適応アンテナアレーの重み更新に用いる参照信号が ビームパターン形成に与える影響

鈴木佑介, 工藤栄亮, 安達文幸

東北大学大学院工学研究科 電気·通信工学専攻 〒980-8579 宮城県仙台市青葉区荒巻字青葉 05

E-mail: yusuke@mobile.ecei.tohoku.ac.jp

あらまし 適応アンテナアレーでは、参照信号とアレー出力の平均二乗誤差が最小になるようアンテナ重みを適応 アルゴリズムにより逐次更新する方法がよく用いられる.移動通信ではマルチパスフェージングが存在し時々刻々 チャネル状態が変動するため、適応アルゴリズムのフェージング追従能力が問題になる.適応アンテナアレーの 重み更新に正規化LMSアルゴリズムを用いる場合、参照信号の選択がフェージング追従能力を決定する.そこで 本論文では、高速レイリーフェージング環境下での正規化 LMS アルゴリズムを用いる適応アンテナアレーを対象 に、参照信号として (a)固定パイロット、(b)アレー出力の瞬時パイロット、および(c)アレー出力の平均パイロットを 用いる3つの場合について、収束特性、追従特性および BPSK 伝送特性を比較検討する.

キーワード 適応アンテナアレー,移動通信, LMS アルゴリズム,マルチパスフェージング

Effect of the reference signal used for updating the weight of adaptive antenna array on the beam pattern

Yusuke SUZUKI, Eisuke KUDOH and Fumiyuki ADACHI

Electrical and Communication Engineering, School of Engineering, Tohoku University 05 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 Japan

E-mail: yusuke@mobile.ecei.tohoku.ac.jp

Abstract For adaptive antenna array, the antenna weights are updated adaptively so that mean square error between a reference and an array output can be minimized. In mobile communications, the propagation channel state varies rapidly because of multipath fading. Therefore, the tracking ability of adaptive algorithm to the fading is an important issue. In the case of normalized LMS algorithm used in the adaptive antenna array, the choice of reference signal determines the tracking ability. In this paper, we consider three reference signals for the normalized LMS algorithm: (a)fixed pilot, (b)instant pilot of array output, and (c)mean pilot of array output. We evaluate the convergence property, the tracking performance, and the BPSK transmission performance when the above three reference signals are used in the adaptive algorithm.

Keyword Adaptive Antenna Array, Mobile Communication, LMS Algorithm, Multipath fading

1. まえがき

適応アンテナアレーは干渉波を抑圧できるので、周波数繰り返し を利用するセルラー移動通信へ適用するための研究が活発である [1]~[8]. これは、空間を効率的に利用することで、通信品質を確保 しながらリンク容量を飛躍的に増大させることができるためである.

適応アンテナアレーは、アレー出力の信号対干渉+雑音電力比 (SINR)を最大化するようにビームパターンを生成する.最適アンテ ナ重みはWinner 解として知られているが、最大 SINR の定義の違い により 2 つの Winner 解を与えることができる.1 つはフェージングの 変動に対して十分長い期間で観測した SINR を最大とする Winner 解(以下,平均 Winner 解),もう 1 つは、瞬時 SINR を最大にする Winner 解である(以下,瞬時 Winner 解).Winner 解として与えられ るアンテナ重みを得る方法として、参照信号とアレー出力との平均 二乗誤差(Mean Square Error: MSE)を最小にする適応アルゴリズ ムによる逐次更新が良く用いられる.適応アルゴリズムとして有名な のは LMS(Least Mean Square)アルゴリズムである[2]~[5].

本論文では LMS アルゴリズムに用いる参照信号として,以下の 3 つを考える.

(1)既知パイロットを参照信号とする方法(以下,固定パイロット):瞬時アレー出力 SINR を最大にする瞬時 Winner 解と同じアンテナ重 みが得られると予想される.しかし高速フェージング環境下では適応アルゴリズムの追従能力の向上が課題となる.

(2)既知パイロットにチャネル推定値を乗算したものを参照信号とす る方法(以下,瞬時パイロット):参照信号がチャネル利得変動を含 むため,誤差にチャネル変動を含まない.平均 Winner 解のアンテ ナ重みが得られると予想される.

(3) 既知パイロットにアレー出力信号成分の rms 振幅およびチャネ ル利得の瞬時位相を反映させたものを参照信号とする方法[9](以 下, 平均パイロット):瞬時パイロットと同様に, 平均 Winner 解のアン テナ重みが得られると予想される.

筆者らの知る限り、固定パイロット、瞬時パイロットおよび平均パイ ロットを参照信号として用いる場合について、アンテナ重みの収束 特性と追従特性および伝送特性(SINR および BER)がどのように異 なるのか、また、上述した Winner 解との比較はこれまで充分議論さ れているとは言えないと思われる.そこで本論文では、適応アンテナ アレーの重み更新にLMS 適応アルゴリズムを用い、(a)固定パイロッ ト、(b)平均パイロットおよび(c)瞬時パイロットの3つの参照信号を用 いる場合について、収束特性と追従特性および伝送特性を比較検 討する.

2. 適応アルゴリズムによるアンテナ重み更新方法

本章では瞬時 Winner 解のアンテナ重みと平均 Winner 解のアン テナ重みについて述べる.次にそれぞれのアンテナ重みを得る適 応アルゴリズムと3つの参照信号について説明する.

2.1 アンテナ重みの Winner 解

適応アンテナアレーの目的はアレー出力の SINR を最大とすることにある. L このアンテナ素子を用いる適応アンテナアレーの時点 n におけるアレー出力 SINR は次式で定義される.

$$SINR(n) = \frac{\left|\mathbf{s}^{T}(n)\mathbf{w}(n)\right|^{2}}{\left|\mathbf{i}^{T}(n)\mathbf{w}(n)\right|^{2} + \left|\mathbf{n}^{T}(n)\mathbf{w}(n)\right|^{2}}$$
(1)

ここで, w(n), s(n), i(n)および n(n)は, それぞれ以下で定義されるベクトルである.

$$\begin{cases} \mathbf{w}(n) = [w_0(n)...w_{L-1}(n)]^T \\ \mathbf{s}(n) = [s_0(n)...s_{L-1}(n)]^T \\ \mathbf{i}(n) = [i_0(n)...i_{L-1}(n)]^T \\ \mathbf{n}(n) = [n_0(n)...n_{L-1}(n)]^T \end{cases}$$
(2)

なお、 $w_l(n)$ 、 $s_l(n)$, $i_l(n)$ および $n_l(n)$ はそれぞれ、第 $l T \rightarrow T$ 子の重み、受信された希望波信号、干渉波信号および雑音を 表し、[.]^Tは転置を表す.

アレー出力 SINR を最大とする最適アンテナ重み w_{opt} が Winner 解であり, 以下のように表される[5].

$$w_{opt}(n) = \mathbf{R}_{xx}^{-1}(n)\mathbf{r}_{xd}(n)$$
(3)

ここで、 $\mathbf{R}_{xx}(\mathbf{n})$ および $\mathbf{R}_{xx}^{-1}(\mathbf{n})$ は、それぞれアンテナ出力ベクト ルx(n)の相関行列およびその逆行列であり、 $\mathbf{r}_{xd}(\mathbf{n})$ は参照信号 と入力信号の相互相関ベクトルである. $\mathbf{R}_{xx}(\mathbf{n})$ および $\mathbf{r}_{xd}(\mathbf{n})$ は次 式で定義される.

$$\mathbf{R}_{xx}(n) = E[\mathbf{x}^*(n)\mathbf{x}^T(n)]$$

$$\mathbf{r}_{xd}(n) = E[\mathbf{x}^*(n)d_s(n)]$$
(4)

ここで E[.]は標本平均操作である.フェージング変動まで平均 化する平均操作で得られた **R**_{xx}(n)および **R**_{xx}⁻¹(n)より求まるアン テナ重みを用いる場合を平均 Winner 解のアンテナ重みと呼び, そうでない場合を瞬時 Winner 解のアンテナ重みと呼ぶことにす る.

2.2 アンテナ重みの適応更新アルゴリズム

上記2つのWinner解で得られるアンテナ重みへ逐次的に適応更新しながら導くアルゴリズムとして、本論文では正規化LMS(normalized least mean squares: N_LMS)アルゴリズムを用いる. N_LMS には参照信号が必要であり、参照信号の生成法によっていずれのWinner解に収束するかが決定される.

N_LMS アルゴリズムは、アレー出力 y(n)と参照信号 z(n)との 平均二乗誤差を最小にするアンテナ重み w(n)を得るアルゴリズ ムである. このアンテナ重みベクトル w(n)の更新式は次式で与 えられる[5].

$$\begin{cases} \mathbf{w}'(n) = \mathbf{w}(n-1) + 2\eta e(n) \frac{\mathbf{x}^*(n)}{\|\mathbf{x}(n)\|^2} \\ w_l(n) = \frac{w_l'(n)}{\|\mathbf{w}'(n)\|} \end{cases}$$
(5)

ここで,式(5)の第2式ではアンテナ重みの発散を防ぐために正 規化している.また, e(n)は誤差信号, //x(n)//²はアレー入力信 号 x(n)の二乗ノルムであって,それぞれ次式で表される.

$$\begin{cases} e(n) = y(n) - z(n) \\ \|\mathbf{x}(n)\|^2 = \sum_{l=1}^{L} |x_l(n)|^2 \end{cases}$$
(6)

本論文では、以下に示すように、瞬時 Winner 解に収束させる参照信号として(a)固定パイロットを、平均 Winner 解に収束させる参照信号として(b)平均パイロット[9]および(c)瞬時パイロットを用いる.

(a) 固定パイロット

参照信号 z(n)に既知パイロットpを用いる. すなわち,

z(n) = p

誤差 *e*(*n*)を最小とするよう, アンテナ重み *w*(*n*)はフェージングに追従 するよう更新される. フェージングに理想的に追従できたときには瞬 時 Winner 解へと近づく.

(7)

(b) 瞬時パイロット

参照信号 z(n)を既知パイロットとチャネル推定値の積とする. すなわち,

 $z(n) = \hat{\eta}(n) p \tag{8}$

参照信号がチャネル利得の変動を反映しているため、アンテナ重み は平均 Winner 解へと近づく.

(c) 平均パイロット

参照信号 z(n)はアレー出力の平均信号電力 \hat{S} と, 瞬時チャネル 利得推定値 $\hat{\eta}(n)$ の瞬時位相成分を用いて次式のように生成する.

$$z(n) = \sqrt{2\hat{S}} \left(\frac{\hat{\eta}(n)}{|\hat{\eta}(n)|} \right) p \tag{9}$$

アンテナ重み更新は、フェージングによる振幅変動の影響を受ける ものの参照信号の位相はチャネル利得と同じであるため、平均 Winner 解へと近づく.

3. 計算機シミュレーションのための送受信モデル

本章では最初に送信信号表現を説明し、チャネルモデルを説明 した後、受信信号とアレー出力信号について述べる.最後に3つの 参照信号を説明する.

3.1 送受信信号

2 値の送信データを変調シンボル系列に変換した後,図1のよう に N_d データシンボル毎に N_p パイロットシンボルを時間多重する. N_p パイロットシンボルとそれに続く N_d データシンボルを1スロットとする と、スロット長は $N_{\text{slot}}=N_p$ + N_d になる.ここで、パイロットシンボルは適 応アルゴリズムの参照信号として利用するばかりでなく、同期検波に 必要なチャネル推定のためにも使われる.この送信信号 s(t)を等価 低域表現を用いて表わすと、次式のようになる.

 $s(t) = \sqrt{2S}d(t) \tag{10}$

ここで, S は送信電力であり, d(t)は次式で表される変調信号波形である.

ここで, *d*(*k*,*m*)は変調シンボル, *T* はシンボル長, *u*(*t*)は送信パルス 波形である.

図 1 スロット構成

3.2 チャネルモデル

移動局と基地局間の電波伝搬モデルを図2に示す.本論文では、上りリンクを想定している.一定速度で移動している移動 局近傍に散乱体が多数分布し周波数非選択性の多重伝搬路 を形成しているものと仮定する.したがって、チャネルは、中央 極限定理より周波数非選択性レイリーフェージングチャネルに なる.基地局に到来する多重波はそれぞれ異なるドップラー周 波数を有している.最大ドップラー周波数を fo で表わす.また、 到来波は角度広がり θ をもつものとする.

図2電波伝搬モデル

3.3 受信信号

受信機の構成を図3に示す.各アレーアンテナ素子には希望波と干渉波との和が受信されている.第1番目のアンテナ素子で受信された信号を整合フィルタ(MF)に入力し,その出力を時刻 t=(kN_{slot}+m)Tで標本化して得られる,第kスロットの第mシンボル時点の受信信号標本をx_l(k, m)で表わす.x_l(k, m)は次式のように表現できる.

$$x_{l}(k,m) = \xi_{s,l}(k,m)d_{s}(k,m) + \xi_{i,l}(k,m)d_{i}(k,m) + n_{l}(k,m)$$
(12)

各アンテナ素子の受信信号にアンテナ重みを乗算して合成 して得られるのがアレー出力である.アレー出力 y(k, m)は次式 のように表される.

 $\begin{bmatrix} \mathbf{x}(k,m) = [x_1(k,m), x_2(k,m), ..., x_L(k,m)]^T \\ \mathbf{w}(k,m) = [w_1(k,m), w_2(k,m), ..., w_L(k,m)]^T \end{bmatrix}$

3.4 チャネル推定と同期検波

.. .

アレー出力に含まれるパイロット信号を用いてチャネル推定を行う. チャネル推定値 $\hat{\eta}(k)$ は各スロット先頭のパイロット信号の単純平均 であり, 次式のように表わされる.

$$\hat{\eta}(k) = \frac{1}{N_p} \sum_{m=0}^{N_p - 1} y(k, m)$$
(14)

このチャネル推定値の複素共役をアレー出力値に乗算することで同 期検波し、データ判定する. 3.5 参照信号の生成法

(a)固定パイロットを参照信号に用いる場合

各スロットでは $m=0\sim N_p-1$ がパイロットの受信時点である. したがって、1 スロットあたり N_p 回だけ時点 $n=kN_{slot}\sim kN_{slot}+N_p-1$ で重み更新 を行うことができる. このときのアレー出力 y(n)および参照信号z(n) は次式のようになる.

$$\begin{cases} y(n) = y(k,m) \\ z(n) = p \end{cases}$$
(15)
for $n = kN_{slot} + m$; $m = 0 \sim N_p - 1$

(b)瞬時パイロットを参照信号とする場合

チャネル推定値を利用して参照信号を生成するので、1スロットあたり1回だけ時点 $n=kN_{slor}+N_p$ -1 で重み更新を行う.参照信号は次式で表わされる.

$$\begin{cases} y(n) = y(k,m) \\ z(n) = \hat{\eta}(k)p \end{cases}$$
(16)
for $n = kN_{slot} + m; \ m = N_p - 1$

(c)平均パイロットを参照信号に用いる場合

(b)と同様1スロットあたり1回だけ時点 *n=kN_{slot}+N_p-1*で重み更新を 行う. 参照信号は次式で表わされる[5].

$$\begin{cases} y(n) = y(k,m) \\ z(n) = \sqrt{2\hat{S}(k)} \left(\frac{\hat{\eta}(k)}{|\hat{\eta}(k)|} \right) p \\ \text{for } n = kN_{slot} + m; \quad m = N_p - 1 \end{cases}$$
(17)

ここで Ŝ(k) はアレー出力の平均信号電力の推定値であり、次式のように忘却定数を aとする 1 次フィルタを用いて推定する.

$$\hat{S}(k) = \alpha \hat{S}(k-1) + (1-\alpha) \frac{1}{2} \left| \hat{\eta}(k) \right|^2$$
(18)

4. 計算機シミュレーション

本章では3つの参照信号を用いたときの伝送特性を,瞬時 Winner解,平均Winner解をアンテナ重みとしたときの伝送特性と比較する.

4.1 シミュレーション条件

シミュレーション諸元を表1に示す.()の値は各パラメータを 変数とした場合の範囲を示し、特に明示しない場合は下線の値 を用いた.アクセス方式としてFDMAを仮定し、アンテナ素子数 LをL=2とした.また、受信したアレー出力の平均パイロットを参 照信号に用いる場合には受信信号の平均電力の推定が必要 である.このときの1次フィルタの忘却係数をα=0.999とした.ア ンテナ重みの初期値は、無指向性アンテナパターンとなるw₁=1 およびw₂=0とした.

データ変調	BPSK
スロット構成	パイロット: <u>N,=4</u> シンボル
	データ: <u>N_d=60</u> シンボル
チャネルモデル	1パスレイリーフェージング
正規化最大ドップ	$\underline{f_D T_{slot}} = 0.01$
ラー周波数	(0.0001~0.3)
1 アンテナあたり	<u>20dB</u>
の平均受信 E_b/N_0	
希望波到来方向	<u>60°</u>
干涉波到来方向	$\underline{0^{\circ}}$ $(0^{\circ}$ $\sim 180^{\circ}$)
角度広がり	0° $(0^{\circ}$ $\sim 360^{\circ}$)
受信アンテナ数	<i>L</i> =2 本
アンテナ間距離	$\lambda/2$

表1 シミュレーション諸元

4.2 アンテナ重みの収束特性

図 4 にウェイト更新回数の関数としてプロットしたアレー出力 の平均 SINR (10000 回試行の平均)を示す. ここでステップサイ ズ μ は μ =0.001, 0.1 とした. 固定パイロットでは、ステップサイ ズ μ =0.1 とした方が、 μ =0.001 としたときに比べ収束後に得ら れる SINR が高い. これはステップサイズが小さいとフェージン グの変動に追従できないためである. ただし、 μ =0.1 のときの平 均 SINR は瞬時 Winner 解と差がある. 一方、瞬時パイロットでは、 収束後の SINR が μ =0.001, 0.1 のいずれの場合も平均 Winner 解に近い SINR が得られる. 平均パイロットでは、 μ =0.001 のと きには瞬時パイロットと同様に平均 Winner 解に近い SINR が得 られる. しかし μ =0.1 のときの収束後に得られる SINR は約 12dB と低く、ステップサイズを十分小さくする必要があることが 分かる. ステップサイズを小さくすることでビームパターンが安定 し、平均 Winner 解に近づく. ここでは、ステップサイズによらず 高い SINR が得られる瞬時パイロットが一番良いと言える.

以後の計算機シミュレーションでは、固定パイロットでは μ =0.1、平均パイロットおよび瞬時パイロットでは μ =0.001 を用いる. また、収束後の SINR および BER の測定は、アンテナ重みが十分収束したと見なされる20000 スロット送信後から行うものとする.

4.3 アンテナ重みの追従特性

図 5 に最大ドップラー周波数と、アンテナ重み収束後に得られる BER 特性との関係を示す.ここで、ステップサイズ μ =0.001 および 0.1 とした.固定パイロットでは、ドップラー周波数が高くなるにつれ BER が単調に増加する.これはフェージングへの追従が困難になる ためである.一方、瞬時パイロットおよび平均パイロットでは、高いド ップラー周波数に対して優れた特性を示している.fpTslot=0.01 よりも 高いドップラー周波数領域においてBER が増加するのは、フェージ ングが速くなるとチャネル推定精度が劣化し、同期検波が難しくなる ためである.

瞬時パイロットおよび平均パイロットを用いる場合は、固定パイロットを用いる場合より高速フェージングへの追従能力が高い.このことを示すために、 $f_DT_{slot}=0.01$ のときのアンテナ重みの時間変化を図 6 に示す.図は、アンテナ1の重み w_1 の実数成分を実線で、虚数成分を点線で示したものである。固定パイロットでは、チャネル利得の変化につれてアンテナ重みが変化しているものの、瞬時Winner解と大きなずれが生じている。一方、瞬時パイロットおよび平均パイロットでは、高速フェージング環境下でも平均Winner解に近い安定したアンテナ重みが得られていることが分かる。このとき生成されたアンテナパターンは、本論文では図示していないが、平均Winner解のそれとほぼ同じであることを確認している。

4.4 アレー入力 SIR の影響

図7にアレー入力 SIR を-20~20dB まで変化させたときの, アレー入力 SIR 対平均 BER 特性を示す. 瞬時 Winner 解およ び平均 Winner 解の BER はアレー入力 SIR に依存しない. これ はアンテナパターンのヌルが干渉信号の到来方向に生成され, 干渉電力を低減しているためである. 一方,固定パイロットでは 干渉方向にヌルを向けるアンテナパターンが生成できないため, 入力 SIR が小さくなるにつれて残留する干渉波の影響を強く受 けるため平均 BER が大きくなる. 瞬時パイロットおよび平均パイ ロットでは大きな干渉電力のとき Winner 解に近い特性が得られ, 干渉波がほぼ理想的に除去できることがわかる. ただし,平均 パイロットのときは,平均 SIR が 0dB より大きくなると,ビームパタ ーンのヌルが干渉波方向に生成されないため平均 BER が大き くなっている. この理由について現在検討中である. 瞬時パイロ ットでは,アレー入力 SIR にほとんど依存せず,平均 Winner 解 に近い BER が得られている.

図8に干渉波到来角の関数としてプロットした BER 特性を示 す.希望波と干渉波の到来方向が一致する場合を除き,平均 パイロットおよび瞬時パイロットの特性は平均Winner解に近い. 固定パイロットの特性は瞬時Winner解より劣化している.希望 波と干渉波の到来方向が一致する場合を除き,干渉波到来方 向によらず,固定パイロットよりも瞬時パイロットまたは平均パイ ロットを用いた方が良い特性が得られることが分かる.

図9に希望波到来角0度,干渉波到来角60度のときのビームパターンを示す. 瞬時 Winner 解および平均 Winner 解ともに 干渉波にヌルが向いている. 固定パイロットではビームパターン が揺らぐことがあるが,瞬時パイロットおよび平均パイロットでは Winner 解に近いビームパターンが生成されている.

図9 ビームパターン 4.6 到来波の角度広がりの影響

図10に到来波の角度広がりに対するBER 特性を示す.また参考 として、2 つのアンテナ間のフェージング相関が0のときに最大比合 成ダイバーシチ(MRC)により得られるBERを図の右端に矢印で示 す.角度広がりが大きくなるとヌルの生成が不可能になるため、平均 Winner 解のBER 特性は劣化する.180度以上の角度広がりでは、 平均 Winner 解のBER は MRC ダイバーシチのBERより劣化してい る.瞬時パイロットおよび平均パイロットの場合も平均 Winner 解と同 じ特性を示している.固定パイロットの特性は、チャネル利得変動に アンテナ重みの更新が追従できないため瞬時 Winner 解の特性から 大きく劣化するが、MRC ダイバーシチより優れた特性を示している. 一方、瞬時 Winner 解では、アンテナアレーが最小二乗合成ダイバ ーシチとして働くために優れた特性を示すことが分かる.

5. むすび

本論文では、N_LMS アルゴリズムを用いてアンテナ重みを適応 更新する適応アンテナアレーについて、固定パイロット、平均パイロ ットおよび瞬時パイロットをそれぞれ参照信号とする場合の伝送特 性を、1 干渉波が存在する周波数非選択性レイリーフェージング環 境下おいて計算機シミュレーションで明らかにした。そして瞬時 Winner 解および平均 Winner 解を用いるときの伝送特性と比較考察 した。その結果をまとめると以下のようになる。

(1)アンテナ重みの追従特性:固定パイロットでは、チャネル利得の 変動に追従するようアンテナ重みを更新させる必要があるため、 ステップサイズを大きくする必要がある.フェージングが十分 遅いときは瞬時 Winner 解と同じアンテナ重みが得られるが, フェージングが高速になるにつれて瞬時 Winner 解との差が 大きくなり, BER 特性は劣化する.一方,瞬時パイロットおよ び平均パイロットでは,ステップサイズを小さくすれば平均 Winner 解に近い安定したアンテナ重みが得られる.

- (2)アンテナ重みの収束速度:固定パイロットでは、フェージング への追従特性を高めるためステップサイズを大きくする必要 があるから、収束速度が速いものの安定したビームパターン が得られない.一方、瞬時パイロットおよび平均パイロットで は、安定したビームパターンを得るようステップサイズを小さく したために収束が遅い.収束するまでに要する更新回数は 10000回程度になる.しかし、WCDMAの場合のスロット長は 10/15ms であるので、収束するまでの時間は高々、6.7 秒程 度であり実用上十分問題ないものと思われる.
- (3)到来波の角度広がり:角度広がりが大きくなるとヌルの生成 が不可能になり、平均 Winner 解と瞬時パイロットおよび平均 パイロットの BER 特性は劣化する.一方、瞬時 Winner 解で は、希望波(広がった到来波の合成波)および干渉波(広がっ た到来波の合成波)の瞬時の状態変化に追従して MSE を常 に最小にするよう動作するため、角度広がりの大きさに関わら ず優れた BER 特性が得られる.ところが、固定パイロットでは 瞬時 Winner 解より BER 特性が大幅に劣化するものの、それ でも MRC より優れた BER 特性が得られることが分かった.

参考文献

- [1]J. H. Winters, J. Salz, and R. D. Gitlin, "The impact of antenna diversity on the capacity of wireless communication systems," IEEE Trans. Commun., vol. 42, pp. 1740-1751, Feb. /March/April 1994.
- [2]R. A. Monzingo and T. W. Miller, *Introduction to adaptive arrays*, Jhon Wiley and Sons, New York, 1980.
- [3]R. T. Compton, *Adaptive antennas*, Prentice Hall, Englewood Cliffs, 1988.
- [4]J. G. Proakis, *Digital communications*, McGraw-Hill, New York, 1995.
- [5]S. Haykin, *Adaptive filter theory*, (Third Edition), Prentice Hall, Englenwood Cliffs, 1996.
- [6]L. C. Godara, "Application of antenna arrays to mobile communications, Part I : Performance improvement, feasibility, and system considerations," Proc. IEEE, vol. 85, no. 7, pp. 1029-1060, July 1997.
- [7]L. C. Godara, "Application of antenna arrays to mobile communications, Part II : beam-forming and direction of arrival consideration," Proc. IEEE, vol. 85, no. 8, pp. 1195-1245, Aug. 1997.
- [9]S. Tanaka, M. Sawahashi, and F. Adachi, "Pilot symbol-assisted decision-directed coherent adaptive array diversity for DS-CDMA mobile radio reverse link," IEICE Trans. Fundamentals, vol. E80-A, pp. 2445-2454, Dec. 1997.