, if it holds thatπb,ab (t) > 0 for all b ∈ B and all ab ∈ Ab.

Proof: This theorem is proved similar to Theorem 1.
However, please note that we need the probability distribu-
tion in (27) to fulfill the constraint πb,ab (t + 1) > 0 for
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Algorithm 1 (Regret Based satisfaction): Learning
the Satisfaction Equilibrium of the Game GSF =

〈B, {Ab}b∈B, {fb}b∈B〉

1: Input: ûb,ab (t), R̂b,ab (t), πb,ab (t), ṽb(t − 1), 0b(T0), ∀b ∈
B and ∀ab ∈ Ab

2: Output: ûb,ab (t + 1), R̂b,ab (t+1),πb,ab (t+1), ṽb(t), ∀b ∈
B and ∀ab ∈ Ab

3: Initialization: πb(0),∀b ∈ B
4: for ∀b ∈ B do
5: Select a strategy ab(0) ∼ πb(0),
6: Calculate ub(0), {using (12).}
7: if ub(t) ≥ 0b(T0) then
8: ṽb(0) = 1 {BS b is satisfied.}
9: else
10: ṽb(0) = 0 {BS b is not satisfied.}
11: for ∀ab ∈ Ab do
12: Update ûb,ab (1), R̂b,ab (1), and πb,ab (1),

{using (21)-(23).}
13: end for
14: end if
15: end for
16: while 0 ≤ t < T do
17: t ← t + 1
18: for ∀b ∈ B do
19: if ṽb(t − 1) = 1 then
20: ab(t) = ab(t − 1) {BS b is satisfied and it does

not change its strategy.}
21: else
22: Select a strategy ab(t) ∼ πb(t) {BS b is not

satisfied, and it selects its strategy according to
the probability distribution πb(t).}

23: end if
24: Calculate ub(t), {using (12).}
25: if ub(t) ≥ 0b(Ti) then
26: ṽb(t) = 1 {BS b is satisfied.}
27: else
28: ṽb(t) = 0 {BS b is not satisfied.}
29: for ∀ab ∈ Ab do
30: Update ûb,ab (t + 1), R̂b,ab (t+1), and πb,ab (t+

1), {using (21)-(23).}
31: end for
32: end if
33: end for
34: end while

∀b ∈ B, ∀ab ∈ Ab and t ≥ 0. Thus, at least one strategy
profile exists that satisfies all players, and as a result, it
converges to a satisfaction equilibrium.

Note that a lower satisfaction threshold leads to finding a
solution faster, while a higher satisfaction threshold can lead
to a better performance.

IV. SIMULATION RESULTS
To evaluate the performance of our proposed schemes, we
consider a HetNet with a hexagonal layout with one MBS

Algorithm 2 (SESA) : Learning the satisfaction equilibrium
of the game GSF = 〈B, {Ab}b∈B, {fb}b∈B〉
1: Input: πb,ab (t), ṽb(t − 1), 0b(T0), ∀b ∈ B and ∀ab ∈ Ab
2: Output: πb,ab (t + 1), ṽb(t), ∀b ∈ B and ∀ab ∈ Ab
3: Initialization: πb(0),∀b ∈ B
4: for ∀b ∈ B do
5: Select a strategy ab(0) ∼ πb(0)
6: Calculate ub(0), {using (12).}
7: if ub(0) ≥ 0b(T0) then
8: ṽb(0) = 1 {BS b is satisfied.}
9: else
10: ṽb(0) = 0 {BS b is not satisfied.}
11: for ∀ab ∈ Ab do
12: Update πb,ab (1), {using (25).}
13: end for
14: end if
15: end for
16: while 0 ≤ t < T do
17: t ← t + 1
18: for ∀b ∈ B do
19: if ṽb(t − 1) = 1 then
20: ab(t) = ab(t − 1) {BS b is satisfied and it does

not change its strategy.}
21: else
22: Select a strategy ab(t) ∼ πb(t) {BS b is not

satisfied, and it selects its strategy according to
the probability distribution πb(t).}

23: end if
24: Calculate ub(t), {using (12).}
25: if ub(t) ≥ 0b(Ti) then
26: ṽb(t) = 1 {BS b is satisfied.}
27: else
28: ṽb(t) = 0 {BS b is not satisfied.}
29: for ∀ab ∈ Ab do
30: Update πb,ab (t + 1), {using (25).}
31: end for
32: end if
33: end for
34: end while

located in the center of network. The set of SBSs and UEs are
uniformly distributed in the coverage of MBS. The maximum
transmit power of the MBS and the SBSs are 46 dBm and 30
dBm, respectively [66]. Some other factors which contribute
to calculate the energy consumption of the BSs are chosen
based on [67]. The channel is represented as a path loss fading
according to [68]. The parameters used for the simulations
are summarized in Table 1. Moreover, the presented results
are averaged over a large number of independent runs (Monte
Carlo simulations).

We consider an initial satisfaction threshold value (0b(T0)),
for all BSs in the network. It is assumed that the BSs have a
lower initial satisfaction threshold (0′0 = −0.5) or a higher
initial satisfaction threshold (0′′0 = −0.3).
The proposed satisfaction based ON/OFF switching mech-

anisms are compared with the no-regret learning algorithm
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TABLE 1. System-Level simulation parameters.

without considering satisfaction for players, which is pre-
sented in [53], referred to hereinafter as ‘‘regret based
ON/OFF switching’’. In this approach, the players utilize the
learning algorithm described in (21)–(23), at each time instant
(i.e. solving the game GNF). For further comparisons, we
consider a randomBSON/OFF switching approach, in which
each player selects its strategy with equal probability (i.e.
πb,ab (t) =

1
|Ab|

for ∀b ∈ B and ∀ab ∈ Ab). This approach is
referred to as ‘‘random ON/OFF’’.
Fig. 2 shows the changes in average utility per BS as the

number of SBSs varies. As the number of SBSs increases,
average energy consumption per BS decreases, and the aver-
age utility per BS increases. Since the proposed approaches
with initial threshold vector0′′0 savemore energy compared to
the other approaches, they improve the average utility per BS.
For 0′0, two proposed satisfaction approaches have almost the
same performance, while SESA slightly improves average
utility compared with the regret based satisfaction approach
for 0′′0 . In this respect, the regret based satisfaction approach
with initial threshold vector 0′′0 yields, respectively, up to
13%, 16.5%, and 38% of utility improvement, relative to the
regret based ON/OFF switching, random ON/OFF, and the
satisfaction based approaches with initial threshold 0′0, for a
network with 16 SBSs.

FIGURE 2. Average utility per BS versus the number of SBSs.

FIGURE 3. EE versus the number of SBSs.

We consider an energy efficiency (EE) metric defined as
the ratio between average throughput per BS and average
energy consumption per BS. Fig. 3 illustrates the EE versus
different number of SBSs. We can see that the proposed
approaches with initial threshold vector 0′′0 improve the EE.
For instance, when the number of SBS= 22, the regret based
satisfaction approach improves the EE, respectively, up to
10.7%, 19.4%, and 44.9% as compared to the regret based
ON/OFF switching, random ON/OFF, and the satisfaction
approaches with initial threshold 0′0. This is due to the fact
that the proposed approaches save more energy compared to
the other approaches.

In General, it is more desirable to have a stable condition
for the network, and avoid too many changes in the network
settings. By reducing the number of switchings and power
level changes, each receiver will experience a more stable
channel condition and less change in the interference level.
Hence, less effort is required for the receivers for adapta-
tion to new channel conditions. The normalized amount of
change in the power level can be shown by |ab(t)−ab(t−1)|

PMax
b

.

The total amount for this normalized change in power level
for BS b is Nb ,

∑
t∈T
|ab(t)−ab(t−1)|

PMax
b

, and then it is aver-

aged over the set of BSs (N , 1
|B|
∑

b∈B Nb). Comparing
Fig. 4 and Fig. 5, we observe that the proposed approaches
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FIGURE 4. The total amount of normalized changes in the power levels.

FIGURE 5. The total amount of normalized changes in the power levels.

significantly reduceN . In Fig. 5, the regret based satisfaction
approach with initial threshold vector 0′′0 yields higher N
comparing the other satisfaction approaches.

FIGURE 6. Average number of ON/OFF switchings during 7000 iterations.

Fig. 6 and Fig. 7 show the average number of switch-
ings between an ON and OFF mode during 7000 iterations.
In Fig. 6, we can observe that the regret based ON/OFF
switching and random ON/OFF approaches switch fre-
quently. Practically, such a frequent ON/OFF switching is not
acceptable for BSs. In contrast, in the proposed satisfaction
approaches, BSs switch less than the other approaches. The
reason is that, in the proposed approaches, BSs tend to keep
modes, unless they are not satisfied. Fig. 7 illustrates the

FIGURE 7. Average number of ON/OFF switchings for the proposed
approach during 7000 iterations.

FIGURE 8. The convergence time of the proposed approach.

average number of ON/OFF switchings for the proposed
approaches. It can be seen that for 0′′0 , the regret based
satisfaction approach has lower number of switchings com-
pared to the SESA. Moreover, the satisfaction approach with
higher threshold switches between ON and OFF modes more
than the satisfaction approach with lower threshold. There-
fore, the tradeoff between the energy saved from the ON/OFF
switching and the number of switchings can be balanced by
adjusting the threshold values.

In Fig. 8, we show the convergence time of the proposed
approaches to a satisfaction equilibrium versus the number
of SBSs for 0′0 = −0.5 and 0′′0 = −0.3. We can see that
with increasing the number of SBSs, the average number of
iterations for convergence increases. For a given satisfaction
threshold, two proposed approaches have almost the same
convergence time. Moreover, Fig. 8 shows that reducing the
satisfaction threshold leads to a faster convergence time. For
instance, it shows that for regret based satisfaction approach,
the average number of iterations for convergence for a net-
work with 14 SBSs reaches up to about 1707 and 733 itera-
tions with satisfaction threshold 0′′0 and 0′0, respectively.

V. CONCLUSION
In this paper, we have proposed two low-complexity BS
ON/OFF switching mechanisms, i.e. regret based satisfaction
algorithm and SESA, for HetNets, where BSs can choose
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their transmission power to save energy. In the SESA and the
regret based satisfaction algorithm, BSs select each strategy
based on the individual utilities and their regrets, respectively.
The proposed approaches use the satisfaction based learning
algorithms to avoid frequent BS switchings. In the proposed
approaches, BSs are interested in achieving certain levels of
satisfaction. By adjusting the threshold values, the tradeoff
between the energy saved from the ON/OFF switching and
the number of switchings is balanced. To operate in a practi-
cal environment, where simultaneously satisfying all players
might not always be feasible, an option is provided to ensure
convergence. This option allows the unsatisfied BSs redefine
their satisfaction thresholds. The proposed approaches do not
impose any signaling overhead, and thus can implement in
a distributed way. Simulation results have shown that the
proposed approaches provide better performance over other
benchmark algorithms, and significantly outperform them in
terms of the EE and average BS’s utility. Furthermore, they
significantly reduce the number of switchings at BSs.

APPENDIX
PROOF OF THEOREM 1

Proof: As [43], we consider the following hypothesis of
game GSF = 〈B, {Ab}b∈B, {fb}b∈B〉:

• The game GSF has at least one equilibrium.
• For all b ∈ B the set fb is not empty.
• The sets B and {Ab}b∈B are finite.

The first hypothesis ensures that the players are assigned
a feasible task. The second hypothesis refers to the fact that
each player is able to find a strategy to satisfy it, given the
strategies of all other players. The third hypothesis is consid-
ered to ensure the convergence of the algorithm in finite time.
Since πb,ab > 0,∀b ∈ B, ab ∈ Ab, t > 1, thus every strategy
profile can be played at least once during sufficiently large
iterations. According to (23), we have:

πb,ab (t) = πb,ab (t − 1) · (1−
1
tν
)+ (

1
tν
) · Gb,ab (R̂b(t)),

(28)

Since 0 < 1
tν ≤ 1 and Gb,ab (R̂b(t)) > 0 for θb > 0.

Even if πb,ab (0) be zero, then πb,ab (t) at time t > 1 will be
non-zero. Furthermore, after a large number of iterations, if a
satisfaction equilibrium is not observed, then the target utility
(satisfaction threshold) decreases. Thus, at least one strategy
profile exists that satisfies the satisfaction thresholds, and no
player changes its strategy.
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