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Abstract—Two major challenges facing 5G are energy effi-
ciency and mobile users’ mobility in heterogeneous wireless
networks. Using algorithms based on the base station (BS)’s
switching between ON and OFF modes, can improve the energy
efficiency of the network. In this paper, we consider mobile
terminal’s seamless mobility problem joint with BSs which are
able to switch between ON and OFF modes. Also, we propose a
handoff algorithm based on the BSs’ load balancing through
imposing handoffs from highly loaded BSs to lightly loaded
BSs. Therefore, the proposed handoff algorithm combined with
ON and OFF switching can achieve both energy- and spectral-
efficiency.

Index Terms—Energy efficiency; Heterogeneous wireless net-
work; Handoff; Learning algorithm.

I. INTRODUCTION

With growing mobile subscriptions and traffic demand,
the efforts are towards developing and deploying of the 5th
generation mobile networks (5G) [1], [2]. In the transition
from 4G to 5G, one of the key challenges is the network’s
energy consumption. Several literatures have studied energy
efficiency in cellular networks and suggest some techniques
to enable green cellular networks based on heterogeneous
wireless networks (HetNets), cooperative relaying, MIMO and
OFDM techniques, and etc. [3], [4]. HetNets represents a
promising solution for 5G in order to improve the energy
efficiency of the network [5].

Currently, base station (BS)s’ deployment and operation are
on the basis of peak traffic load. Since BSs’ traffic loads
dynamically change over the time and space domain, in low
load situations the energy efficiency will decrease. Some
methods such as cell breathing and BS switching between ON
and OFF modes can help reduce energy consumption of BSs in
these situations [6]. In [7], an opportunistic ON/OFF switching
technique for BSs based on game-theoretic approach in a two-
tier network is proposed. This technique uses a distributed
learning algorithm for solving the game with an objective
function involving a tardeoff between power consumption and
traffic load. In [8], a cooperative optimization problem in terms
of energy efficiency is devised. An optimal switch OFF pattern
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problem is studied in [9] and a solution is proposed to find the
maximum fraction of BSs to be switched OFF. A sleeping cell
user association scheme based on BSs with maximum mean
channel access probability is developed in [10]. The proposed
scheme adapts the BSs to traffic load and scheduling criteria.
In [11], a quality of service (QoS)-aware user association
scheme is proposed based on graph and optimization theory.

Another challenge in HetNets is users’ mobility. The afore-
mentioned literatures do not considered users’ mobility and
handoff (HO) problems. A number of literatures studied HO
problems in HetNets [12], [13]. In conventional HO decision
method, HO process is triggered when the quality of com-
munication link parameters, such as received signal strength
(RSS) and/or signal-to-interference-and-noise-ratio (SINR),
drop below a threshold level. Fuzzy based adaptive handoff
management schemes are proposed in [14], [15].

In this paper, we consider users’ mobility and HO problems
in a two-tier HetNet, combined with ON-OFF switching for
BSs, which periodically advertise their estimated loads through
beacon signals, same as [7]. We assume that users can move
on grid road topology so that at each intersection, users
decide their moving direction in a probabilistic manner with
high probability assigned to straight. Then they can request
for a HO process according to some metrics such as RSS
and BSs’ estimated load. We consider two HO algorithms,
traditional HO algorithm (THA) based on RSS and proposed
HO algorithm based on estimated BS’s load (PHA-EL). The
PHA-EL combined with ON-OFF switching (PHA-EL/ON-
OFF switching) balances load among BSs. As a result, it
improves the energy efficiency of the system and increases
BSs’ payoff. In this model, the strategy selection processes
are performed in a fully distributed way and the PHA-EL
module can reside in each BS or in user terminals. The
rest of this paper is structured as follows. In Section II,
we introduce our system model over a two-tier HetNet and
BS’s power consumption model. Section III describes the
user association scheme and the proposed game formulation.
Section IV provides user’s mobility model and our proposed
HO algorithm. The simulation results are presented in section
V, and finally conclusions are drawn in Section VI.

II. SYSTEM MODEL

This section describes the deployment scenario and BS’s
power consumption model.
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Fig. 1. A typical example of two-tier HetNet.
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A. Deployment Scenario

We consider a two-tier HetNet with a set of BS 5, including
one macro base station (MBS) located in the origin of area
and a set of small cell base stations (SBSs) uniformly located
within the coverage of MBS. The set of active mobile users
is denoted by K. Fig. 1 represents an example of a typical
two-tier HetNet.

The whole square area is divided into equal-sized grids. The
grid is represented by the two-dimensional coordinate arrays,
and grid points are used for users’ and BSs’ initial locations
in the area using a uniform distribution. To avoid interference
between uplink and downlink transmission, each user k € K
transmits and receives over orthogonal channels. For the sake
of simplicity, we only consider downlink transmission. Let
PPut(t) be the transmitted power of BS b € B at time ¢ and
under co-channel deployment, the signal-to-interference-and-
noise-ratio (SINR), SIN Ry (¢), at the receiver of user k from
its associated BS b at time ¢ is defined by:

out k

SINRu(t) = - 9810) (1)
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where g¢¥(t) denotes the total channel gain including path
loss and lognormal shadow fading between BS b and user
k at time t. Let 02 be the power spectral density (PSD) of
additive white Gaussian noise (AWGN) at users’ receiver.
From Shannon’s capacity formula, the achievable transmission
rate of user k from BS b at time 7 in bit/sec/Hz is given by

Tk () = W logy (14 SIN Ry (1)) 2

where W denotes the system bandwidth. Letyy(¢) be the mean
packet arrival rate of user k in bit/sec at time ¢ then the system
load of BS b [,(t) at time ¢ is expressed by

w2 o

where A} denotes the user set associated with BS b at time 7.

B. Power Consumption Model

The main power consuming components of a BS are includ-
ing power amplifier, radio frequency module, cooling system,
the baseband unit, the DC-DC power supply and main supply.
Therefore, the total power consumed by BSs at time 7 can be
expressed as

Pretwork (t) = Z Pgn (t) 4)
be B
where
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where P{"(t), PP*(t) and Py are the total power consump-
tion, the transmission power of BS b at time ¢ and maximum
transmit power of BS b, respectively. P and PPBdenote the
power of the radio frequency module and the total power of
baseband engine consumed by BS b, respectively. 77{)D 4 denotes
the power amplifier efficiency of BS b. )\5 ced APC, AMS and
AbC(’Ol represent losses which are incurred by feeder, DC-DC
power supply, main supply and cooling system, respectively.
We assume that all parameters except PY“!(t) in (5) are
constant over time.

III. USER ASSOCIATION AND STRATEGY SELECTION
PoLicy

A beacon signal describing the estimated load of the BS is
broadcasted in the downlink transmission on a periodical basis.
The users are associated with the BSs according to the BSs’
estimated loads and received power at their locations. At time
t, dropped users at #-1,D, new users, N, and users which need
to enable a HO process, H, should perform new association
process according to users’ association rule defined as follow:

ul, = arg Igleaj;( 10 log;, {(Pbout(t) g],f(t)) (1-— Iy (t))}
¥

where I, (t) denotes the estimated load of BS b at time
and is obtained according to:

b (t) = (1= (1/)7) I (t= 1)+ (1/1)" b (t=1) O

where o > 0 is learning rate exponent for the load estimation
and [, (t — 1) is the instantaneous load at time #-1.

We apply the following non-cooperative game to select
the transmission power of BSs. The normal form of game
is expressed as G = (B,Spen (s—s), {ﬂ'b}b66>, where B
represents the set of BSs as players, Syep (s—p) is the strategy



set of player b, s_; is the strategies of all players other than
player b, and  is the payoff of player b. The player’s payoff
is the difference between its benefit and cost. At the same
time, each BS b € B Calculatezs the number of users which

. . . A .
are associated with it, 0 < “ ,Cb|| < 1. The weighted benefit
function for BS b at time ¢ can be written as
|4
ny (t) = wpr =4
b ( ) b |K:‘
where w;’ denotes the serving weight. Here, a cost for each
BS b, ¢ (t), including its power consumption and load at time
t, is considered. The weighted cost function for BS b at time
t is given by:

(10)
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where wf) and wf denote the load and power weight, respec-
tively. The payoff function of BS b at time ¢ can be express
as:

cb (t) = wily(t) +wy By (1)

m () =np (t) — cp (1) =
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Each player b € B aims at maximizing its payoff function.
The strategy set of MBS and SBSs are {0, P%*} and {0, 1/3
Plf”a’: ,2/3 PbM ar PbM‘””}, respectively. At time ¢, each player
b € B chooses a mixed strategy p, which is a randomization
over its pure strategies. Since the game G is a finite game,
it has at least one mixed strategy equilibrium. A regret based
learning algorithm is applied in order to obtain a e-coarse cor-
related equilibrium. In each time ¢, for each BS b € B and each

sy € Sy probability distribution vector p;™! = {ng}
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updated as follows [7]:
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where 5 > 0, v > 0 and 6 > 0 denote the learning
rate exponent for probability, regret and payoff, respectively.
Here, G}, = {Gb,sb}‘sblxlis the Boltzmann-Gibbs distribution
vector defined as follows:
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for all b € B and for all §, € Sy, where A~ > 0 denotes the

0y
temperature parameter for BS .

IV. USER’S MOBILITY MODEL AND HANDOFF POLICIES

Our model for the layout uses a Manhattan-like street
structure and users move in a straight line and they can change
their directions at each intersection with a given probability.
At each intersection, each user selects its movement direction
according to the following probability distribution in Table I.
In Table I, p¢, p;, and pz are probabilities for moving on
the current direction, turning right and turning left for user &,
respectively. We assume that users move with constant speed
and when a user goes out of a boundary, another user enters
on the other side.

HO schemes consider various metrics such as RSS and
distance. However, neglecting the HO problem from BS point
of view may lead to load imbalance and the BSs’ payoff
reduction. In this work, we focus on developing a load
balancing HO algorithm, named PHA-EL, which can adapt to
HetNets. In particular, the PHA-EL functions in a distributed
manner. PHA-EL allows users to HO when BS’s estimated
load, exceeds a certain threshold. Therefore, it balances load
among BSs and reduces users dropping probability.

Since both BSs and users may need additional signaling
overhead and processing for the execution of HO process,
the number of HOs in the network is a key factor in power
consumption and battery lifetime. Therefore it is vital to
reduce the number of unnecessary HOs in the networks. In
the following subsection, we describe the PHA-EL. When RSS
drops below the threshold and estimated distance between user
and serving BS is more than 0.8 serving cell radius Rand if
another BS better than the serving BS exists, then the THA
is triggered. We assume that the users are equipped with a
Global Positioning System (GPS) device in order to estimate
the distance.

1) Proposed HO algorithm based on estimated BS’s load
(PHA-EL)

In this subsection, we present our PHA-EL algorithm.
This algorithm utilizes the estimated load, advertised by BSs
through beacon signals. The actual HO execution is started
when the user begins to scan potential target BSs in order to
find out if they can offer better QoS. In each tier, a set of
HO metrics is considered such as RSS and load. The set of
PHA-EL metrics Cpya_gr, are given by

Crua-eL = {Chua_pr i €{1, 2, 3}} (a7

TABLE 1
PROBABILITY DISTRIBUTION FOR USER’S MOVEMENT

Movement direction [ probability
Current direction p, = 0.5

Turning right p?@ =0.25
Turning left p = 0.25




Algorithm 1 : Proposed algorithm.

1: Input:  p!, 7}, T}, Users’ positions at time ¢

2: Output: A?, p;™',

3. Inmitialization: A = {1,...,|A|}, K={1,..,|K|]},t=1
4: while do

5: for Vb e B do

6 Find s;(t),

7: Advertise estimated load [, (¢ + 1)

8: end for

9: for Vk € K do

10: if (k€ D)V (ke N) then

11: Find u},

12: else if (k‘ S H) then I CpHA —EL, s satisfied
13 fire = maxx 10 logyg { (PE(6) gb(®)) (1= 1, (1)}
14: if fy«r > for then

15 Qe p =1

16: ai =0

17: Execute HO process

18: else

19: Continue with serving BS

20: end if

21: else

22: Continue with serving BS

23: end if

24:  end for

25:  Updating instantaneous values: [y, (¢), 7}
26:  Updating: 7.+ i+t pi+t

27t +— t+1,

28: end while

where

i
C‘PHAfEL —
ie{l, 2, 3}
C]%HA*EL . P;c (t)< pThreshold (18)
Clz:’HAfEL ‘Estimated distance between user kand
serving BS b>0.8X Ry

Copa_pr: Dt+1) > (fhreshotd

and PF (t) = P2" (t) x gk(t) is the received power at user
k associated with serving BS b at time 7. According to these
metrics at time ¢, users decide to whether continue with serving
BS or associate with another BS called target BS.

The procedure to realize PHA-EL comprises the following
steps:

- At time ¢, each BS b € B advertises its estimated load
Iy (t + 1) through beacon signal.

- If Cpua_gL is satisfied then HO decision request is
enabled (the PHA-EL trigger)

- Based on user association rule, if there is another BS better
than serving BS, then user will be associated with it (HO
decision making).

The pseudo code for PHA-EL is summarized in Algo-
rithm 1.

V. SIMULATION RESULTS

In this section, we provide the simulation results for the two
HO algorithms, i.e., THA and PHA-EL, using performance

TABLE I
SYSTEM-LEVEL SIMULATION PARAMETERS

System Parameters

Parameter Value
Physical link type Downlink
Carrier frequency/ Channel bandwidth 2 GHz/ 10 MHz
Noise PSD -174 dBm/Hz
Traffic model Full buffer
Mobility model Manhattan grid
Total time 200 sec
Mean packet arrival rate (i (t)) 180 Kbps
Op 0.1
Weights w? , wi, w? 1,05, 05
Learning rate exponent for a, 3, v, § 0.9, 0.6, 0.7, 0.8
PThre.shold -90dBm

BSs Parameters
Parameter MBS PBS
Maximum power 46 dBm 30 dBm
Shadowing standard | 8 dB 10 dB
deviation
Radius cell 250 m 40 m
Distance-dependent 128.1+37.6log 1 (d)| 140.7+37.6log;y(d)
path loss model d in Km d in Km
Minimum distance MBS-SBS: 75m SBS-SBS: 40m

MBS-User: 35m SBS-MT: 10m
Load threshold | 0.9 0.7
(lg’hreshold)

criteria such as average number of HO, average load per
BS and average payoff per BS. Additionally, we present the
comparison of the HO algorithms in two cases:

1) ”Always ON” case where the BSs are always ON and
transmit with their maximum power.

2) "ON-OFF switching” case where the BSs are able to
switch between ON and OFF modes and they transmit
according to their selected strategy.

We consider a square region 500 x 500 m? served by the set
of BSs. The communications are carried out in full buffer in
accordance to the system parameters shown in Table II. One
of the desirable features in HO process is that number of HOs
must be minimized. Since higher number of HOs results in
power loss and reduction in energy efficiency.

Fig. 2 compares the average number of HOs vs different
number of SBSs for 40 users and velocity Sm/sec. As the
number of SBSs increase, the average total number of HOs per
time increases. We see that the PHA-EL/ON-OFF switching
significantly outperforms the other algorithms, especially for
the higher number of SBSs. Thus it improves the power
consumption and battery lifetime in dense scenarios.

In Fig. 3, we compare the average payoff per BS vs different
velocity with 5 SBSs and 30 users. It is shown that PHA-
EL/ON-OFF switching has the best payoff among the other
approaches. For instance, at velocity 7m/sec, it improves the
average payoff per BS about 45% over PHA-EL/Always ON.

Fig. 4 plots the average loads per BS vs different num-
ber of SBSs, with 40 users and velocity Sm/sec. As the
number of SBSs increases, average load per BS decreases
through offloading users associated with highly loaded BSs to
lightly loaded BSs. We can observe that the PHA-EL/ON-OFF
switching balances load among BSs. As a result, it improves
system throughput and consequently yields to better spectral
efficiency. For instance, at the number of SBSs 6, the average
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loads per BS is improved around 40% as compared to PHA-
EL/Always ON.

VI. CONCLUSION

In this paper, we proposed a handoff algorithm based
on BS’s estimated load combined with BSs which are able
to switch between ON and OFF modes (PHA-EL/ON-OFF
switching) in order to improving of energy efficiency of
the system. The PHA-EL/ON-OFF switching balances loads
among BSs and therefore improves system throughput and
consequently yields to better spectral efficiency. As a result,
this algorithm achieves both energy- and spectral- efficiency.
Simulation results showed that PHA-EL/ON-OFF switching
provides a better performance over the PHA-EL/Always ON
and significantly outperforms it in terms of average load,
average number of HOs and BS’s payoff.-To simulate the
mobility, we used a Manhattan grid model, which is a more
realistic mobility model than the RWP model.
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