
A Hybrid Algorithm for Optimization of Base
Station Power Consumption and Throughput

Improvement
Abolfazl Mehbodniya, Katsuhiro Temma, Ren Sugai, Rintaro Yoneya, Fumiyuki Adachi

Graduate School of Engineering, Department Communications Engineering, Tohoku University
6-6-05 Aza-Aoba, Aramaki, Sendai 980-8579, Japan

Email:{mehbod, tenma, sugai, yoneya}@mobile.ecei.tohoku.ac.jp, adachi@ecei.tohoku.ac.jp

Abstract—The heterogeneous network (HetNet) which consists
of several small cell base stations (BSs) and an overlaid macro
cell BS is a promising solution to accomplish very high data
rate and energy-efficient communication. The design of energy-
efficient mechanisms and radio resource allocation among BSs is
an important issue in HetNet. There are a variety of ON/OFF
switching algorithms for BSs in the literature, however, none
of these algorithms jointly consider the resource allocation
problem. In this paper, we propose a hybrid interference-aware
channel segregation based dynamic channel assignment (IACS-
DCA) and BS sleep mode algorithm. This algorithm helps to
mitigate the co-channel interference (CCI), experienced by user
equipments (UEs). Simulation results show that by applying
the proposed IACS-DCA approach along with a game-theoretic
based algorithm for intelligent BSs ON/OFF switching, higher
energy-efficiency can be achieved compared to the conventional
approaches.

Index Terms—heterogeneous network; energy-efficiency; game
theory; dynamic channel assignment; channel segregation.

I. INTRODUCTION

The demand for wireless resources has grown exponentially
due to the large number of wireless terminals. This growth in-
creases the load on wireless networks and leads to an increased
energy consumption [1]. Hence, developing energy-efficient
mechanisms and resource allocation in wireless networks are
attracting much attention [1], [2]. The heterogeneous network
(HetNet) which employs a set of small cell base stations
(BSs), is inherently capable of improving the energy-efficiency
(EE) [3] of the system, thanks to reduced pathloss. However,
due to proximity of BSs, co-channel interference (CCI) may
significantly affect the system performance. Therefore, CCI
management will be a challenging task for next generation
dense HetNets.

Existing literature has studied a number of problems related
to EE in HetNet, such as BS placement, load balancing, power
control, and dynamic BS sleep-wake mechanism [4]–[6]. Al-
though these studies provide good insights into improving EE,
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they all rely on a central controller which gathers all network
information and makes all decisions. In [7], a distributed
energy-efficient algorithm is proposed in which each BS
selects ON/OFF strategies based on the current traffic load
and network environment, using a game-theoretic approach.
It is shown that the proposed algorithm in [7] improves the
EE and reduces the overall load in the system comparable to
conventional approaches even in a distributed manner.

The available resources in wireless communications, i.e.,
channels in frequency, time and space dimensions, is limited.
Hence, the same channel needs to be reused among BSs in the
network and the CCI limits the network capacity. To reuse the
channels effectively, dynamic channel assignment (DCA) has
been studied extensively in the literature [8]–[11]. Recently,
we proposed an interference-aware channel segregation (CS)
based DCA (IACS-DCA) [12], in which each BS periodically
monitors the CCI environment and computes the moving
average CCI powers (obtained from past CCI measurements)
of all available channels. Each BS has channel-priority table,
in which the channels are listed with the descending priority
order (i.e., increasing order of CCI power). BS selects the best
channel having the lowest average CCI power. It is shown that
the proposed IACS-DCA can form a channel reuse pattern with
low CCI which adapts to BS distribution [13].

In this paper, we propose a modified IACS-DCA approach,
which considers the CCI environment experienced at user
equipments (UEs) in the HetNet, combined with a learning
game-theoretic algorithm for BSs ON/OFF switching similar
to [7]. According to the network conditions (e.g., power con-
trol, UE location and BSs’ ON/OFF switching pattern), CCI
experienced at UEs varies over time and channel allocation
should cope with this changing environment. In the proposed
IACS-DCA scheme, each UE informs its corresponding BS
about its channel-priority information and BSs select the best
channel by analyzing such information. We show by computer
simulation that the proposed IACS-DCA/sleep mode scheme
can effectively manage the CCI and significantly improve
the spectral efficiency (SE) of HetNet. The EE condition of
the proposed algorithm is still kept at an acceptable level
comparable to the only sleep mode algorithm in [7]. Another
notable characteristic of the proposed scheme is that both
IACS-DCA and sleep mode modules are executed in a fully
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Fig. 1. System model.

distributed manner at each BS, without information exchange
between BSs.

The remainder of this paper is organized as follows. In
Section II, system model is presented along with the power,
signal-to-interference-plus-noise power ratio (SINR), load, and
cost expressions. Section III discusses different steps of our
proposed algorithm, Section IV provides the simulation results
and the evaluation of our algorithm, and finally, Section V
concludes the paper.

II. SYSTEM MODEL

We focus on downlink transmission in HetNet. Fig. 1
shows the system model, which consists of a set of BSs,
S = { 1, ..., s, ..., S }. We assume only one macro base station
(MBS), s = 1, which encompasses a variable number of small
BSs (SBSs), S = { 2, ..., s, ..., S }. A total number of X users,
X = {1, ..., x, ...,X} are available in the system.

Power consumption of sth BS, BS(s), at time t is given by:

PAll
s (t) =

Ps(t)

ηα(1− αfeed)
+ PBack

s + P Idle
s (1)

with

α = (1− αDC)(1− αmain)(1− αcool) (2)

and

P Idle
s =

Pradio + Pbase

α
, (3)

where Ps(t) is the transmission power, η is efficiency of power
amplifier, PBack

s is the power consumption in backhaul, P Idle
s

is the power consumption in OFF mode. αfeed, αDC, αmain

and αcool represent respectively the loss fractions of feeder,
AC-DC conversion, main supply and cooler system. Pradio

and Pbase are the power consumption of radio frequency and
baseband units, respectively.

We assume a total of C available frequency channels,
C = {1, ..., c, ..., C}. Each channel uses OFDMA with Nc

subcarriers. A frequency-selective block Rayleigh fading chan-
nel is considered which is composed of Q distinct paths.

The impulse response of the propagation channel at time t
is modeled according to:

h(τ ; t) =

Q−1∑
q=0

hq(t)δ(τ − τq) , (4)

where hq(t) and τq denote the time-varying complex-valued
path gain with E[

∑Q−1
q=0 |hq(t)|2] = 1 (E[.] denotes the

ensemble average operation) and the time delay of the qth
path, respectively.

A. SINR Expression

The downlink CCI experienced at xth UE connected to sth
BS, UEx

s , comes from the co-channel BSs using the same
c(s)th channel and is expressed by:

IUEx
s
(t) =

∑
s′ ∈ BSG(c(s))

s′ 6= s

Ps′(t) · ξUEx
s ,BS(s′)

×
∑

k′∈Nx
s

∣∣HUEx
s ,BS(s′)(t; k

′, c(s))
∣∣2 (5)

where BSG(c(s)) denotes the BS group which uses the
same c(s)th channel, Ps′(t) is the transmit power of BS(s′).
ξUEx

s ,BS(s′) is the path loss between UEx
s and BS(s′) and

HUEx
s ,BS(s′)(t; k, c(s)) is obtained by the Fourier transform

of the channel impulse response between UEx
s and BS(s′) at

time t. Nx
s is the set of subcarriers assign by BS(s) to UEx

s .
Here, we do not consider any optimal subcarrier allocation
for the OFDMA system. Subcarriers are divided equally and
sequentially between UEs connected to each BS and we
assume Nc � Xs, where Xs is the total number of UEs
connected to BS(s). The downlink instantaneous SINR λUEx

s

experienced at UEx
s ’s antenna is given by

λUEx
s
(t) =

Ps′(t)ξUEx
s ,BS(s′)

∑
k′∈Nx

s

∣∣HUEx
s ,BS(s)(t; k

′, c(s))
∣∣2

IUEx
s
(t) +Nx

sN0

(6)

where N0 is the noise power.

B. Load and Cost Function Expressions

We assume that UEs have different QoS requirements, i.e.,
they have different packet arrival rates and mean packet sizes.
We define the instantaneous load density of each BS as the
summation of the loads of all individual UEs connected to it
according to:

νs(t) =

Xs∑
x=1

γxs
µx
sω
′ log2(1 + λUEx

s
(t))

, (7)

where γxs and µx
s are the packet arrival rate and mean packet

size of xth UE connected to sth BS, ω′ = ω/C is the
bandwidth of each BS and ω is the total system bandwidth.
The load of each BS is inversely related to the throughput
it provides for the UEs in its service. The averaged value of
load, υ̂s(t), is calculated as:

υ̂s(t) = υ̂s(t− 1) + l(t) (υs(t− 1)− υ̂s(t− 1)) , (8)



where l(t) is the learning rate. In order to ensure system sta-
bility, l(t) is chosen such that the load averaging is sufficiently
slower than UE association process.

A cost function similar to [7] is considered for each BS
which tries to capture both load and energy consumption. The
cost function for sth BS is defined by:

Ψs(t) = ϕs
PAll
s (t)

PMax
s

+ ψsνs(t), ϕs, ψs > 0 (9)

where PMax
s is the maximum allowed transmission power for

BSs in the system, ϕs and ψs are weighting parameters which
define the impact of energy and load, respectively.

III. PROPOSED ALGORITHM

Our goal is to design a fully distributed solution which can
minimize the cost function in (9) for all BSs. The proposed
algorithm is summarized in Algorithm 1.

Algorithm 1 : Proposed algorithm.
1: Input: C(s, t), ûs,i(t), r̂s,i(t), ps,i(t)
2: Output: as(t+ 1), A(x, t+ 1)
3: Initialization: S = { 1, ..., S }; X = {1, ..., Xs};

C = {1, ..., C}; Φs
c ∈ [0, Xs]; t = 0

4: while do
5: t ← t− 1,
6: for ∀s ∈ S do
7: Find as(t) = f (ps,i(t− 1)),
8: end for
9: Beacon signal transmission

10: and load advertising, υ̂s(t), (8)
11: for ∀x ∈ X do
12: if (x ∈ W) ∨ (x ∈ O) then
13: Find A(x, t), (11)
14: end if
15: end for
16: for ∀s ∈ S do
17: for ∀x ∈ X do
18: for ∀c ∈ C do
19: CCI power measurement, IUEx

s
(t; c), (5)

20: Ave. power computation, IUEx
s
(t; c), (12)

21: end for
22: Updating UEs’ Table, (Fig. 2)
23: UE’s selected channel, C(UEx

s , t), (13)
24: end for
25: for ∀x ∈ X do
26: for ∀c ∈ C do
27: if c = C(UEx

s , t) then
28: Φs

c ← Φs
c + 1,

29: end if
30: end for
31: end for
32: BS’s selected channel C(s, t) = arg max

c∈C
Φs

c

33: end for
34: Updating instantaneous values, υs(t), Ψs(t), (7), (9)
35: Updating ûs,i(t), r̂s,i(t), ps,i(t), (14), (15), (16)
36: end while

A. Strategy Selection and Beacon Transmission

In the first step of the algorithm, BSs decide their action, i.e.
OFF/ON mode. A non-cooperative game is used to design the
decision process. In this game, the players are the BSs, strate-
gies are different power levels chosen by BSs and the utility
function of each BS is defined according to, us(t) = −Ψs(t).
In this paper, we use variable i to refer to each strategy and
as(t) captures the strategy selected by sth BS at time t. Each
BS selects its action, as(t), at time t based on a probability
distribution, ps,i(t − 1), associated with each action, i.e.,
ps,i(t− 1) is a mixed strategy. Assuming f as a probabilistic
mapping function, as(t) is given by as(t) = f (ps,i (t− 1)),
where as(t) ∈ i = {1, ..., 4}. Each strategy i introduces the
transmission power level, which is defined in terms of the
transmission power level, ζs(t), and for time t is given by:

Ps(t) = ζs(t)P
Max
s . (10)

Table I shows the selected transmission power level for
different strategies. Please note that MBS can only select
two strategies, i = 1 and i = 4, whereas SBSs can select
all four available strategies. After strategy selection, each
BS periodically broadcasts the beacon signal on the selected
channel along with its load estimate.

TABLE I
TRANSMISSION POWER LEVELS

Strategy Identification
Number (i)

Transmission Power
Level (ζs(t))

1 0
2 1/3
3 2/3
4 1

B. UE Association

If the UE belongs to the set of recently slept BSs, W , or
if it belongs to the set of UEs which have dropped due to
overload, O, or if the UE has newly joined the network, then
it should be assigned to a new BS. In order to connect to a
new BS, UEs receive the load estimate of all BSs through
the beacon signal and choose the BS to which they want to
connect by evaluating an association function. This association
function is based on two metrics, i.e., the received signal power
and the load condition of each BS. The reason to choose two
metrics is to ensure a minimum required QoS for UEs and
at the same time to prevent overloading of BSs. The UE’s
association criteria is formulated according to:

A(x, t) = arg max
s∈S

{
υ̂s(t)

−εPs(t) · ξUEx
s ,BS(s′)

×
Nc∑
k=1

∣∣HUEx,BS(s)(t; k, c(s))
∣∣2} , (11)

where ε is a coefficient, which indicates the impact of each
BS’s traffic load.



C. Channel Selection

We use the first order filtering to compute the average
CCI power received at each UE. The average CCI power,
IUEx

s
(t; c), computed at xth UE connected to sth BS on the

cth channel at time t is given by

IUEx
s
(t; c) = (1− β) · IUEx

s
(t; c) + β · IUEx

s
(t− 1; c), (12)

where 0 < β < 1 denotes the forgetting factor. Using the
average CCI powers on all available channels, the CCI table
is updated for all available channels (c = 1 ∼ C). Later,
each UE selects the channel, having the lowest CCI power
according to:

C(UEx
s , t) = arg min

c∈C
IUEx

s
(t; c), (13)

which is used until the next CCI table updating time t+1.
The averaging interval of the first order filtering is given as
1/(1−β). If a too small β is used, averaging is not enough and
the measured average CCI power varies like the instantaneous
CCI power. Therefore, the channel reuse pattern varies at every
CCI table updating time. Hence, β ≈ 1 is recommended [13].
In this paper, β=0.95 is used for the computer simulation.

After all UEs report their first priority channel to their corre-
sponding BS, the BS updates its look-up table accordingly, as
shown in Fig. 2. Based on this table, BS chooses the channel
which is reported by most UEs, C(s, t).

D. Mixed Strategy Update

Utility estimation, ûs,i(t+ 1), regret, r̂s,i(t+ 1) and proba-
bility distribution, ps,i(t+1) of ith strategy for sth BS at time

Ch # Ave. CCI Pow. Priority

#1 2

#2 1

#C C

MM M

CCI Table at 

)1;(1
sUE
tI

)2;(1
sUE
tI

);(1
sUE
CtI

Ch # Ave. CCI Pow. Priority

#1 5

#2 3

#C 1

MM M

CCI Table at 

)1;(2
sUE
tI

)2;(2
sUE
tI

);(2
sUE
CtI

Ch # Ave. CCI Pow. Priority

#1 1

#2 6

#C C

MM M

)1;(x
sUE
tI

)2;(x
sUE
tI

);(x
sUE
CtI

CCI Table at 
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Fig. 2. Mechanism for updating priority tables.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Network

Noise Variance, N0 -174dBm/Hz
Arrival Rate, γxs /µ

x
s 180kbps

MBS
Max. Trans. Power, PMax

s 46dBm
Min. MBS-SBS Distance (m) 75
Min. MBS-UE Distance (m) 35

SBS
Max. Trans. Power, PMax

s 30dBm
Min. SBS-SBS Distance (m) 40
Min. SBS-UE Distance (m) 10
Path loss (d:distance between UE and BS) (unit: dB)
UE - MBS, ξUE,MBS 15.3+37.6log10(d)
UE - SBS, ξUE,SBS 27.9+37.6log10(d)

Learning Parameters
Boltzmann temperature, σs 10
Weighting Parameters, ϕs, ψs 10, 5

t+ 1 are given by

ûs,i(t+ 1) = ûs,i(t) + cb(t) · 1(t) · (us(t)− ûs,i(t))
r̂s,i(t+ 1) = r̂s,i(t) + ds(t+ 1) (ûs,i(t)− us(t)− r̂s,i(t))
ps,i(t+ 1) = ps,i(t) + es(t+ 1) (Gs,i(r̂s,i(t))− ps,i(t))

(14)

with
1(t) =

{
1 (if as(t+ 1) = as(t))
0 (if as(t+ 1) 6= as(t))

(15)

and
Gs,i(r̂s,i(t)) =

exp (σsr̂s,i(t))∑
i′∈As

exp (σsr̂s,i′(t))
, (16)

where Gs,i(r̂s,i(t)) is the Boltzmann-Gibbs (BG) distribution,
which is used to encourage those played actions with lower
regrets and discourage actions with higher regrets. In (14), σs
is the temperature parameter. For further information on BG
distribution and its role in this game to reach the equilibrium
(please refer to [14]). cb(t), db(t) and eb(t) are learning rates
which decay inversely proportional to time and should meet
the following conditions:

lim
t→∞

t∑
m=1

cs(m) = +∞, lim
t→∞

t∑
m=1

ds(m) = +∞,

lim
t→∞

t∑
m=1

es(m) = +∞, lim
t→∞

t∑
m=1

c2s(m) < +∞,

lim
t→∞

t∑
m=1

d2s(m) < +∞, lim
t→∞

t∑
m=1

e2s(m) < +∞,

lim
t→∞

ds(t)

cs(t)
= 0, lim

t→∞

es(t)

ds(t)
= 0.

(17)

IV. COMPUTER SIMULATION

We simulate s scenario similar to Fig. 1, where a MBS
is collocated with several SBSs. Simulation parameters are
summarized in Table II. Two benchmarks are considered for
comparison purposes. First is a baseline approach, in which
all BSs are always on. Second is the same Baseline combined
with the CS at UEs and third is the energy-efficient ON/OFF
switching algorithm proposed in [7].
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Fig. 3. Average cost per BS for different total number of UEs in the system
and S = 20 BSs and C = 4.
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Fig. 4. Average energy consumption per BS for different total number of
UEs in the system and S = 20 BSs and C = 4.

Fig. 3 plots average cost per BS for different number of
UEs with S = 20 BSs and C = 4. For comparison, the
proposed method, i.e., the learning algorithm combined with
a CS approach at UEs, is compared with the three benchmark.
We observe that when the number of UEs is low (X < 40), the
proposed algorithm’s performance is almost the same as the
only learning algorithm in [7]. However, for higher number of
UEs, the performance of the proposed algorithm is the best
among the other methods. This shows the effectiveness of the
IACS-DCA algorithm in mitigating the total interference in
the system, which indirectly contributes to BS load reduction
and improves the cost.

Fig. 4 plots the average energy consumption per BS for
different number of UEs with S = 20 BSs and C = 4. It
is observed that the approaches based on ON/OFF switching
significantly outperform the baseline algorithms and yield at
least 30% improvement in terms of average energy consump-
tion. However, the proposed approach and the one in [7] have
identical performance, with the proposed one slightly better in
higher number of UEs (X > 60).
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Fig. 5. Average load per BS for different total number of UEs in the system
and S = 20 BSs and C = 4.
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Fig. 6. Average cost per BS for different number of SBSs and X = 150
UEs and C = 4.

Fig. 5 plots average load per BS for different number
of UEs with S = 20 BSs and C = 4. We can see that
the proposed algorithm has similar performance compared
to baseline algorithm with CS. However, it has considerably
better performance compared to only learning algorithm in [7].
Please note that due to the inverse relation of system load
and throughput (as shown in equation (7)), in this work lower
load implies a higher system throughput and consequently
higher SE. Comparing plots in Fig. 4 and Fig. 5, proves
that combining the ON/OFF switching with the proposed CS
method, not only improves the EE, but also increases the
system SE to a great extent.

Finally, Fig. 6 illustrates the average cost per BS for
different number of BS with X = 150 UEs and C = 4.
Again we can see that the proposed algorithm has the best
performance among the other approaches. Specifically, the
gain in performance gap increases as the number of BS
increase. This promising result proves the effectiveness of our
method for dense scenarios.



V. CONCLUSION

In this paper, we proposed a joint ON/OFF switching and
dynamic channel allocation algorithm which can significantly
improve the average throughput. A non-cooperative game-
theoretic approach was used to design the base station (BS)
ON/OFF switching problem. Later, all the user equipments
(UEs) connected to each BS prioritises the available channels
based on their level of interference and chooses the one with
the least averaged received interference. The chosen channel
is reported to BS and then BS chooses the channel which
was mostly reported. The algorithm is fully distributed and
base stations do not need to exchange any information. The
proposed algorithm shows a comparable performance with a
benchmark from energy-efficiency point of view, with slight
improvement in dense scenarios. However, it significantly
outperforms the benchmark in terms of average system load,
in dense small cell deployment scenarios.
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