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Abstract Channel estimation problem is one of key technical issues in time-variant multiple-input multiple-output (MIMO) 

communication systems. To estimate the MIMO channel, least mean square (LMS) algorithm was applied to adaptive channel estimation 

(ACE). Since the MIMO channel is often described by sparse channel model, such sparsity could be exploited and then estimation 

performance could be improved by adaptive sparse channel estimation (ASCE) methods using sparse LMS algorithms. However, 

conventional ASCE methods have two main drawbacks: 1) sensitive to random scale of training signal and 2) unstable in low signal-to-noise 

ratio (SNR) region. To overcome the two harmful factors, in this paper, we propose a novel ASCE method using normalized LMS (NLMS) 

algorithm (ASCE-NLMS). In addition, we also proposed an improved ASCE method using normalized least mean fourth (NLMF) algorithm 

(ASCE-NLMF). Two proposed methods can exploit the channel sparsity effectively. Also, stability of the proposed methods is confirmed by 

mathematical derivation. Computer simulation results show that the proposed sparse channel estimation methods can achieve better 

estimation performance than conventional methods. 

 

Keyword  least mean square (LMS), least mean fourth (LMF), normalized LMF (NLMF), adaptive sparse channel estimation (ASCE), 

multiple-input multiple-output (MIMO). 

 

1. Introduction 

Signal transmission over multiple-input multiple-output 

(MIMO) channel is becoming one of mainstream 

techniques in the next generation communication systems. 

The major motivation is due to the fact that  MIMO 

technology is a way of using multiple antennas to 

simultaneously transmit multiple streams of data in 

wireless communication systems. MIMO in cellular 

systems brings improvements on four fronts:  improved 

data rate, improved reliability, improved energy efficiency, 

and reduced interference.  However, coherent receive 

requires accurate channel state information (CSI) due to 

the fact that wireless signal propagates over 

frequency-selective fading channel. In these systems, the 

basic channel estimation problem is reduced to estimation 

multiple-input single-output (MISO) channel at each 

antenna at receiving side. One of typical examples is that 

use of very large number of antenna (so-called “massive 

MIMO”) at base station and only one antenna at mobile 

terminal (as shown in Fig. 1) makes high data 

communication possible with very low transmit power in a 

frequency-selective fading channel [1]. Besides, in the 

high mobility environment, the MIMO channel is 

subjected to time-variant fading (i.e., double-selective 

fading). The accurate estimation of channel impulse  

response (CIR) is a crucial and challenging issue in 

coherent modulation and its accuracy has a significant 

impact on the overall performance of communication 

systems.  

During last decades, many channel estimation methods 

proposed for MIMO-OFDM systems [2–10]. However, all 

of the proposed methods can be categorized into two types. 

The first type is that linear channel estimation methods , 

e.g., least squares (LS) algorithm, based on the 

assumption of dense CIRs. By applied these approaches, 

the performance of linear methods depend only on size of 

MIMO channel. Note that narrowband MIMO channel may 

be modeled as dense channel model because of its very 

short time delay spread; however, broadband MIMO 

channel is often modeled as sparse channel model  [11–13]. 

A typical example of sparse channel is shown in Fig. 2. It 

is well known that linear channel estimation methods are 

relatively simple to implement due to its low computation 

complexity [4–9]. But, the main drawback of linear 

channel estimations is unable to exploit the inherent 

channel sparsity. The second type is the sparse channel 

estimation methods using compressive sensing (CS) [14], 

[15]. Optimal sparse channel estimation often requires that 

its training signal satisfies restrictive isometry property 

(RIP) [16] in high probability. However, designing the 

RIP-satisfied training signal is a non-polynomial (NP) 

hard problem [17]. Although some proposed methods are 

stable while scarifying extra high computational burden, 

especially in time-variant MIMO-OFDM systems. For 

example, sparse channel estimation method using Dantzig 

selector was proposed for double-selective fading MIMO 

systems [9]. However, the proposed method needs to be 

solved by linear programming and then it incurs high 



 

  

 

 

computational complexity. To reduce complexity, sparse 

channel estimation methods using greedy iterative 

algorithms were also proposed in [8], [10]. However, their 

complexity depends on the number of nonzero taps of 

MIMO channel.  

 

 

Fig.1. An example of time-variant MIMO system. 

 

 

Fig. 2. A typical example of sparse multipath channel.  

 

Unfortunately, above proposed methods cannot estimate 

channel adaptively. To estimate time-variant channel, 

adaptive sparse channel estimation (ASCE) methods using 

sparse least mean square algorithms (ASEC-LMS) were 

proposed in  [21]. However, conventional ASCE-LMS 

methods have two main drawbacks: 1) sensitive to random 

scale of training signal and 2) unstable in low 

signal-to-noise ratio (SNR) region. To overcome the two 

harmful factors, in this paper, we propose a novel ASCE 

method using normalized LMS (NLMS) algorithm 

(ASCE-NLMS) for estimate MIMO channel . In addition, 

since normalized least mean fourth (NLMF) algorithm 

[18] outperforms the well-known normalized least mean 

square (NLMS) algorithm [19] in achieving a better 

balance between complexity and estimation performances. 

In our previous research in [20], stable sparse NLMF 

algorithm was also proposed to achieve better estimation 

than sparse NLMS algorithm [21]. Hence, for time-variant 

MIMO communication systems, we also propose improved 

ASCE methods using sparse NLMF algorithms 

(ASCE-NLMF). First of all, as shown in Fig.  3, 

MIMO-OFDM system model is formulated so that ASCE 

can estimate MIMO channel vector. Later, computer 

simulation results are presented to confirm the 

effectiveness of our proposed methods.  

The remainder of this paper is organized as follows. A 

MIMO-OFDM system model is described and problem 

formulation is given in Section II. In section III, sparse 

NLMS and sparse NLMF algorithms are introduced and 

ASCE in time-variant MIMO-OFDM systems is 

highlighted. Computer simulation results are given in 

Section IV in order to evaluate and compare performances 

of the proposed ASCE methods. Finally, we conclude the 

paper in Section V. 

 

 

Fig. 3. ASCE for MIMO-OFDM communication systems. 

 

2. System Model 

Assume that the transmit power is {‖�̅�𝑛𝑡
(𝑡)‖} = 𝐾𝐸0 . 

The resultant vector 𝐱𝑛𝑡
(𝑡) ≜ 𝐅H�̅�𝑛𝑡

(𝑡)  is padded with 

cyclic prefix (CP) of length 𝐿𝐶𝑃 ≥ (𝐾 − 1)  to avoid 

inter-block interference (IBI), where 𝐅 is a 𝐾 × 𝐾 DFT 

matrix with entries ,𝐅-𝑘𝑞 = 1 𝐾⁄ 𝑒−𝑗2𝜋𝑘𝑞 𝐾⁄ , 𝑘, 𝑞 =

0,1, . . . , 𝐾 − 1. After CP removal, the received signal vector 

at the 𝑛𝑡-th antenna for time 𝑡 is written as  𝑦. Then, the 

received signal  𝑦 and input signal vector 𝐱 are related 

by  

𝑦 = ∑ 𝐡𝑛𝑡

𝑇 𝐱𝑛𝑡

𝑁𝑡
𝑛𝑡=1 + 𝑧 = 𝐡𝑻𝐱 + 𝑧,          (1) 

where 𝐱 = ,𝐱1
𝑇, 𝐱2

𝑇 , … , 𝐱𝑁𝑡

𝑇 -𝑇 combines all of the input signal 

vectors; additive noise variable 𝑧 satisfies CN(0, 𝜎𝑛
2) and 

the MIMO channel vector 𝐡 can be written as 

𝐡 = [𝐡1
𝑇 𝐡2

𝑇  ⋯ 𝐡𝑁𝑡

𝑇 ]
𝑇

∈ ℂ𝑁𝑁𝑡×1,          (2) 
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where 𝐡𝑛𝑡
 ( 𝑛𝑡 = 1,2, … , 𝑁𝑡 )  is assumed equal 𝑁 -length 

sparse channel vector from receiver to 𝑛𝑡-th antenna. In 

addition, we also assume that the each channel vector 𝐡𝑛𝑡
 

is only supported by 𝑇 dominant channel taps. A typical 

example of 16-paths sparse multipath channel, which is 

supported by 3 dominant channel taps,  is depicted in Fig.  

2. According to the system model in Eq. (1), the 

corresponding channel estimation error  𝑒(𝑛)  at time 𝑡 

can be written as 

𝑒(𝑛) =  𝑦 −  𝑦(𝑛) = 𝑦 − 𝐡𝑇(𝑛)𝐱(𝑛),          (3) 

where 𝐡(𝑛) denotes an adaptive MIMO channel estimator 

of 𝐡 and 𝑦(𝑛) is the output signal. A diagram of ASCE 

method for MIMO-OFDM communication system was 

shown in Fig. 3. The goal of ASCE is to estimate MIMO 

channel 𝐡  using error signal 𝑒(𝑛)  and input training 

signal 𝐱(𝑛). Traditional ASCE methods using sparse LMS 

algorithms were proposed to exploit channel sparsity. The 

cost function of ASCE method is concluded as 

𝐿𝑠(𝑛) = 1

2
𝑒2(𝑛) + 𝜆𝑠𝑙𝑝‖𝐡(𝑛)‖𝑝.                   (4) 

where 0 ≤ 𝑝 < 1 and 𝜆𝑠𝑙𝑝 ≥ 0  denotes sparse regulation 

parameter which trades off the mean square error and 

sparsity of 𝐡. Without loss of generality, corresponding 

update equation of ASCE methods can be written as  

𝐡(𝑛 + 1) = 𝐡(𝑛) − 𝜇𝑠
𝜕𝐿𝑠(𝑛)

𝜕𝐡(𝑛)
                             

= 𝐡(𝑛) + 𝜇𝑠𝑒(𝑛)𝐱(𝑛) − 𝜌𝑠𝑙𝑝

‖𝐡(𝑛)‖𝑝
1−𝑝

sgn(𝐡(𝑛))

𝜎+|𝐡(𝑛)|1−𝑝
, (5) 

where 𝜌𝑠𝑙𝑝 = 𝜇𝑠𝜆𝑠𝑙𝑝 and 𝜇𝑠 ∈ (0, 𝛾max
−1 ) is the step size of 

LMS gradient descend and  𝛾max  is the maximum 

eigenvalue of the covariance matrix 𝐑 = 𝐸*𝐱(𝑛)𝐱𝑇(𝑛)+. 

 

3. Proposed ASCE Methods 

3.1. ASCE-NLMS 

Consider 𝐿𝑝-norm sparse penalty on cost function of 

NLMS to produce sparse channel estimator since this 

penalty term forces the values for channel taps of 𝐡 to 

approach zero. It is termed as LP-NLMS which was 

proposed for single-antenna systems in [21]. According to 

the (4) and (5), update equation of LP-NLMS based ASCE 

method can be derived as 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇𝑠
𝑒(𝑛)𝐱(𝑛)

‖𝐱(𝑛)‖2
2  −𝜌𝑠𝑙𝑝

‖𝐡(𝑛)‖𝑝
1−𝑝

sgn(𝐡(𝑛))

𝜎+|𝐡(𝑛)|1−𝑝
,     (6) 

where ‖∙‖2  is the Euclidean norm operator and 

‖𝐱‖2
2 = ∑ |𝑥𝑖|2𝑁

𝑖=1 . Following to this idea of the LP-NLMS 

algorithm on ASCE, if 𝑝 = 0 , then the zero-attracting 

forces the channel taps values of 𝐡 to approach zero is 

𝐿0 -norm penalty. It is termed as 𝐿0 -norm NLMS 

(L0-NLMS) [21] that the cost function is given by 

𝐿𝑠𝑙0(𝑛) = 1

2
𝑒2(𝑛) + 𝜆𝑠𝑙0‖𝐡(𝑛)‖0,       (7) 

where ‖𝐡‖0  is the 𝐿0 -norm operator that counts the 

number of nonzero taps in 𝐡 and 𝜆𝑠𝑙0 is a regularization 

parameter to balance the estimation error and sparse 

penalty. Since solve the 𝐿0 -norm minimization is a 

NP-hard problem [17], we replace it with approximate 

continuous function [22] 

‖𝐡‖0 ≈ ∑ (1 − 𝑒−𝛽|ℎ𝑙|)
𝑁𝑡𝑁−1
𝑙=0 .           (8) 

According to the approximate function, L0-LMS cost 

function can be revised as 

𝐿𝑠𝑙0(𝑛) = 1

2
𝑒2(𝑛) + 𝜆𝑠𝑙0 ∑ (1 − 𝑒−𝛽|ℎ𝑙|)

𝑁𝑡𝑁−1
𝑙=0 .        (9) 

Then, the update equation of L0-LMS based ASCE can 

be derived as 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇𝑠𝑒(𝑛)𝐱(𝑛) − 𝜌𝑠𝑙0𝛽sgn(𝐡(𝑛))𝑒−𝛽|𝐡(𝑛)|,   

(10) 

where 𝜌𝑠𝑙0 = 𝜇𝑠𝜆𝑠𝑙0 . It is worth mention that the 

exponential function in (10) will cause high computational 

complexity. To reduce the computational complexity, the 

first order Taylor series expansion of exponential 

functions is taken into consideration as [22] 

𝑒−𝛽|ℎ| ≈ {
1 − 𝛽|ℎ|, when |ℎ| ≤ 1 𝛽⁄  

0, others.
      (11) 

where ℎ is an any element of channel vector 𝐡. Then, the 

update equation of L0-NLMS based adaptive sparse 

channel estimation can be derived as  

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇𝑠
𝑒(𝑛)𝐱(𝑛)

‖𝐱(𝑛)‖2
2 −𝜌𝑙0𝐽(𝐡(𝑛)),      (14) 

where  𝐽(𝐡) is defined as 

𝐽(𝐡) = {
2𝛽2ℎ − 2𝛽sgn(ℎ), when |ℎ| ≤ 1 𝛽⁄  

0, others.
    (15) 

3.2. ASCE-NLMF 

Unlike the proposed method in Section A, we propose a 

kind of improved ASCE methods using sparse NLMF 

algorithms for MIMO channel. At first, cost function 

𝐿𝑛𝑙𝑚𝑓(𝑛) of standard LMF can be constructed as 

𝐿𝑓(𝑛) =
1

4
𝑒4(𝑛).              (16) 

The update equation of ASCE using LMF algorithm can be 

derived as 

𝐡(𝑛 + 1) = 𝐡(𝑛) − 𝜇𝑓
𝜕𝐿𝑛𝑙𝑚𝑓(𝑛)

𝜕𝐡(𝑛)
= 𝐡(𝑛) + 𝜇𝑓𝑒3(𝑛)𝐱(𝑛),  (17) 

where 𝜇𝑓 ∈ (0,2) is a gradient descend step-size which 

controls convergence speed and steady-state performance; 

However, LMF algorithm only works stable in low SNR 

region [23]. Based on the our previous research in [21], 



 

  

 

 

ACE using normalized LMF (NLMF) algorithm is stable 

for different SNR region. Then, the update equation of 

NLMS based ACE is given by 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇𝑓

𝑒3(𝑛)𝐱(𝑛)

‖𝐱(𝑛)‖2
2(‖𝐱(𝑛)‖2

2+𝑒2(𝑛))
 

= 𝐡(𝑛) + 𝜇𝑓(𝑛)
𝑒(𝑛)𝐱(𝑛)

‖𝐱(𝑛)‖2
2  ,             (18) 

where 𝜇𝑓(𝑛) = 𝜇𝑓𝑒2(𝑛) (‖𝐱(𝑛)‖2
2 + 𝑒2(𝑛))⁄ . Here, we can 

find that when 𝑒2(𝑛) ≫ ‖𝐱(𝑛)‖2
2 , then 𝜇𝑓(𝑛) → 𝜇𝑓 ; when 

𝑒2(𝑛) ≈ ‖𝐱(𝑛)‖2
2 , then 𝜇𝑓(𝑛) → 𝜇𝑓 2⁄ ; when 𝑒2(𝑛) ≪

‖𝐱(𝑛)‖2
2, then 𝜇𝑓(𝑛) → 0. Hence, NLMF algorithm in Eq. 

(18) is stable which is equivalent to NLMS algorithm in 

Eq. (6).  According to the previous research in [21] 

regarding single-antenna communication systems, if the 

standard NLMF algorithm is stable, then its corresponding 

ASCE method using sparse NLMF algorithm is also stable. 

Hence, stable ASCE using sparse NLMF algorithms are 

presented as follows.  

For the MIMO channel vector 𝐡(𝑛), its cost function of 

ASCE using LP-NLMF algorithm is given by 

𝐿𝑓𝑙𝑝(𝑛) =
1

4
𝑒4(𝑛) + 𝜆𝑓𝑙𝑝‖𝐡(𝑛)‖𝑝,      (19) 

where 𝜆𝑓𝑙𝑝 is a regularization parameter which trades off 

the fourth-order mismatching estimation error and 

𝐿𝑝 -norm sparse penalty of 𝐡 . The update equation of 

ASCE method using LP-NLMF can be derived as 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇𝑓(𝑛)
𝑒(𝑛)𝐱(𝑛)

‖𝐱(𝑛)‖2
2 − 𝜌𝑓𝑙𝑝

‖𝐡(𝑛)‖𝑝
1−𝑝

sgn(𝐡(𝑛))

𝜎+|𝐡(𝑛)|1−𝑝
 (20) 

where 𝜌𝑓𝑙𝑝 = 𝜇𝑓𝜆𝑓𝑙𝑝  depends on step-size 𝜇𝑓  and 

parameter 𝜆𝑓𝑙𝑝. Similarly, cost function of ASCE method 

using L0-NLMF algorithm can also be written as  

𝐿𝑓𝑙0(𝑛) =
1

4
𝑒4(𝑛) + λ𝑓𝑙0‖𝐡(𝑛)‖0,        (21) 

where 𝜆𝑓𝑙0 > 0 is a regularization parameter which trades 

off the fourth-order mismatching estimation error and 

sparseness of MIMO channel. Then, its updating equation 

algorithm can be written as 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇𝑓(𝑛)
𝑒(𝑛)𝐱(𝑛)

‖𝐱(𝑛)‖2
2 − 𝛽2𝐽(𝐡(𝑛)),    (22) 

where 𝛽2 = 𝜇𝑓𝜆𝑓𝑙0  and 𝐽(𝒉(𝑛))  is a approximate sparse  

𝐿0-norm function which was defined in Eq. (15) . 

 

4. Computer Simulation 

In this section, the proposed ASCE estimators using 

1000 independent Monte-Carlo runs for averaging. The 

length of channel vector 𝐡𝑛𝑡
 between each antenna of 

transmit to receiver is set as 𝑁 = 16 and its number of 

dominant taps is set as 𝑇 = 1 and 3, respectively. Values 

of dominant channel taps follow Gaussian distribution and 

their positions are randomly allocated within the length of 

𝐡𝑛𝑡
 which is subjected to  𝐸*||𝐡𝑛𝑡

||2
2 = 1+ . The received 

signal-to-noise ratio (SNR) is defined as 20log (𝐸0 𝜎𝑛
2⁄ ), 

where 𝐸0 = 1 is transmitted power at each antenna. Here, 

we set the SNR as 3dB , 6dB  and 9dB  in computer 

simulation. All of the step sizes and regularization 

parameters are listed in Tab. I.  The estimation 

performance is evaluated by average mean square error 

(MSE) which is defined as  

Avergae MSE*𝐡(𝑛)+ = E*‖𝐡 − 𝐡(𝑛)‖2
2+,       (23) 

where E*∙+ denotes expectation operator, 𝐡 and 𝐡(𝑛)
 

are the actual MIMO channel vector and its 𝑛-th adaptive 

channel estimator, respectively.  

TABLE I.  SIMULATION PARAMETERS.   

Parameters Values 

Gradient descend step-size: 𝜇𝑠 0.5 

Gradient descend step-size: 𝜇𝑓 1.5 

Regularization parameter: 𝜆𝑠𝑙𝑝 (2e − 4)𝜎𝑛
2log (𝑁 𝑇⁄ ) 

Regularization parameter: 𝜆𝑓𝑙𝑝 (2e − 6)𝜎𝑛
2log (𝑁 𝑇⁄ ) 

Regularization parameter: 𝜆𝑠𝑙0 (2e − 3)𝜎𝑛
2log (𝑁 𝑇⁄ ) 

Regularization parameter: 𝜆𝑓𝑙0 (2e − 5)𝜎𝑛
2log (𝑁 𝑇⁄ ) 

 

 

Fig. 4. Performance comparison at SNR = 3dB. 

 

In the first example, the proposed methods are 

evaluated in Fig. 4 ( 𝑇 = 1 ) and Fig. 5  ( 𝑇 = 3 ) at 

SNR = 3dB. Since step-size of ASCE methods can balance 

the estimation performance and computation complexity. 

Hence, the step-size of sparse NLMS algorithms and 

sparse NLMF algorithms are set as 𝜇𝑠 = 0.5 and 𝜇𝑓 = 1.5, 

respectively. Note that the step-size 𝜇𝑠 = 0.5  was also 

recommended by the paper [21]. As the two figures shown, 
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ASCE-NLMS methods achieved better estimation 

performance than ACE-NLMS. Similarly, ASCE-NLMF 

methods also achieved better estimation performance than 

ACE-NLMF methods. In addition, the two figures are also 

shown that ASCE-NLMF methods are much better than 

ASCE-NLMS methods but scarifying much computational 

complexity (iterative times). Relatively, the computational 

complexity of ASCE-NLMS is very low [21]. Hence, 

selecting a reasonable ASCE method may depend on the 

requirement of practical systems. 

 

 

Fig. 5. Performance comparison at SNR = 3dB. 

 

 

 

Fig. 6. Performance comparison at SNR = 6dB. 

 

In the second experiment, the proposed methods are 

evaluated at different SNR region as shown in Figs. 6-7. 

As SNR increasing from 6dB  to 9dB , performance 

advantages of these proposed methods are shown 

obviously when comparing with conventional methods. 

Here, it was worth noting that computational complexity 

of ASCE-NLMF methods increase with SNR. Hence, how 

to reduce complexity of ASCE-NLMF is one of our future 

works. 

 

 

Fig. 7. Performance comparison at SNR = 9dB. 

 

5. Conclusion 

In this paper, we proposed ASCE methods using sparse 

NLMS and sparse NLMF algorithms for time-variant 

MIMO-OFDM systems. First of all, system model was 

formulated to ensure each MIMO channel vector can be 

estimated. Secondly, cost function of the two kinds of 

proposed methods were constructed using sparse penalties, 

i.e., 𝐿𝑝-norm and 𝐿0-norm. Later, MIMO channel vector 

was estimated using ASCE methods. Simulation results 

were shown that proposed ASCE-NLMS methods achieved 

better performance than standard ACE-NLMS method 

without scarifying much computational complexity. The 

simulation results are also shown that proposed 

ASCE-NLMF methods are even better than ASCE-NLMS 

methods while scarifying amount of computation 

complexity. 
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