
A Distributed Sleep Mode and Bandwidth
Allocation Algorithm for Improving
Energy-Efficiency in Dense HetNet

Abolfazl Mehbodniya and Fumiyuki Adachi

Graduate School of Engineering, Department Communications Engineering,
Tohoku University

6-6-05 Aza-Aoba, Aramaki, Sendai 980-8579, Japan
Email: mehbod@mobile.ecei.tohoku.ac.jp adachi@ecei.tohoku.ac.jp

Abstract—Designing high-speed, energy-efficient heteroge-
neous wireless networks has recently emerged as a key research
challenge. A novel approach for radio resource management
at the base station (BS) level is introduced with the objective
of improving the spectral-efficiency, while keeping the energy-
efficiency (EE) at an acceptable level. In this paper, a hybrid
opportunistic ON/OFF switching (OOFS) and dynamic channel
allocation (DCA) mechanism is proposed. The problem is for-
mulated as a non-cooperative game between the BSs who seek
to decide on their transmission mode and channel allocation
parameters. To solve this game, a two-step algorithm is proposed.
At first, a mixed-strategy game is used, so the BSs may decide
independently about their power management strategy. In the
second step, the BS selects its downlink channel using a fully
distributed channel segregation approach. In dense heteroge-
neous environments, the DCA algorithm shows a significant
improvement in terms of BS throughput over OOFS algorithm,
while keeping an acceptable EE level comparable to OOFS.

Index Terms—Channel segregation, distributed design, dy-
namic channel allocation, energy-efficiency, ON/OFF Switching,
sleep mode, spectral-efficiency.

I. INTRODUCTION

Next generation wireless cellular systems, commonly re-
ferred as heterogeneous networks (HetNets) [1], are expected
to rely on the large-scale and dense deployment of low-
cost small cell base stations. While a dense deployment of
HetNets can significantly boost the capacity and coverage of
wireless networks, it also faces several challenges, such as net-
work modeling, maintaining an energy-efficient operation [2],
and handling radio resource management (RRM) with large
number of connected user equipments (UEs). Indeed, energy
efficiency (EE) has become a major research challenge in a
variety of fields as the global awareness for reducing CO2
emissions has continuously increased in the past decade. In
cellular networks, it is believed that at least 70% of energy
is consumed at the base station (BS). As a result, it becomes
vital to improve the EE of future BSs. Several approaches are
proposed for this purpose such as adaptively moving the BSs
into sleep mode based on the traffic conditions [3]. Due to
issues related to cost, technical feasibility, and control traffic,
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development of distributed radio resource management (RRM)
techniques is critical to maintain EE of the network.

In the design of last four generations of wireless systems,
most emphasis was on improving the spectral efficiency (SE)
with less attention on EE. Recently, there have been some
efforts in improving the EE of BSs. On one hand, most of
these works target only the EE problem without considering
the SE performance. SE is an important parameter specially
for dense HetNet scenarios, in which large number of UEs
should be guaranteed a minimum level of quality of service
(QoS) and EE should not compromise the SE of the system.
On the other hand, these works are mostly based on centralized
RRM solutions.

In [4], a cell biasing technique is proposed for femtocells
to improve the user association and resource utilization, which
shows improvement in capacity and EE of the network through
frequency reuse and subchannel power control. In [5], authors
proposed an energy efficient user association and ON/OFF
switching algorithm. They have formulated an optimization
problem for user association which takes into account the
energy efficiency as well. Later, a quantum particle swarm
optimization (QPSO) is used to solve this user association
problem. The aforementioned works succeed in improving the
EE, however they are based on centralized solutions. In [6], an
ON/OFF switching algorithm is proposed based on game the-
ory, which decides about the transmission power level of each
BS. For the UE association problem, they have proposed a
cost function, which includes both the received signal strength
(RSS) and the BSs’ loads. Therefore, it can reduce overloading
of the BSs. While [6] manages to significantly improve the
average energy consumption of the BSs, its emphasis is only
on EE considerations.

The main contribution of this paper is to propose a joint
opportunistic ON/OFF switching (OOFS) & dynamic channel
allocation algorithm (JOFS-DCA). A non-cooperative game is
formulated between the BSs and then, a distributed algorithm
is proposed to decide about the ON/OFF status of the BS or the
level of its transmission power. In the next step, UEs decide
which BS to connect to, i.e., the UE association problem.
Each UE chooses the target BS considering both the RSS
and averaged load of all BSs. Finally, each BS employs a
distributed channel segregation method similar to [7] to choose
a channel based on its look-up table. This look-up table is
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Fig. 1. System model for the energy efficiency improvement in HetNets
through distributed RRM technique.

formed based on the level of co-channel interference (CCI)
that each BS senses on different channels. After each BS’
channel is decided, then an orthogonal division multiple access
(OFDMA) scheme is used to transmit to the UEs in downlink.
Simulation results are provided to evaluate the performance
of the proposed algorithm in terms of average BS energy
consumption and throughput.

The remainder of this paper is organized as follows. In Sec-
tion II, system model is presented along with the power, signal-
to-interference-noise ratio (SINR), load, and cost expressions.
Section III discusses different steps of our proposed algorithm,
Section IV provides the simulation results and the evaluation
of our algorithm, and finally, Section V concludes the paper.

II. SYSTEM MODEL

We Consider the downlink transmission in a heterogeneous
network having the same topology as in [6] is considered.
Fig. I shows the system model, which consists of a set of
BSs, S = { 1, ..., S }. We assume only one macro base station
(MBS), s = 1, which encompasses a variable number of small
base stations, S = { 2, ..., S }. A total number of X users,
X = {1, ..., X} are available in the system.

Power consumption of sth BS, BS(s), at time t is given by:

PAll
s (t) =

Ps(t)

ηα(1− αfeed)
+ PBack

s + P Idle
s , (1)

with

α = (1− αDC)(1− αmain)(1− αcool), (2)

and

P Idle
s =

Pradio + Pbase

α
, (3)

where Ps(t) is the transmission power, η is efficiency of power
amplifier, PBack

s is the power consumption in backhaul, P Idle
s

is the power consumption in OFF mode. αfeed, αDC, αmain

and αcool represent respectively the loss fractions of feeder,
AC-DC conversion, main supply and cooler system. Pradio

and Pbase are the power consumption of radio frequency and
baseband units, respectively.

We assume a total of C available channels, C = {1, ..., C}.
Each channel uses OFDMA with Nc subcarriers. A frequency-
selective Rayleigh fading channel is considered which is

composed of Q distinct paths. The impulse response of the
propagation channel at time t is modeled according to:

h(τ ; t) =

Q−1∑
q=0

hq(t)δ(τ − τq) , (4)

where hq(t) and τq denote the time-varying complex-valued
path gain with E[

∑Q−1
q=0 |hq(t)|2] = 1 (E[.] denotes the

ensemble average operation) and the time delay of the qth
path, respectively.

A. SINR Expression

The downlink CCI experienced at xth UE connected to sth
BS, UExs , comes from the co-channel BSs using the same
c(s)th channel and is expressed by:

IUEx
s
(t) =

1

Nc

∑
s′ ∈ BSG(c(s))

s′ 6= s

pBS(s′) · r−αUEx
s ,BS(s′)

×
∑
k′∈Nx

s

∣∣HUEx
s ,BS(s′)(t; k

′, c(s))
∣∣2 (5)

where BSG(c(s)) denotes the BS group which uses the
same cth channel, pBS(s′) = Ps′(t) · R−α is the normalized
transmit power of beacon signal of BS(s’) with R being
the reference distance and α being the path-loss exponent.
rUEx

s ,BS(s′) is the normalized distance between UExs and
BS(s’). HUEx

s ,BS(s′)(t; k, c(s)) is obtained by the Fourier
transform of the channel impulse response between UExs and
BS(s’) at time t. Nx

s is the set of subcarriers assign by BS(s′)
to UExs . Here, we do not consider any optimal subcarrier
allocation for the OFDMA system. Subcarriers are divided
equally and sequentially between UEs connected to each BS
and we assume Nc � Xs, where Xs is the total number of
UEs connected to BS(s). The downlink instantaneous SINR
λUEx

s
experienced at UExs ’s antenna is given by

λUEx
s
(t) =

pBS(s) · r−αUEx
s ,BS(s)

∑
k′∈Nx

s

∣∣HUEx
s ,BS(s)(t; k

′, c(s))
∣∣2

Nc(IUEx
s
(t) +N0)

(6)

where N0 is the noise variance.

B. Load and Cost Function Expressions

We assume that UEs have different QoS requirements, i.e.,
they have different packet arrival rates and mean packet sizes.
We define the instantaneous load density of each BS as the
summation of the loads of all individual UEs connected to it
according to:

νs(t) =

Xs∑
x=1

γxs
µxsω

′ log2(1 + λUEx
s
(t))

(7)

where γxs and µxs are the packet arrival rate and mean packet
size of xth UE connected to sth BS, ω′ = ω/C is the
bandwidth of each BS and ω is the total system bandwidth.
The load of each BS is inversely related to the throughput
it provides for the UEs in its service. The averaged value of
load, υ̂s(t), is calculated as:

υ̂s(t) = υ̂s(t− 1) + l(t) (υs(t− 1)− υ̂s(t− 1)) , (8)



where l(t) is the learning rate. In order to ensure system sta-
bility, l(t) is chosen such that the load averaging is sufficiently
slower than UE association process.

A cost function similar to [6] is considered for each BS
which tries to capture both load and energy consumption. The
cost function for sth BS is defined by:

Ψs(t) = ϕsP
All
s (t) + ψsνs(t), ϕs, ψs > 0 (9)

where ϕs and ψs are weighting parameters which define the
impact of energy and load, respectively.

III. PROPOSED DISTRIBUTED RRM ALGORITHM

Our goal is to design a fully distributed solution which can
minimize the cost function in (9) for all BSs. The proposed
JOFS-DCA algorithm is summarized in Algorithm 1.

Algorithm 1 : Proposed algorithm.
1: Input: C(s, t), ûs,i(t), r̂s,i(t), ps,i(t)
2: Output: as(t+ 1), A(x, t+ 1)
3: Initialization: S = { 1, ..., S };
X = {1, ..., X}; C = {1, ..., C}; t = 0

4: while do
5: t ← t− 1,
6: for ∀s ∈ S do
7: Find as(t) = f (ps,i(t− 1)),
8: end for
9: Beacon signal transmission

10: and load advertising, υ̂s(t), (8)
11: for ∀x ∈ X do
12: if (x ∈ W) ∨ (x ∈ O) then
13: Find A(x, t), (12)
14: end if
15: end for
16: for ∀s ∈ S do
17: for ∀c ∈ C do
18: CCI power measurement, IBS(s)(t; c), (11)
19: Average power computation, IBS(s)(t; c), (13)
20: end for
21: CCI Table update, (Table II)
22: Channel selection, C(s, t), (14)
23: end for
24: Updating instantaneous values, υs(t), Ψs(t), (7), (9)
25: Updating ûs,i(t), r̂s,i(t), ps,i(t), (15), (16), (17)
26: end while

A. Strategy selection
In the first step of the algorithm, BSs decide their action, i.e.

OFF/ON mode. A non-cooperative game is used to design the
decision process. In this game, the players are the BSs, strate-
gies are different power levels chosen by BSs and the utility
function of each BS is defined according to, us(t) = −Ψs(t).
In this paper, we use variable i to refer to each strategy and
as(t) captures the strategy selected by sth BS at time t. Each
BS selects its action, as(t), at time t based on a probability
distribution, ps,i(t − 1), associated with each action, i.e.,
ps,i(t− 1) is a mixed strategy. Assuming f as a probabilistic
mapping function, as(t) is given by as(t) = f (ps,i (t− 1)),
where as(t) ∈ i = {1, ..., 4}. Each strategy i introduces the

cell range expansion bias (CREB) for BSs, which is defined
in terms of the transmission power level, ζs(t), and for time
t is given by:

Ps(t) = ζs(t)P
Max
s (10)

where PMax
s is the maximum allowed transmission power for

BSs in the system. Table I shows the selected transmission
power level for different strategies. Please note that MBS can
only select two strategies, i = 1 and i = 4, whereas small
base stations (SBSs) can select all four available strategies.

TABLE I
TRANSMISSION POWER LEVELS

Strategy Identification
Number (i)

Transmission Power
Level (ζs(t))

1 0
2 1/3
3 2/3
4 1

B. Beacon transmission
Each BS periodically broadcasts the beacon signal on the

selected channel. The instantaneous CCI power IBS(s)(t ; c)
measured at BS(s) on the cth channel (c = 0 ∼ C−1) at time
t is represented by:

IBS(s)(t; c) =
1

Nc

∑
s′ ∈ BSG(c(s))

s′ 6= s

pBS(s′) · r−αBS(s),BS(s′)

×
Nc−1∑
k=0

∣∣HBS(s),BS(s′)(t; k, c)
∣∣2 ,

(11)

where rBS(s),BS(s′) is the normalized distance between BS(s)
and BS(s’). HBS(s),BS(s′)(t; k, c) is obtained by the Fourier
transform of the channel impulse response between BS(s)
and BS(s’) at time t and E[|HBS(s),BS(s′)(t; k, c)|2] = 1. We
assume that the beacon signal contains the load information
of the BS as well. Please note that a more precise method is
to measure the interference at the UE, as we are studying the
downlink transmission. However, intuitively we deduct that
interference measurement at the BS can still serve as a good
approximation, given the fact that SBSs’ coverage is much
smaller than MBS.

C. UE association
If the UE belongs to the set of recently slept BSs, W , or

if it belongs to the set of UEs which have dropped due to
overload, O, or if the UE has newly joined the network, then
it should be assigned to a new BS. In order to connect to a
new BS, UEs receive the load estimate of all BSs through the
beacon signal and choose the BS they want to connect to by
evaluating an association function. This association function
is based on two metrics, i.e., the RSS and the load condition
of each BS. The reason to choose two metrics is to ensure
a minimum required QoS for UEs and at the same time to
prevent overloading of BSs. The UE’s association criteria is
formulated according to:

A(x, t) = arg max
s∈S

{
υ̂s(t)

−τpBS(s) · r−αUEx,BS(s)

×
Nc∑
k=1

∣∣HUEx,BS(s)(t; k, c(s))
∣∣2} (12)



where τ is a coefficient, which indicates the impact of each
BS’s traffic load.

TABLE II
CCI TABLE AT THE BS(S)

Channel # Average CCI Power Priority

#1 IBS(s)(t; 1) 2
#2 IBS(s)(t; 2) 1
... IBS(s)(t; 3) ...
#C IBS(s)(t; 4) n

D. Channel Selection

We use the first order filtering to compute the average CCI
power. The average CCI power IBS(s)(t; c) computed at sth
BS on the cth channel at time t is given by

IBS(s)(t; c) = (1−β) · IBS(s)(t; c)+β · IBS(s)(t−1; c), (13)

where β denotes the forgetting factor. Using the average CCI
powers on all available channels, the CCI table is updated for
all available channels (c = 0 ∼ C − 1). The channel having
the lowest average CCI power is selected as

C(s, t) = arg min
c∈C

IBS(s)(t; c) , (14)

which is used until the next CCI table updating time t+1. The
averaging interval of the first order filtering is given as 1/(1-
β). If a too small β is used, averaging is not enough and the
measured average CCI power varies like the instantaneous CCI
power. Therefore, the channel reuse pattern varies at every CCI
table updating time. Hence, β ≈ 1 is recommended [8]. In this
paper, β=0.95 is used for the computer simulation.

E. Mixed strategy update

Utility estimation, ûs,i(t+ 1), regret, r̂s,i(t+ 1) and proba-
bility distribution, ps,i(t+1) of ith strategy for sth BS at time
t+ 1 are given by

ûs,i(t+ 1) = ûs,i(t) + cb(t) · 1(t) · (us(t)− ûs,i(t))
r̂s,i(t+ 1) = r̂s,i(t) + ds(t+ 1) (ûs,i(t)− us(t)− r̂s,i(t))
ps,i(t+ 1) = ps,i(t) + es(t+ 1) (Gs,i(r̂s,i(t))− ps,i(t))

(15)

with

1(t) =

{
1 (if as(t+ 1) = as(t))
0 (if as(t+ 1) 6= as(t))

(16)

and

Gs,i(r̂s,i(t)) =
exp (σsr̂s,i(t))∑

i′∈As
exp (σsr̂s,i′(t))

, (17)

where Gs,i(r̂s,i(t)) is the Boltzmann-Gibbs (BG) distribution,
which is used to encourage those played actions with lower
regrets and discourage actions with higher regrets. In (15), σs
is the temperature parameter. For further information on BG
distribution and its role in this game to reach the equilibrium
please refer to [9]. cb(t), db(t) and eb(t) are learning rates
which decay inversely proportional to time and should meet

TABLE III
SIMULATION PARAMETERS

Parameter Value
Network

Noise Variance, N0 -174dBm/Hz
Arrival Rate, γxs /µ

x
s 180kbps

MBS
Max. Trans. Power, PMax

s 46dBm
Ave. MBS-SBS Distance (m) 75
Ave. MBS-UE Distance (m) 35

SBS
Max. Trans. Power, PMax

s 30dBm
Ave. SBS-SBS Distance (m) 40
Ave. SBS-UE Distance (m) 10
Path loss (d:distance of BS and user (m)) (unit: dB)
MBS - UE 15.3+37.6log10(d)
SBS - UE 27.9+37.6log10(d)

Learning Parameters
Boltzmann temperature, σs 10
Weighting Parameters, ϕs, ψs 10, 5

the following conditions:

lim
t→∞

t∑
m=1

cs(m) = +∞, lim
t→∞

t∑
m=1

ds(m) = +∞,

lim
t→∞

t∑
m=1

es(m) = +∞, lim
t→∞

t∑
m=1

c2s(m) < +∞,

lim
t→∞

t∑
m=1

d2s(m) < +∞, lim
t→∞

t∑
m=1

e2s(m) < +∞,

lim
t→∞

ds(t)

cs(t)
= 0, lim

t→∞

es(t)

ds(t)
= 0.

(18)

IV. COMPUTER SIMULATION

We simulate s scenario similar to Fig. I, where a MBS
is collocated with several SBSs. Simulation parameters are
summarized in Table III. Two benchmarks are considered for
comparison purposes. First is a baseline approach, in which
all BSs are always on. Second is the energy-efficient ON/OFF
switching algorithm proposed in [6]. Fig. 2 and Fig. 3 show
the average energy consumption per BS for different numbers
of UEs for S = 2 BSs and S = 25 BSs, respectively. The
number of channels for the proposed algorithm is C = 4 in
all scenarios. We observe that both the proposed algorithm and
the one in [6] have considerably higher EE than the baseline
approach but their performance is quite identical for lower
number of (density) of BSs. However in more dense scenarios
(S = 25 BSs), the proposed algorithm slightly outperforms
the one in [6] for moderate number of connected UEs in
the system. Maximum improvement is about 12%. Fig. 4
shows the average cost per BS for different number of UEs,
S = 25 BSs and C = 4. When both power consumption
and load are taken into consideration, the proposed algorithm
shows substantial improvement, compared to the two other
algorithms. Finally, Fig. 5, compares the average throughput
per BS for different number of BSs. Again the proposed
algorithm significantly outperforms the two other algorithms.

V. CONCLUSION

In this paper, we proposed a joint ON/OFF switching and
dynamic channel allocation algorithm which can significantly
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Fig. 2. Average energy consumption per base station for different number of
UEs and S = 2 BSs and C = 4.
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Fig. 3. Average energy consumption per base station for different number of
UEs and S = 25 BSs and C = 4.

improve the average throughput. A non-cooperative game-
theoretic approach was used to design the base station (BS)
ON/OFF switching problem. Later, each BS prioritises the
available channels based on their level of interference and
chooses the one with the least averaged received interference.
The algorithm is fully distributed and base stations do not
need to exchange any information. The proposed algorithm
shows a comparable performance with a benchmark from
energy-efficiency point of view, with slight improvement in
dense scenarios. However, it significantly outperforms the
benchmark in terms of average BS throughput, in dense small
cell deployment scenarios.

REFERENCES

[1] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, “Evolution
toward 5g multi-tier cellular wireless networks: An interference manage-
ment perspective,” IEEE Trans. on Wir. Com., vol. 21, no. 3, pp. 118–127,
Jun. 2014.

[2] Y. Chen, S. Zhang, S. Xu, and G. Li, “Fundamental trade-offs on green
wireless networks,” IEEE Com. Mag., vol. 49, no. 6, pp. 30–37, Jun.
2011.

[3] R. Wang, J. Thompson, H. Haas, and P. Grant, “Sleep mode design for
green base stations,” IET Com., vol. 5, no. 18, pp. 2606–2616, Dec 2011.

0 50 100 150 200
0

5

10

15

Number of Users

A
ve

ra
ge

 C
os

t P
er

 B
S

 

 

Baseline Approach
ON−OFF Switching Algorithm in [6]
Proposed JOFS−DCA Algorithm

Fig. 4. Average cost per base station for different number of UEs and S = 25
BSs and C = 4.

0 5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

6

Number of SBSs

A
ve

ra
ge

 R
at

es
 [b

ps
]

 

 

Baseline Approach
ON−OFF Switching Algorithm in [6]
Proposed JOFS−DCA Algorithm

Fig. 5. Average throughput per base station for different number of base
stations and X = 100 UEs and C = 4.

[4] R. Thakur, A. Sengupta, and C. Siva Ram Murthy, “Improving capacity
and energy efficiency of femtocell based cellular network through cell
biasing,” in 2013 11th Inter. Sym. on Modeling Optim. in Mobile, Ad
Hoc Wire. Netw. (WiOpt), May 2013, pp. 436–443.

[5] Y. Zhu, Z. Zeng, T. Zhang, L. An, and L. Xiao, “An energy efficient user
association scheme based on cell sleeping in lte heterogeneous networks,”
in 17th Inter. Sym. on Wire. Pers. Multimedia Com. (WPMC2014),
September 2014, pp. 1–5.

[6] S. Samarakoon, M. Bennis, W. Saad, and M. Latva-aho, “Opportunistic
sleep mode strategies in wireless small cell networks,” in IEEE Inter.
Conf. on Com. (ICC), June 2014, pp. 2707–2712.

[7] R. Sugai, M. T. Sirait, Y. Matsumura, K. Temma, and F. Adachi, “Im-
pact of shadowing correlation on interference-aware channel segregation
based dca,” in IEEE Veh. Tech. Society Asia Pacific Wir. Com. Sym.
(APWCS2014), August 2014, pp. 1–4.

[8] Y. Matsumura, S. Kumagai, T. Obara, T. Yamamoto, and F. Adachi,
“Channel segregation based dynamic channel assignment for wlan,” in
IEEE Inter. Conf. on Com. Sys. (ICCS), Nov 2012, pp. 463–467.

[9] M. Bennis, S. Perlaza, and M. Debbah, “Learning coarse correlated
equilibria in two-tier wireless networks,” in IEEE Inter. Conf. on Com.
(ICC), June 2012, pp. 1592–1596.


